Efficient and Effective Implicit Dynamic Graph Neural Network

Yongjian Zhong¹, Hieu Vu¹, Tianbao Yang², <u>Bijaya Adhikari¹</u>

¹University of Iowa ²Texas A&M University

SIGKDD, Barcelona August 28, 2024

Outline

Background & Challenges

- Problem Formulation
- Our Method
- Experiment
- Conclusion & Future Work

Graph Neural Networks

Stack multiple layers of GNN to reach information which are topologically far

But stacking hurts performance [Li+ 2018, AAAI]

Capturing Long-range Dependency

Discrete-time Temporal Graphs

Time 1

Time 2

Time 3

- Imagine in time 1 and in time 3 have a strong dependency.
- Need to fetch information across *Topology* and *Time*.
- Which requires more GCNs stacking.

How to capture long-range dependency w/o sacrificing performance?

Outline

Background & Challenges

Problem Formulation

- Our Method
- Experiment
- Conclusion & Future Work

Problem Setup

- **Given**
 - Discrete-time Dynamic Networks
 - Labels of nodes
- D Do
 - Node Classification at the Last Snapshot

Overview

Our model

יורת

Convergent Embeddings

□ The convergent embeddings must satisfy...

Let's express this in the matrix form.

Convergent Embeddings

where $z = \mathbf{vec}(Z)$, $M^i = (A^i)^{ op} \otimes W^i$, \otimes is the Kronecker product.

Ensuring Convergence: by the Banach's fixed point theorem, the matrix in red needs to be non-expansive, which can be enforced by ensuring the following

$$||W^t||_{\infty} ||A^t||_{\text{op}} \le 1$$
 $t = 1, ..., T$

Outline

- Background & Challenges
- Problem Formulation
- Our Method
- Experiment
- Conclusion & Future Work

Our Method

□ Summary of our model

- One layer per snapshot
- Feature injected GCN
- Constrained Weight
- GCN-only framework

Training

The classic way: differentiate through fixed point.

Solving these equations are extremely *inefficient*.

Bilevel Optimization

Objective under bilevel optimization perspective

solve this objective *efficiently*.

Algorithm

D The key is to estimate the Hyper-gradient

Both are expensive to compute.

More details in the paper

Algorithm

□ The stochastic bilevel algorithm

Content

- Background & Challenges
- Prize-collecting Steiner Tree
- Our Method
- Experiment
- Conclusion & Future Work

Experiment

Data

	N	V	$\min E $	$\max E $	Т	d	y
Brain10	1	5000	154094	167944	12	20	10
DBLP5	1	6606	2912	5002	10	100	5
Reddit4	1	8291	12886	56098	10	20	4
PeMS04	16980	307	680	680	12	5	3
PeMS08	17844	170	548	548	12	5	3
England-COVID	54	129	836	2158	7	1	1

D Tasks

- Node-level *classification* and *regression*
- For regression, there are *transductive* and *inductive* cases.

D Evaluation

- <u>AUROC</u> for classification
- <u>MAPE</u> for regression

Classification

Sparse graph. Long-range dependency is not a major bottleneck.

			Ţ
Model	Brain10	Classification DBLP5 —	Reddit4
EvolveGCN-O	$0.58 {\pm} 0.10$	0.639 ± 0.207	$0.513 {\pm} 0.008$
EvolveGCN-H	$0.60 {\pm} 0.11$	$0.510 {\pm} 0.013$	$0.508 {\pm} 0.008$
GCN-GRU	0.87 ± 0.07	$0.878 {\pm} 0.017$	$0.513 {\pm} 0.010$
DySAT-H	0.77 ± 0.07	$0.917 {\pm} 0.007$	$0.508 {\pm} 0.003$
GCRN-M2	$0.77 {\pm} 0.04$	$0.894 {\pm} 0.009$	0.546 ± 0.020
DCRNN	$0.84{\pm}0.02$	0.904 ± 0.013	$0.535 {\pm} 0.007$
TGAT	0.80 ± 0.03	$0.895 {\pm} 0.003$	$0.510 {\pm} 0.011$
TGN	0.91 ± 0.03	$0.887 {\pm} 0.004$	$0.521 {\pm} 0.010$
GRU-GCN	0.91 ± 0.03	0.906 ± 0.008	$0.525 {\pm} 0.006$
IDGNN	$0.94{\pm}0.01$	0.907 ± 0.005	$0.556 {\pm} 0.017$

Our method outperforms other baselines except on DBLP5

Regression

	Regression						
Model	England-COVID		PeMS04		PeMS08		
	Trans.	Induc.	Trans.	Induc.	Trans.	Induc.	
EvolveGCN-O	4.07 ± 0.73	3.88 ± 0.47	3.20 ± 0.25	2.61 ± 0.42	2.65 ± 0.12	2.40 ± 0.27	
EvolveGCN-H	4.14 ± 1.14	$3.50 {\pm} 0.42$	3.34 ± 0.14	2.84 ± 0.31	2.81 ± 0.28	2.81 ± 0.23	
GCN-GRU	3.56 ± 0.26	2.97 ± 0.34	1.60 ± 0.14	1.28 ± 0.04	1.40 ± 0.26	1.07 ± 0.03	
DySAT-H	3.67 ± 0.15	3.32 ± 0.76	1.86 ± 0.08	$1.58 {\pm} 0.08$	1.49 ± 0.08	1.34 ± 0.03	
GCRN-M2	3.85 ± 0.39	3.37 ± 0.27	1.70 ± 0.20	1.20 ± 0.06	1.30 ± 0.17	1.07 ± 0.03	
DCRNN	3.58 ± 0.53	3.09 ± 0.24	1.67 ± 0.19	1.27 ± 0.06	1.32 ± 0.19	1.07 ± 0.03	
TGAT	5.44 ± 0.46	5.13 ± 0.26	3.11 ± 0.50	2.25 ± 0.27	2.66 ± 0.27	2.34 ± 0.19	
TGN	4.15 ± 0.81	3.17 ± 0.23	1.79 ± 0.21	1.19 ± 0.07	1.49 ± 0.26	0.99 ± 0.06	
GRU-GCN	3.41 ± 0.28	$2.87{\pm}0.19$	1.61 ± 0.35	1.13 ± 0.05	1.27 ± 0.21	0.89 ± 0.07	
IDGNN	2.65 ± 0.25	3.05 ± 0.25	$0.53{\pm}0.05$	$0.63{\pm}0.04$	$0.45{\pm}0.11$	$0.50{\pm}0.05$	

Our method outperforms other baselines

SGD vs. Bilevel

Bilevel algorithm achieves similar performance as exact SGD, but is much faster

Outline

- Background & Challenges
- Problem Formulation
- Our Method
- Experiment

Conclusion & Future Work

Conclusion & Future Work

- We proposed a novel implicit graph neural network for dynamic graphs. As far as we know, this is the first implicit model on dynamic graphs.
- We would like to develop an optimization algorithm with convergence guarantee for the bilevel algorithm.
- Global optimization framework for implicit models.

Questions?

 GCN_1

 GCN_2

GCN

 $\mathbf{vec}(\sigma'(W^t Z^{\tau(t)} A^t + V X^t))$

