
Analysis of MultiLayer Neural Networks with

Direct and Cross Forward Connection

Stanis law P laczek and Bijaya Adhikari
stanislaw.placzek@wp.pl, bijaya.adhikari1991@gmail.com

Abstract

Artificial Neural Networks are of much interest for many practical
reasons. As of today, they are widely implemented. Of many possible
ANNs, the most widely used one is the back-propagation model with
direct connection. In this model the input layer is fed with input data
and each subsequent layers are fed with the output of preceding layer.
This model can be extended by feeding the input data to each layer. This
article argues that this new model, named Cross Forward Connection, is
optimal than the widely used Direct Connection.

1 Introduction

Artificial Neural Networks are implemented as universal approximator function
with multidimensional variables. The function can be represented as:

Y = F (X) (1)

where:

• X-input vector

• Y -output vector

Selecting a network to solve a specific problem is a tedious task. Decision
regarding following thing must be made prior to attempting a solution.

• Structure of Neural Network, number of hidden layers and number of
neurons in each layer. Conventionally, the size of input and output layers
are defined by dimension of X and Y vectors respectively.

• Structure of individual neurons encompassing activation function, which
takes requirement of learning algorithm into account.

• Data transfer methods between layers

• Optimization criteria and type of learning algorithm

Structure of Network can be defined in arbitrary ways to accomplish complex
tasks. The structure plays vital role in determining the functionality of ANN.
This paper will compare and contrast two multilayer network structures.

• Direct Connection: This structure consists of at-least one hidden layer.
Data is fed from preceeding layer to succeeding one.

1

Figure 1: Structure of Direct Connection ANN

• Cross Forward Connection. In this structure, the input signal is passed
on to every layer in the network. Therefore, a layer j=1,2,3.....W , where
W is the output layer, has two inputs : vector X and vector Vj−1, output
of preceding layer.

Structure of Cross Forward Connection is simpler than that of Direct Con-
nection, in terms of neuron distribution in hidden layers. Learning time too is
shorter for Cross Forward Connection . In later part of the paper, we will ana-
lyze a particular optimization problem for ANN where total number of neurons,
N, and number of layers , W, are given. Our target is to maximize the total
number of subspaces which are created by neurons of every hidden layers. We
will solve this complex problem with respect to the relation between dimension-
ality of feature space, N0, and number of neurons in all hidden layers, Ni. This
problem can be divided into two sub-problems.

• Ni ≤ N0 – linear optimization problem,

• Ni > N0 – non-linear optimization problem.

Where: i= 1,2,3,. W-1.
We can solve linear target function using linear-programming method. The non-
linear task, with linear constrains, can be solved using Kuhn- Tucker conditions.
We have solved both sub-problems and discussed different ANN structures for
each case and have presented them as examples. In conclusion section, we
have summarized our results and have given recommendation for different ANN
structures.

2

Figure 2: Structure of Cross Forward Connection ANN

2 Criteria of ANN structure selection

The threshold function for the each neuron is defined as follows:

g(x) =

{
1, if x > 0

−1, if x ≤ 0
(2)

We say that the network in Fig. 3 has structure 2-3-1. Where:

• N0=2; number of neurons in input layer.

• N1=3; number of neurons in hidden layer.

• N2=1; number of neurons in output layer.

Signal transfer from input layer to output layer in this structure can be repre-
sented in the following way.

U = W1 ·X (3)

V = F1(U) (4)

E = W2 · V + C2 ·X (5)

Y = F2(E) (6)

Where,

• X[0 : N0] -input signal

3

Figure 3: Two Layer ANN with Cross Forward Connection

• W1[1:N1;0:N0] - weight coefficients matrix of hidden layer

• U [1:N1]-analog signal of hidden layer

• V [1:N1]-output signal of hidden layer

• W2[1:N2;0:N1] - weight coefficients matrix of output layer

• E[1:N2]-analog signal of output layer

• Y [1:N2]-output signal of output layer

• C2[1 : N2; 0 : N0] -weight coefficients matrix of Cross connection

This network will be used for pattern recognition after being trained by
teacher data.

The architecture of ANN in Fig.3 could be represented using hyper-spaces.
Lets imagine a hyperspace having dimension of the number of neurons in the
input layer. The first hidden layer, depicted in equation (3) and (4), divides
feature space, X, into subspaces.

Two dimensional feature space is divided into seven sub-spaces. These sub-
spaces correspond to internal structure of input data.

