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Abstract—This paper studies the problem of detecting asymp-
tomatic cases in epidemic outbreaks within healthcare facilities.
Asymptomatic cases pose a significant obstacle in our fight
against epidemic outbreaks as they drive latent infection spread,
are challenging to surveil, and are hard to intervene against. De-
tecting asymptomatic cases is challenging for numerous reasons,
including lack of data except for large-scale serological surveys,
poor generalization from symptomatic cases, and bias towards
symptomatic cases in existing epidemiological datasets. Prior
works fail in accurately detecting asymptomatic cases as they
ignore individual risk factors, ignore the infection transmission
pathways, or fail to integrate the two in a principled manner.
Here, we formulate the asymptomatic case detection problem
over a temporal network as a Prize Collecting Steiner tree
with learnable latent prizes, where the latent prizes correspond
to individual risks and the edge weights represent the cost
of infection transmission. We translate the problem into an
equivalent bi-level reinforcement learning problem and propose
a deep Q-learning algorithm to tackle the problem.

To demonstrate the efficacy of our proposed approach, we con-
duct extensive experiments on real-world networks derived from
healthcare facilities. Our experiments over simulated healthcare-
associated outbreaks of Clostridioides difficile infection (CDI)
and COVID-19 reveal that the proposed approach has significant
advantages over all the state-of-the-art baselines. Our approach
outperforms the closest competitor by up to 29.62 % in detecting
asymptomatic cases, which leads to more accurate predictions of
symptomatic cases. In our experiments, we also demonstrate that
accurately detecting asymptomatic cases leads to more accurate
prediction of symptomatic cases. Finally, our case study in real
CDI outbreak reveals that the asymptomatic cases detected by
our approach are indeed high risk cases.

Index Terms—Prize Collecting Streiner Tree, Reinforcement
Learning, Epidemic Prediction.

I. INTRODUCTION

A significant challenge in combatting epidemic and pan-
demic outbreaks is our inability to identify asymptomatic
spreaders accurately. It is now known that asymptomatic
transmissions were a driving force behind the COVID-19
pandemic [1], [2], [3]. In fact, nearly 32.40% of COVID-
19 infections are believed to have been mild or completely
asymptomatic [4]. Asymptomatic infections also pose a signif-
icant obstacle in our fight against global influenza endemic, re-
gional endemics of infectious diseases (e.g. malaria, trachoma,
syphilis, and measles), and healthcare-associated infections

(HAIs) such as methicilin-resistenat Staphylococcus aureus
(MRSA) and Clostridiodes difficile (C. diff).

The focus of this paper is on detecting asymptomatic cases
in epidemic outbreaks occurring within healthcare facilities.
These include HAI outbreaks and nosocomial spread of in-
fectious diseases such as COVID-19 and influenza. From an
application viewpoint, it is a significant problem to solve for
two primary reasons.

1) As evidenced by the COVID-19 pandemic and HAI out-
breaks, healthcare facilities and long-term care facilities
are at an increased risk of infection as they consist of
vulnerable populations [5], [6].

2) Healthcare providers (nurses, doctors, and caregivers)
getting infected in an epidemic outbreak is a significant
obstacle in combatting epidemic outbreaks [7]. Hence,
the detection of asymptomatic cases in healthcare fa-
cilities can help us better secure our limited healthcare
capacity.

Despite its importance in infectious disease control, the
problem of accurately identifying asymptomatic cases within
healthcare facilities still remains open.

Identifying asymptomatic infections is challenging for a
number of reasons [8], [9]. These include: (C1) Data scarcity:
as asymptomatic infections are not easily observed, ‘ground
truth’ data is essentially non-existent, which poses a signif-
icant obstacle in leveraging off-the-shelf machine learning
algorithms. (C2) Poor generalization from symptomatic
cases: The risk factors for symptomatic infections could be
very different from those of asymptomatic infections; hence,
only using identified risk factors for symptomatic infections
is not a valid approach for identifying asymptomatic infec-
tions. For example, senior citizens were highly susceptible to
symptomatic COVID-19 infections; however, they were less
likely to have asymptomatic infections. (C3) Bias towards
symptomatic cases: As mentioned in [10], severe cases get
more attention when it comes to testing when capacity is
limited. This introduces a bias towards positive symptomatic
cases in the already limited data.

