End-to-End Risk-aware Reinforcement Learning to Detect Asymptomatic Cases in Healthcare Facilities

Yongjian Zhong, Weiyu Huang, Bijaya Adhikari

University of Iowa

ICHI 2024

Jun 3, 2024

Outline

- Background & Challenges
- Problem Formulation
- Our Method
- Experiment
- Conclusion & Future Work

Asymptomatic cases drives outbreak

Detecting asymptomatic cases is crucial in combating pandemic outbreak!

[2] Subramanian, Rahul, Qixin He, and Mercedes Pascual. "Quantifying asymptomatic infection and transmission of COVID-19 in New York City using observed cases, serology, and testing capacity." Proceedings of the National Academy of Sciences 118.9 (2021): e2019716118.

[3] Ziakas, Panayiotis D., et al. "Asymptomatic carriers of toxigenic C. difficile in longterm care facilities: a meta-analysis of prevalence and risk factors." PloS one 10.2 (2015): e0117195.

Challenges in Detecting Asymptomatic Cases

Challenge 1: Data Scarcity

Most data don't include symptomatic information

Challenges in Detecting Asymptomatic Cases

Challenge 2: Bias on Risk Factors

The *risk factors* for symptomatic infections *differ* from those of asymptomatic infections.

Challenges in Detecting Asymptomatic Cases

Challenge 3: Systematic Bias

Severe cases get more attention when it comes to testing when *capacity is limited*.

Scope of This Paper

Goal

Given *interactions* between people and some *positive* cases, *infer* the *asymptomatic* cases.

•But ...

Such interactions do not exist for most scenarios.

Health Care Facilities

Well-documented

Outline

Background & Challenges

Problem Formulation

- Our Method
- Experiment
- Conclusion & Future Work

Health care facilities

Interactions between *patients* and *HCPs*.

Health care facilities

Interactions between *patients* and *HCPs*.

Health care facilities

Interactions between *patients* and *HCPs*.

Health care facilities

Interactions between *patients* and *HCPs*.

OF IOWA

If we have more interactions ...

Build snapshot upon previous ones

If we have more interactions ...

Build snapshot upon previous ones

Still have more interactions ...

Build snapshot upon previous ones

Problem Formulation

□ Take *2 snapshots* as an example. We are focusing the following problem.

Problem Formulation

□ Take *2 snapshots* as an example. We are focusing the following problem.

One Solution

Obj = 0.7 + 0.5 + 1.0 + 1.0 + 0.2 = 3.4

Edge Weight: Probability of transmission

Node Prize: Probability of being asymptomatic

Goal: Cover positive nodes by a *tree,* and *maximize* the weight and prize

Another Solution

Obj = 0.7 + 0.5 + 1.0 + 1.0 + 0.6 = 3.8 > 3.4

Directed Prize-collecting Steiner Tree

Given

Outline

- Background & Challenges
- Problem Formulation
- Our Method
- Experiment
- Conclusion & Future Work

Related Works

- □ MCA [Jang et al.]
 - Prize-collecting Steiner Tree
 - Fixed prize, sub-optimal
- CuLT [Rozenshtein et al.]
 - Steiner Tree
 - Assume SI model, ignore risk-factors
- □ TopoLSTM [Wang et al.]
 - Cascade
 - Ignore risk-factors

Methods	Cascade	Steiner Tree	Risk Factors	End-to-end	Main contribution: jointly optimize for estimating and constructing.
TopoLSTM	\checkmark	×	×	×	
CuLT	\checkmark	 ✓ 	×	×	
МСА	\checkmark	 ✓ 	 ✓ 	×	
Ours	\checkmark	\checkmark	\checkmark	\checkmark	

[1] Jang, Hankyu, et al. "Risk-aware temporal cascade reconstruction to detect asymptomatic cases: For the cdc mind healthcare network." 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 2021.

[2] Rozenshtein, Polina, et al. "Reconstructing an epidemic over time." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.

[3] Wang, Jia, et al. "Topological recurrent neural network for diffusion prediction." 2017 IEEE international conference ondata mining (ICDM). IEEE, 2017...

Estimate Probability

Graph Autoencoder

Construct the Tree – Reinforcement Learning

State:

• The state space is *all the possible Trees*. The starting state is $\{r\}$ for some random node.

Action:

• The action is to *select edge* (u, v) and $u \in S_t, v \notin S_t$. Then, the state will transit to $S_t \cup \{v\}$ with probability 1. We include one more node for each step.

$$\square \text{ Reward:} \qquad \alpha f(F_v) - \sum_{u \in S_t} W_s(u, v)$$

$$\int Sum \text{ up all steps}$$

$$\alpha \sum_{v \in S_T} f(v) - \sum_{(u,v) \in S_T} W(u, v) \qquad \text{Exactly the objective!}$$

OF LOWA

Jointly Optimization

Content

- Background & Challenges
- Prize-collecting Steiner Tree
- Our Method
- Experiment
- Conclusion & Future Work

Experiment

Data

- University of Iowa Hospitals and Clinics (UIHC)
- Interactions between **patients** and **healthcare workers**
- 500 (UIHC1), 2000 (UIHC2), and 5000(UIHC3)

D Tasks

- Simulated CDI Outbreak
- Real CDI Outbreak
- Simulated Covid-19 Outbreak

No asymptomatic ground truth

Simulated CDI Outbreak - Setup

- Use Biased-SIS model to generate symptomatic and asymptomatic infections.
- The model used known risk factors for C. Difficle
- On 500 (UIHC1), 2000 (UIHC2), and 5000 (UIHC3)
- Based on symptomatic cases, infer the asymptomatic
- Use micro-F1 and macro-F1 to evaluate
- Run 5 time and report the mean.

Simulated CDI Outbreak - Result

Real CDI Outbreak - Setup

- Sample *one month of interactions* from UIHC to construct graph.
- 68 positive cases.
- 80% training
- Each method infers the asymptomatic cases based on training set
- Based on the prediction, we compute the *asymptomatic pressure*. (i.e., a normalized metric computing interaction frequency with asymptomatic cases)
- Use the *asymptomatic pressure* as extra features, we train a MLP to predict the rest positive cases.

Real CDI Outbreak

Results

Inferred asymptomatic cases by our method are more accurate

Simulated Covid-19 Outbreak - Setup

- CovaSim model
- Generate symptomatic and asymptomatic infections.
- On 500 *(UIHC1),* 2000 *(UIHC2)*
- Based on symptomatic, models infer the asymptomatic cases.
- Use micro-F1 and macro-F1 to evaluate

Simulated Covid-19 Outbreak - Result

Outline

- Background & Challenges
- Problem Formulation
- Our Method
- Experiment

Conclusion & Future Work

Conclusion & Future Work

 Our results on synthetic outbreaks show that the proposed approach is able to identify asymptomatic infection with high accuracy while the baseline approaches are less accurate.

• The tree affect the probability.

$$T^* = \arg\min_{T} \sum_{(v_a, v_b) \in T} W_s(v_a, v_b) + \alpha \sum_{v_c \in V_s \setminus T} f(F_{v_c})$$

$$f(F_{v_c}; T)$$

THANKS