The function Φ (p,q) gives the maximum number of p dimensional sub-spaces
formed when original p dimensional hyper-space is divided by q number of p−1
dimensional hyper-planes. The function has following recursive form.[3]

Φ(p, q) = Φ(p, q − 1) + Φ(p− 1, q − 1) (7)

By definition of Φ(p, q), it is clear that

Φ(p, 1) = 2 (8)

4

q \ p 1 2 3 4 5 6 7 8 9 10
1 2 2 2 2 2 2 2 2 2 2
2 3 4 4 4 4 4 4 4 4 4
3 4 7 8 8 8 8 8 8 8 8
4 5 11 15 16 16 16 16 16 16 16
5 6 16 26 31 32 32 32 32 32 32
6 7 22 42 57 63 64 64 64 64 64
7 8 29 64 99 120 127 128 128 128 128
8 9 37 93 163 219 247 255 256 256 256
9 10 46 130 256 382 466 502 511 512 512
10 11 56 176 386 638 848 968 1013 1023 1024

Table 1: Number of sub spaces formed by division of p dimensional input vector
by q neurons present in the first hidden layer

and
Φ(1, q) = q + 1 (9)

In context of Neural Networks, q is the number of neurons in the first hidden
layer, Ni, and p is dimension of input vector, N0.

Now, re-writing (7), we get:

Φ(p, q) = Φ(p, 1) +

q−1∑
k=1

Φ(p− 1, k) (10)

Solving recursion (10), we get :

Φ(p, q) = Cpq−1 + 2

p−1∑
k=0

·Ckq−1 (11)

where,

Ckn =
n!

k! · (n− k)!

and Ckn = 0, if k > n.

(12)

In the equations above:

• p-dimension of input vector.

• q- number of neurons in hidden layer

Let us consider an example, for a network having three neurons in first
hidden layer and input vector of dimension 2. From (11), We get Φ(2,3)=7.

The number of subspaces formed due to division of the neurons in input
layer by the neurons in the first hidden layer depends solely on the number of
neurons. The table presented above shows number of subspaces for different
values of p and q.

Coming back to the structure of Cross-Forward Connection, according to
Fig.3, input signals to the second hidden layer can be divided into two subsets:

5

• input received from the output of previous layer- vector V

• raw input received - vector X

All input signals are multiplied by the adjustable weights of associated neu-
rons i.e. matrices W2 and C2 respectively.

For ANN presented in Fig.3, we can write:

ek =

N1∑
i=1

W2k,i · Vi +

N0∑
j=0

C2k,j ·Xj (13)

And, finally,
For ek=0,

N0∑
j=0

C2k,j ·Xj = −
N1∑
i=1

W2k,i · Vi (14)

The input space, X, in (14) represents bundles of hyper planes shifted by some
vectors. The number of hyper-planes depend on Vi. For two dimension space,
the second layer of ANN is composed of four parallel lines formed by all possible
combination of values of Vi and Vj i.e.,0,0; 0,1; 1,0; 1,1.

Every subspace which is formed by the hidden layer is further divided into
two smaller sub-spaces by output neuron. For N0 dimensional input space and
N1 number of neurons in the first hidden layer, the maximum number of sub-
spaces is given by:

Ψ(N0, 2) = Φ(N0, N1) · Φ(N0, N2) (15)

For, W>2 ,number of sub-spaces is:

Ψ(N0,W) =

W∏
i=1

Φ(N0, Ni) (16)

The number of subspaces of initial feature space in Fig 3 is:

Ψ(2, 2) = Φ(2, 3) · Φ(2, 1) = 7 ∗ 2 = 14

For example, to divide input space into 14 subspaces, we require 3 neurons
in the first hidden layer and 1 in output layer. Whereas, we need 5 neurons in
the first hidden layer and 1 neuron in output layer to obtain the same number
of subspaces in the standard direct connection.

3 Structure Optimization of Cross Forward Con-
nection Network

ANN structure optimization is very complicated problem and can be solved in
different ways. Experience has taught us that ANN with 1 or 2 hidden layer
can solve most of the practical problems. The problem of ANN optimization
structure can be described as :

• maximizing number of subspaces, Ψ(N0,W).

when total number of neurons, N , and number of layers, W , are given.

6

3.1 Calculation of the number of neurons for ANN with
one hidden layer

For ANN with one hidden layer, the number of input neurons,N0,is defined by
the input vector X and is known as a priori. The number of output neurons
N2 is given by the output vector structure, Y , known as task definition. We
can calculate the number of neurons in the hidden layer N1 using equation
16. According to the optimization criteria and formula 16, the total number of
subspaces for ANN with one hidden layer is given by:

Ψ(N0,W) = Ψ(N0, 2) = Φ(N0, N1) · Φ(N0, N2) (17)

Finally we can calculate number of neurons in the hidden layer N1.