This paper overcomes the challenges mentioned above by
proposing the first-ever end-to-end machine learning algorithm
to detect asymptomatic cases, which harnesses both the cas-
cade structure and risk information without making any as-



sumptions (e.g., [9] trains an ML model on symptomatic cases
and takes ‘false positives’ as candidates for asymptomatic
cases). Notably, our approach is entirely data-driven, setting it
apart from existing approaches [9], [11], [12] heavily reliant
on domain-specific knowledge.

Moreover, we take advantage of the individual-level fea-
tures, confirmed cases, and contact patterns required to detect
asymptomatic cases while overcoming the abovementioned
challenges accurately available in healthcare facilities. Indi-
vidual features such as demographic information and medical
history are necessary to estimate personalized risks of asymp-
tomatic infections [13]. On the other hand, contact patterns
constructed from healthcare provider mobility (such as termi-
nal logins and check-ins) and patient admissions, transfers,
and discharge records are necessary to infer transmission
pathways [14]. Here, we propose an end-to-end system to
principally integrate both of these data sources to identify
asymptomatic cases accurately.
Background and related work: There are a significant
number of prior works that study a very closely related prob-
lem of inferring missing infections on infection/information
cascades. Rozhenstein et al. proposed a directed Steiner-tree-
based approach on a time-expanded contact network, where
the observed infections corresponded to the terminals and
inferred Steiner points were interpreted to be the missing
infections [11]. Similar Steiner-tree-based approaches have
been used in static [15] and probabilistic [16], [17] settings.
Some prior works vie to infer missing infections [18], [19] via
identification of the source of the infections [20]. A significant
drawback of leveraging these approaches for asymptomatic
infection detection is that they do not consider the risk factors
of symptomatic and asymptomatic infections. A separate line
of work models latent infection states as a function of contact
network neighborhood [14], pathogen exposure [21], and node
features [13]. However, these approaches assume the under-
lying contact network is static and/or has limited influence
exertion assumptions (such as disease does not spread via
a chain of infections). Jang et al. recently proposed a risk-
aware Steiner-tree-based approach to incorporate the effects
of individual risks (modeled as a feed-forward network over
node features) and disease spread (modeled as Steiner-tree). A
key limitation of their approach is that the two steps involved
in estimating individual risks and inferring asymptomatic cases
as nodes in the Steiner tree are independent; thus, it does not
overcome the challenges (C2) and (C3) listed above.

Here, we first pose an asymptomatic case detection prob-
lem as a prize-collecting Steiner-tree problem with latent
prizes on each node corresponding to the likelihood of being
asymptomatic and weights on each edge corresponding to
the probability of infection spread. We present an end-to-end
reinforcement learning framework to solve the problem. Our
approach learns the risk of infections from observed infections
and then reconstructs the most likely cascade connecting the
observed infections with identified asymptomatic infections.
As we learn to estimate the risk of infections and to reconstruct
the latent cascade together, we overcome all three challenges

mentioned above. Specifically, to overcome the challenge
(C1), we use observed symptomatic infections (like prior
approaches), and for challenges (C2 and C3), we regularize
risk estimation and cascade reconstruction with each other in
an end-to-end manner. Our contributions are:

• We translate prize-collecting Steiner-tree problem for
asymptomatic case detection as a bi-level reinforcement
learning problem, where the upper level has reinforce-
ment learning objective to solve prize collecting Steiner-
tree problem, and the lower level corresponds to learning
the node prizes.

• We propose an iterative deep Q-learning algorithm to
tackle the bi-level reinforcement learning problem.

• We conduct extensive experiments on networks extracted
from real hospitals to demonstrate the efficacy of our
algorithm. Our experiments demonstrate that we outper-
form all state-of-the-art baselines. Our case study reveals
that reconstructed cascades are meaningful and identify
nodes with high risks of being asymptomatic carriers.