3.2 Optimization for more than one hidden layer

For ANN with 2 or more hidden layers, optimization is more complicated. We
assume that:

• the number of layers W is given and,

• total number of neurons N is given.

N can be calculated using:

N =

W−1∑
i=1

Ni = N1 +N2 +N3 ++NW−1 (18)

In practice, we have to calculate neuron’s distribution between {1 : W −
1} layers. To find neuron’s distribution, we have to maximize the number of
subspaces according to the equation 19 with 20 as constraint.

Ψ(N0,W − 1)opt = max
N1,N2...NW−1

W−1∏
i=1

Φi(N0, Ni) (19)

N =

W−1∑
i=1

Ni = N1 +N2 +N3 ++NW−1 (20)

From 11 and 19,

Φ(N0, Ni) = CN0

Ni−1 + 2

N0−1∑
k=0

·CkNi−1

for i ε [1;W − 1]

(21)

Please note that:

CN0

Ni−1 = 0

when Ni − 1−N0 < 0

Ni ≤ N0

(22)

7

Taking 19, 20, 21, and 22 into account, our optimization task can be written
as:

Ψ(N0,W − 1)opt = max
N1,N2...NW−1

{
W−1∏
i=1

[CN0

Ni−1 + 2

N0−1∑
k=0

CkNi−1]

}
(23)

with constraints

N =

W−1∑
i=1

Ni (24)

CN0

Ni−1 = 0 for Ni ≤ N0 (25)

CkNi−1 = 0 for Ni ≤ k (26)

The optimization problem in 23 is non-linear and solution space can be
divided into :

1. For all hidden layers Ni ≤ N0 and Ni ≤ k — linear task

2. For all hidden layers Ni > N0 and Ni > k — non-linear task

Set of hidden layers can be divided into two subspaces:

• S1 = {N1, N2, N3,, Nj} where j ≤W−1.For S1, Ni ≤ N0 and Ni ≤ k

• S2 = {Nj+1, Nj+2, Nj+3,, NW−1}.For S2, Ni > N0 and Ni > k

Where W = number of layers and W-1 = number of hidden layers. This is
a mixed structure, for which final solution can be found using mixture of both
methods from point 1 and 2. Other cases not foreseen under S1/S2 split can
be equivalently reduced to this split. However, we have not taken this case into
account in this paper.

3.3 Neuron distribution in the hidden layers, where neu-
rons’ number for all hidden layers is less or equal than
initial feature space

In this case, we have
Ni ≤ N0 for i ε{ 1;W − 1} (27)

So, the total number of subspaces is defined by

Φ(N0, Ni) =
(Ni − 1)!

N0!(Ni − 1−N0)!
+ 2 ·

N0−1∑
k=0

(Ni − 1)!

k!(Ni − 1− k)!
(28)

or,
Φ(N0, Ni) = 0 + 2 · 2Ni−1 = 2Ni (29)

8

Our optimization target can be written as,

Ψ(N0,W − 1)opt = max
Ni ε [1,W−1]

{
W−1∏
i=1

2Ni

}
= max
Ni ε [1,W−1]

{
2
∑W−1

i=1 Ni

}
for N =

W−1∑
i=1

Ni

Ni ≤ N0 and Ni, N0 ≥ 0

(30)

Equation 30 is monotonously increasing and can be written as

Ψ(N0,W − 1)opt = max
Ni ε [1,W−1]

{
W−1∑
i=1

Ni

}

For N =

W−1∑
i=1

Ni

Ni ≤ N0 and Ni, N0 ≥ 0

(31)

Under the given number of layers, total number of neurons have to satisfy
following constraints

Ni ≤ N0 and N ≤ (W − 1)N0 (32)

Example:
For ANN with N0 = 3, N1 ≤ 3, N2 ≤ 3, N3 = 1, W = 3, find optimum neurons
distribution between two hidden layers N1, N2.

It is known that for output layer N3 = 1 and therefore we will only consider
two hidden layer for optimization process. For all Ni, where i = 1, 2 and Ni ≤
N0, using 35 we can write:

N ≤ (W − 1) ·N0 = (3− 1) · 3 = 6

Taking N0 = 3 using 31 we achieve,

Ψ(N0,W − 1) = Ψ(3, 2) = max{N1 +N2}
and constraints

N1 ≤ 3

N2 ≤ 3

we use N1 +N2 = 4 < 6

(33)

To solve this optimization task, we can use linear programming methods or
use figure 5.

Using only discrete values of N1, N2 for N=4, we can find three solutions
(N1, N2) = {(1, 3), (2, 2), (3, 1)}

The following equations indicate the number of subspaces for different num-
ber of neurons.

Φ(N0, N1) = Φ(3, 1) = 21 = 2

Φ(N0, N1) = Φ(3, 2) = 22 = 4

Φ(N0, N1) = Φ(3, 3) = 23 = 8

(34)

9

Figure 4: Graphical solution of linear programming when total number of neu-
rons, N=6 and N=4

N0 N1 N2 Φ(N0, N1) Φ(N0, N2) Ψ(N0,W − 1)
3 1 3 2 8 16
3 2 2 4 4 16
3 3 1 8 2 16

Table 2: Solution of linear programming for N=4

Finally, we have three optimal solutions with three different ANN structure.
Every structure generates 16 subspaces and are equivalent. Please refer to Table
2.

In conclusion, we can say that for every given total number of neurons, N , we
may have many possible optimal neurons distribution between layers. Optimal
number of subspaces in the initial feature space has the same value of Ψ for all
distributions.

3.4 Neurons distribution in the hidden layers, where neu-
rons number for all hidden layers is greater than initial
feature space

Let’s assume number of layers, W=3. It implies that we have only two hidden
layers. According formula 21,

10

Φ(N0, Ni) =CN0

Ni−1 + 2

N0−1∑
k=0

CkNi−1

for i ε [1 : W − 1] and Ni > N0

For whole ANN, total number of subspaces is given by

Ψ(N0,W − 1) =Ψ(N0, 2) = Φ1(N0, N1) · Φ2(N0, N2)

and N1 +N2 = N

so, N1 +N2 > 2N0

(35)

Taking all assumptions into account we can write,

Φ(N0, N1) = CN0

Ni−1 + 2 · (C0
Ni−1 + C1

Ni−1 ++ CN0−1
Ni−1) for N0 < Ni

Φ(N0, N1) < CN0

Ni−1 + 2 · 2Ni−1 < 2Ni
(36)

In this situation we do not know how many subpaces there are for Φ(N0, N1).
To find neurons distribution between the hidden layers we should know relations
between N0, Ni and N .

Example:
For N0=3, W=3 N=8, and N=10, N=12 find neuron distribution in the layers,
were Ni > 3. We should maximize the quality criterion

Ψ(N0,W − 1)OPT = max
N1,N2....NW−1

W1∏
i=1

[
CN0

Ni−1 + 2 ·
N0−1∑
k=0

CkNi−1

]
(37)

For example,

Ψ(3, 2)OPT = max
N1,N2

2∏
i=1

[
C3
Ni−1 + 2 ·

2∑
k=0

CkNi−1

]
(38)

After simple algebraic operations, we achieve

Ψ(3, 2)OPT = max
N1,N2

{
N3

1 + 5N1 + 6

6
· N

3
2 + sN2 + 6

6

}
N1 > 3

N2 > 3

N1 +N2 = 8 > 6

(39)

We solve the equation using Kuhn-Tucker conditions. Taking 39 into account.
we can write the following Lagrange equation

L =
N3

1 + 5N1 + 6

6
· N

3
2 + 5N2 + 6

6
−λ1 · (N1 − 4)− λ2 · (N2 − 4)− λ3 · (N1 +N2 − 8)

N1 − 4 ≥ 0

N2 − 4 ≥ 0

N1 +N2 − 8 = 0

(40)

11

Figure 5: Graphical solution of Kuhn Tucker conditions. Line N + N1 + N2 is
a solving line with one or more solutions. Only one point is max. Figure shows
three solution lines for N1 +N2 = 8, N1 +N2 = 10, N1 +N2 = 12

N N1 > 3 N2 > 3 Φ(3, 21) Solution
8 4 4 225 max

9
5 4 390 max
4 5 390 max

10
6 4 630
5 5 676 max
4 6 630

11

4 7 960
5 6 1092 max
6 5 1092 max
7 4 960

12

4 8 1395
5 7 1664
6 6 1774 max
7 5 1664
8 4 1395

Table 3: Solution for non-linear Kuhn Tucker conditions for total number of
neurons, N=8–12

12

Epochs 10 50 100 500 1000 5000 10000 50000∑
ε2 for Direct Connection 12.40415 9.10857 8.58351 8.48001 8.38696 8.260625 8.14166 8.0152∑
ε2 for Cross Forward 2.22719 0.33131 0.12325 0.02912 0.00808 0.00148 0.00076 0.00014