The rest of the paper is organized in the standard way. We
present Problem Formulation in Section II followed by our
proposed approach in Section III. We then present our empiri-
cal findings in Section IV, Finally, we present discussions and
conclusions in Section VI.

II. PROBLEM FORMULATION

We are given a who-visits-whom-when interaction log from
a healthcare facility which is represented as a temporal contact
network G = {G1, G2, . . . , GT−1, GT }. In each network
Gi = (Vi, Ei,Wi, Fi), the interactions between individuals
va ∈ Vi, vb ∈ Vi at time i is represented by an edge
(va, vb) ∈ Ei. Each edge (va, vb) in Ei has a corresponding
weight representing the probability of infection flow in either
direction. In our experiments (and broadly in practice), this
probability is computed as a function of disease parameters
(such as infectivity) and edge characteristics (such as duration
of contact). Here, we abstract away from these details and
assume the probability of infection flow along each edge is
part of the input. Each node v ∈ Vi also has an associated
feature vector Fi[v], which represents the node’s risk factors
such as demographic and medical history. Note that as some
demographic information (age, location of residence e.t.c.) and
medical history (prescription, comorbidity e.t.c.) change over
time, the features are best modeled varying over time.

Now, imagine a disease spreading over G possibly from
multiple sources at different times. At each discrete time i,
a set of nodes Ii ⊂ V get infected. A majority of these
infections occur via contacts in G, some possibly occur due
to external factors. However, only a fraction of nodes in Ii
are symptomatic and are observed, i.e., only Si ⊂ Ii is
revealed to us at each time i. The remaining infected nodes
Ai = Ii\Si are deemed to be hidden asymptomatic infections.
Note that case severity, including asymptomaticity, depends to
some extent on individual features Fi. Hence, we assume a
latent probabilistic function of Fi determines the likelihood of
a node being symptomatic or asymptomatic. At a high level,



asymptomatic case detection can be stated as identifying nodes
in Ai for all i, given G and ∪iSi.

Several prior works have established the equivalence be-
tween the temporal graph G and its time-expanded static
version Gs(Vs, Es,Ws, Fs) when it comes to disease and/or
information spread [9], [22], [23]. Gs is a directed static-graph
with the nodes in G organized in layers. There are T time
stamps in G, hence there are a total of T + 1 layers in Gs.
Each layer l in Gs has a copy vl ∈ Vs of each node v ∈ V
in G. Hence, |Vs| = (T +1)|V |. Undirected edge (u, v) in El

translates to two edges between layers l and l+ 1, i.e., (u, v)
in El maps to two directed edges (ul, vl+1) and (vl, ul+1).
Finally, each consecutive copy of a node is connected via a
directed edge, i.e., (vl, vl+1) ∈ Es,∀v, l. Similarly, the edge
weights Wi translate to Ws and the node features Fi translate
to Fs. Note that the transformation preserves the infection
time of the nodes in Ii and the observation time of nodes
in SI . Let Is ∈ Vs be the set of nodes in Gs corresponding
to the observed infections ∪Ti+1Ii in G. A thing to consider
here is that there could be more than one cascade leading to
the infections in G hence, the nodes in Is. To allow for the
detection of more than one cascade, we follow the approach
in prior works [9], [11] and add a dummy node r and connect
directed edge from r to all nodes v0 ∈ Vs with an edge-
weight of γ. Now the asymptomatic case detection problem
(with potentially more than one origin) we are interested in
can be posed as the following rooted prize-collecting Steiner-
tree problem where the prizes are defined by a function of the
features.

Problem 1: (ROOTED DIRECTED PRIZE-COLLECTING
STEINER TREES WITH LATENT PRIZES) Given a time-
expanded network Gs(Vs, Es,Ws, Fs) and observed infec-
tions I ⊂ Vs. Find a tree T∗ ⊂ Gs rooted at r and spanning
I such that:

T∗ = argmin
T

∑
(va,vb)∈T

Ws(va, vb) + α
∑

vc∈Vs\T

f(Fvc) (1)

where f(Fvc) is the probability that node vc ∈ Gs is
asymptomatic.