Table 4: Comparison for Direct Connection and Cross Forward Connection with
N0 = 3, N1 = 1,NW = 2

Epochs 10 50 100 500 1000 5000 10000 50000∑
ε2 for Direct Connection 6.91134 0.28018 0.11306 0.01864 0.00542 0.000092 0.000052 0.00009∑
ε2 for Cross Forward 1.02033 0.12252 0.10.064224 0.01945 0.00441 0.000823 0.000381 0.00007

Table 5: Comparison for Direct Connection and Cross Forward Connection with
N0 = 3, N1 = 4,NW = 2

4 Conclusion

For most practical purposes, ANNs with one hidden layer are sufficient. Learn-
ing Algorithms for the networks are time consuming and depend on number of
layers and number of neurons in each layer. The running time of learning algo-
rithm has dependency, greater than linear, on the number of neurons. Hence,
the running time increases faster than the total number of neurons.

Cross Forward connection provides us an opportunity to decrease the number
of neurons and thus, the running time of learning algorithm.

We implemented both Direct Connection Neural Networks and Cross For-
ward Neural Networks with one hidden layer and used them for pattern recog-
nition.

Our implementation required three input neurons and two output neurons.
We varied the number of neurons in hidden layer and trained both networks for
limited number of epochs and noted the sum of squared errors of each output
neurons. The procedure was repeated 20 times and the average sum of square
of errors were recorded. Data for two cases are presented in tables 4 and 5.

Tables 4 and 5 demonstrate that for the given number of neurons in the
hidden layer, Cross-Forward Connection are optimal. If we closely examine
the error term in table 4 for Direct Connection and the same in table 5 for
Cross Forward Connection we will notice that they are fairly comparable. It
demonstrates that Cross Connection Structure with one neuron in hidden layer
is almost as good as Direct Connection with four neurons in hidden layer. Thus,
Cross-Forward connection reduce the required number of neurons in ANNs.

Additionally, we presented optimization criteria for Cross Forward Connec-
tion and solved two different problems. For linear optimization , where Ni ≤ N0,
for i=1,2,. . . W-1, we achieved multiple equivalent ANN structures with the
same number of total subspaces Ψ(N0,W − 1). This means that for given total
number of neurons ,N , and number of layers W , there are multiple equivalent
ANN structures (Table 2). In practice, this ANN structures can be used for
tasks with very big dimensionality of input vector X (initial feature space). For
nonlinear optimization task, where Ni > N0 for i=1,2,3. W-1, the target
function is nonlinear with linear constraints. There could be one or more opti-
mum solutions. Final solution depends on dimensionality of feature space N0

and relation between N, Ni and W. In our example, for ANN with N0 = 3 ,

13

W=3, and N=8,9,10,11,12,. we achieved one optimum solution for even N0s
and two solutions for odd N0s (Table 3).

References

[1] Stanisaw Osowski, Sieci Neuronowe do Przetwarzania Informacji. Oficyna
Wydawnicza Politechniki Warszawskiej, Warszawa 2006.

[2] S. Osowski, Sieci neuronowe w ujeciu algorytmicznym.WNT, Warszawa
1996.

[3] O.B.Lapunow, On Possibility of Circuit Synthesis of Diverse Elements,
Mathematical Institut of B.A. Steklova, 1958.

[4] Toshinori Munakate, Fundationals of the New Artificial Intelligence. Second
Edition, Springer 2008.

[5] Colin Fyle, Artificial Neural networks and Information Theory, Depart-
meeent of Ciomputing and information Systems, The University of Paisley,
2000.

[6] Joarder Kamruzzaman, Rezaul Begg, Artificial Neural Networks in Finance
and Manufacturing, Idea Group Publishing, 2006.

[7] A. Mariciak, J. Korbicz, J. Kus, Wstepne przetwarzanie danych, Sieci
Nuronowe tom 6, Akademicka Oficyna Wydawnicza EXIT 2000.

[8] A. Marciniak, J. Korbicz, Neuronowe sieci modularne, Sieci Nuronowe tom
6, Akademicka Oficyna Wydawnicza EXIT 2000.

[9] Z. Mikrut, R. Tadeusiewicz, Sieci neuronowe w przetwarzaniu i rozpoznawa-
niu obrazow, Sieci Nuronowe tom 6, Akademicka Oficyna Wydawnicza EXIT
2000.

[10] L. Rutkowski, Metody i techniki sztucznej inteligencji, Wydawnictwo
Naukowe PWN, warszawa 2006.

[11] Juan R. Rabunal, Julian Dorado, Artificial Neural Networks in Real-Life
Applications, Idea Group Publishing 2006.

14