Problem 1 is very challenging to solve. The special case of
the problem with α = 0 is the standard Directed Steiner-Tree
problem, which is NP-complete and known to be difficult to
approximate in the worst case [24].

III. OUR APPROACH

Our main idea here is to translate Problem 1 into a bi-
level reinforcement learning problem where (i) the upper-level
objective corresponds to the Directed Prize Collecting Steiner
Tree objective and (ii) the lower-level objective corresponds to
the estimation of f(·). In recent years, an increasing number of
studies have demonstrated that reinforcement learning can be
used to solve combinatorial optimization problems including
classical problems such as traveling salesman problems [25],
[26], max cut [27], [28], graph summarization [29], integer
programming [30], just to name a few. Since Problem 1 is a

combinatorial optimization problem with a latent component,
reinforcement learning is an ideal fit. Next, we describe the
reinforcement learning formulation.

A. Reinforcement Learning Formulation

In general, a reinforcement learning problem asks an agent
to learn to take an action in an environment to move between
states as per a transition function with a goal of reaching a
terminal state while maximizing the sum of reward. In our
setup, these are defined as follows:
States: Note that in our problem, we are given an input time-
expanded network Gs and a set of observed infections I and
are tasked with finding a tree T ∗ with a root r which spans
I and maximizes the objective in Problem 1. We choose to
grow T ∗ from the dummy node r. Hence, we initialize our
solution tree T with a single node {r} as our start state, and
we design our actions to grow the tree until we cover all the
nodes in I, at which point we reach the terminal state. Note
that we always ensure T is connected. Our universe of states
consists of all connected sub-trees of Gs partially covering I.
Action and Transition: At any given point, our learner (or
an agent) is in one of the states T ⊂ Gs. An action a takes us
from T to T̂ . As both T and T̂ are required to be connected
and T̂ cannot have cycles, we can only grow T by adding
an edge (u, v) with only one end-point in T . Therefore, our
universe of actions at a state T consists of adding a single edge
among all possible edges with exactly one end-point in T . We
employ a deterministic transition function where the addition
of an edge (u, v) to a tree T results in a tree T ∪{(u, v)} with
probability 1.
Reward: Here we derive the reward from the objective func-
tion of Problem 1. Our derivation assumes that the function
f(·) does not change as the nodes are added to the partial
solution (and we also ensure this during training). Recall that
our objective is the following:

argmin
T

∑
(va,vb)∈T

Ws(va, vb) + α
∑

vc∈Vs\T

f(Fvc) (2)

which is equivalent to

argmax
T
−α(

∑
vc∈Vs

f(Fvc)−
∑
vc∈T

f(Fvc))

−
∑

(va,vb)∈T

Ws(va, vb) (3)

Note that for a fixed f(·) (as we ensure within each
iteration), α

∑
vc∈Vs

f(Fvc) is a constant and does not have
an effect on the optimization result. Therefore, we have

argmax
T

α ∑
vc∈T

f(Fvc)−
∑

(va,vb)∈T

Ws(va, vb)

 (4)

Let O(T ) be the value of the objective function in 4 for an
arbitrary tree T in the following discussion. Now, imagine we
are adding an edge (va, vb) to T ′. Recall that our definition of



the action only allows for edges with exactly one endpoint to
be added to T ′. Let us assume va is already in the tree. Now,
we define our reward r(T ′, (va, vb)) to be the increase in the
value of O. Therefore,

r(T ′, (va, vb)) = O(T ′ ∪ {(va, vb)})−O(T ′)

= αf(Fvb)−Ws(va, vb) (5)

Remark 1: By construction, for any arbitrary T ⊂ Gs

obtained by taking a sequence of actions a1, a2, · · · , an, the
cumulative reward,

∑
ai
r(Ti, ai) is equal to the objective in

Equation 4 and therefore the objective in Equation 1.
Finally, we can pose our entire optimization problem as

follows:

Problem 2: (BI-LEVEL REINFORCEMENT LEARNING)
Given a time-expanded network Gs and observed infections
I ⊂ Vs. Find a sequence of actions A∗ (i.e., sequence of
edge additions) to obtain to T ∗ ⊂ Gs spanning I from the
initial state of {r} such that:

A∗ =argmax
A

 ∑
(va,vb)∈A

αf∗(Fvb)−Ws(va, vb)


such that f∗(Fvc) = max

f
||f(Fvc)− 1(vc ∈ I)|| (6)

B. Overall Approach
Next, we describe the overall training framework for our

deep Q-learning approach. Our key idea here is to learn a
low-dimensional representation of each node in a latent space
shared by both the upper and lower-level problems in Problem
2 and optimize both levels until convergence in an iterative
fashion. Towards this end, we first employ a graph auto-
encoder to learn meaningful representations of the nodes.
We then use the learned embeddings to tackle the lower-
level problem using a feed-forward network. We also use the
node representations to encode the state in our reinforcement
learning framework. We then combine the weights given by
the lower-level problem and the state representations to search
for the policy. Our overall approach is presented in Figure 1.
Next, we describe each component of our approach.

Graph Auto-Encoder: First, we learn the node represen-
tations of Gs(Vs, Es,Ws, Fs) by employing a graph auto-
encoder, with a graph convolutional network (GCN) encoder
and two decoders, each for features and the graph structure.
We use two-layered standard GCN [31], with ReLU as the
activation function, to learn the representation matrix X. Note
that each row X[v] of X corresponds to the representation
for node v in Gs. We then reconstruct both the features and
the graph structure from X. We use the inner product decoder,
defined as Ãs = σ(XX⊤) to reconstruct the adjacency matrix
A of Gs [32]. We use a feed-forward network to produce the
feature matrix Fs.

Prize Estimation: Note that Problem 2 asks us to estimate
f∗(Fv) for each node v. To do so, we take the node repre-
sentations X learned above and define a graph convolutional

Algorithm 1 Q-learning for the Reinforce Algorithm

1: for episode e = 1, 2, . . . , L do
2: Initialize the state to T1 = ((root,None))
3: train GAE model for τ1 iterations
4: train FFN model for τ2 iterations
5: µ0 = GCN(G, features)
6: Update prizes f() on each node
7: for step t = 1, 2, . . . , T ′ do
8: Nt := neighbors of Tt

9: With probability ϵ, update

(u, vt) =
(
vt ∈ T̄t ∩Nt, u = argminu∈Tt

w(u, vt)
)

Otherwise

(u, vt) = argmaxv∈T̄t,u∈Tt
Q̂(Tt, (u, vt);W )

10: Tt+1 := (Tt, (u, vt))
11: end for
12: if e ≥ n and e%n == 0 then
13: for T1, a1, r2, ......, TT ′−1, aT ′−1, r

′
T do

14: W ←W + (OBJt −OBJb)∇logπW (Tt, at)
15: end for
16: end if
17: return W
18: end for

layer, µ0 = GCN(Gs,X). We pass µ0 through a feed-forward
network. The output of the feed-forward network is taken to
be the estimated f∗(Fv) prize. We train the prize estimation to
predict observed infections I accurately. We train the module
by minimizing the binary cross entropy loss.

Deep Q-learning: As noted earlier, a state in our rein-
forcement learning framework represents a tree T partially
covering the observed infections I and the actions available
at any given state T is to add an edge (u, v) with exactly
one end-point (let’s sat u) in T . Next, we define deep Q-state
representation for the state-action pair (T, (u, v)).

The previous modules, which are independently pre-trained,
provide excellent starting representations µ0 of each node in
the network. We leverage these first to encode the current state
T . To do so, we perform a max-pool operator [33] on nodes
in T and separately another max-pool operator on nodes not
in T . We take the concatenation of the outputs of the two
max-pool operators to be the representation µT of the current
state T . Specifically, we perform the following operation.

µT =
[
σ(max-poolv∈T

{
µ0
v

}
)||σ(max-poolv/∈T

{
µ0
v

}
)
]

(7)

where σ denotes the ReLU function. Note that || is the
concatenation operator. Next, we use µT to represent the Q-
state (T, (u, v)) as follows:

Q̂(T, (u, v);W ) = W⊤
0 σ([W1µ

T ||W2µ
0[v]]) (8)

Here, W0,W1, and W2 are learnable weight matrices.
Note that our representation of Q̂(T, (u, v);W ) combines the



Fig. 1: Overall training framework. The graph auto-encoder learns the low-dimensional representation of the nodes. The learned
representation is first used to estimate the node prizes. The prizes and the representations are used in the deep reinforcement
learning component to infer asymptomatic nodes.

information that the current state is T and an edge (u, v) being
added to T .

The policy search strategy we employ iterates over all edges
in the set E′ where E′ = {(u, v)|u ∈ T ⊕v ∈ T}, where ⊕ is
the XOR operator. Specifically, our policy π corresponds to
adding the edge (u, v)∗ = argmax(u,v)∈E′ Q̂(T, (u, v);W ) to
T . Each edge addition results in a reward given by Equation 5.
Note that we will use the node prizes f∗(Fv) estimated by the
prize estimation module to evaluate the policy and the reward.

C. Training

The learnable parameters in the model defined include the
GCN encoder and feature decoder in the graph auto-encoder
(the adjacency matrix decoder employs inner-product and does
not have extra parameters), the feed-forward network used
for the prize estimation, and collection of weights used to
represent Q̂(T, (u, v);W ). Our goal, as stated earlier, is to
train the entire model in an end-to-end manner.
Pre-training: We begin by pre-training the graph auto-
encoder. Once pre-trained, we use the embeddings generated
to pre-train the feed-forward network. Once converged, we
train the auto-encoder and the feed-forward network together.
This completes our pre-training step.
Q-learning: We use a modified version of the popular RE-
INFORCE algorithm [34] as shown in Algorithm 1 to train
and update the parameters of all three modules. For each
episode e, we first train the graph auto-encoder for τ1 number
of iterations. We then train the feed-forward network for τ2
number of iterations. Using the embeddings learned and the

prizes estimated we start searching for the optimal tree T
representing the outbreak. Note that we keep the estimated
prized fixed within each episode e.

Now, we first initialize our solution to be a singleton root
{r}. We then obtain node representations µ0 for all the nodes
using graph auto-encoder. We then grow our tree either by
doing a random exploration with some small probability ϵ
(i.e., add a random edge with exactly one node in the current
solution) or by taking the optimal action by selecting the edge
(u, v) with the highest Q̂ value as mentioned in section 3.2
with probability 1−ϵ. In any case, we grow our tree one node
at a time. Note that the newly selected node v should not be
part of the current tree T , and to avoid unconnected nodes, v
should be a neighbor of a node u ∈ T . We repeat this process
until we reach the terminal state where all the nodes in Is
are covered in the solution tree T . Ma et al. [35] discovered
that a large margin easily reduces the total objective of a
reinforcement learning problem in the first few improvement
steps. Hence, assigning a large reward to those steps is not
beneficial for the overall learning process. To avoid this,
they proposed to use the average improvement after the first
iteration as a reward for each action executed. We leverage this
idea for our training as well. We first calculate the objective
presented in Problem 2 in the first iteration as OBJb and use it
as a base objective value. Then, for each subsequent iteration,
we measure the average improvement over the base objective
as a reward, i.e., for nth action taken in iteration i, the reward
is computed as |OBJb−OBJi |/n, where OBJi is the latest
objective value. We use the REINFORCE algorithm [34] to



Fig. 2: Performance of our approach and baselines on detecting asymptomatic cases on the simulated outbreak. Our approach
outperforms all the baselines in both micro (left) and macro (right) F1 scores.

update the gradient of the policy network, which updates the
parameters of graph auto-encoder, feed-forward network, and
reinforcement learning models.

Post Processing: After training, we use our algorithm to
generate the optimal tree T and prune it by removing all the
nodes with no terminals as descendants.

IV. EXPERIMENTS

We now present an extensive empirical evaluation of our
approach to real data with both synthetic and real outbreaks.
All of our experiments were conducted on an AMD EPYC
7763 machine with 2TB memory and 8 NVIDIA A30 GPUs
each with 24GB memory. We will release our code and data
for academic purposes1.
Data: Our data was extracted from the University of Iowa Hos-
pitals and Clinics (UIHC). The data consists of interactions
between patients and healthcare workers between 2003 and
2013. It also consists of observed cases of Clostridiodes Diffi-
cile between 2005 and 2013. Clostridiodes Difficile Infection is
a well-known Healthcare-associated infection, which spreads
in healthcare facilities. From this data, we extracted five sets of
graphs with 500 (UIHC1), 2000 (UIHC2), and 5000(UIHC3)
nodes respectively. We ensured that the extracted graphs are
from the same unit within UIHC and correspond to periods
with the highest number of observed infections of Clostrid-
iodes Difficile.
Baselines: We use three primary baseline approaches to com-
pare against our approach. Our primary competitor is the
minimum-cost arborescence (MCA) based approach proposed
by Jang et al. in [9]. The proposed approach reduces the prize-
collecting Steiner tree problem into a directed Steiner tree
problem with prizes as input and solves it heuristically using
a minimum-cost arborescence technique. Our second baseline
CuLT [11] is a state-of-the-art Steiner-tree-based missing
infection detection algorithm that assumes the underlying
infection spread is based on the popular SI model. A strong
drawback of CuLT is that it does not take features into

1https://github.com/yongjian16/SteinerTree/tree/main

account. Finally, our final baseline is TopoLSTM [36], which
reconstructs cascades using a topological recurrent neural
network.

A. Performance on simulated HAI outbreak: asymptomatic
cases detection

Our first experiment is designed to evaluate the performance
of our approach as compared to the baselines for detecting
asymptomatic cases. As we do not have a dataset with ground-
truth asymptomatic cases, we resort to simulation to produce
outbreaks with known asymptomatic cases using the biased-
SIS model proposed in [9]. The model assumes that known risk
factors for Clostridiodes Difficile such as longer length of stay
in inpatient facilities, prescription of high-risk antibiotics and
gastric acid suppressors increases, age less than 5 and higher
than 60, are correlated with infections. We run the biased
SIS model on our graphs and obtain the symptomatic and
asymptomatic infections. We feed the graph and symptomatic
infections as input to our and the baseline approaches and
ask them to find the asymptomatic infections. We measure
success by comparing the overlap between the asymptomatic
infections produced by the simulation (which are hidden from
all the approaches) and the ones inferred by the methods. We
repeat this experiment on datasets of all three sizes. Within
each size, we repeat the experiment 5 times and report micro
and macro-F1 scores. The results are presented in Figure 2.

As seen in the figure, our approach comprehensively out-
performs all the baselines in all three datasets on both micro
and macro F-1 scores. However, as it follows the non-flexible
framework of first inferring node weights (from node features)
and then asymptomatic cases using the node weights, it does
perform as well as our approach. Our performance gain over
MCA is up to 29.62% on micro F-1 scores and 35.18% on
macro F-1 scores. CuLT and TopoLSTM are not competitive
as they do not take individual risks into account when inferring
asymptomatic infections. We note that the performance of
almost all methods deteriorates as the graphs get larger. This
is to be expected as the problem gets more challenging
as the graph size increases especially since outbreak size

https://github.com/yongjian16/SteinerTree/tree/main


Fig. 3: AUC for observed infection prediction (best viewed in
color). Our approach, shown in the rightmost bar, outperforms
all the baselines significantly.

remains fairly consistent. Overall, our experiments show that
our algorithm can recover asymptomatic cases more accurately
than the baselines consistently.

As mentioned earlier, our approach is designed to detect
nodes that have both i) a high probability of being exposed
to the pathogen and ii) a high likelihood of remaining
asymptomatic. CULT only looks at the first aspect as it
ignores individual risks and TopoLSTM is a cascade predic-
tion model that does not distinguish between symptomatic and
asymptomatic cases. While the MCA prioritizes minimizing
cost by selecting a spanning tree, it operates in two stages: first
assessing individual asymptomatic risks and then optimizing
the tree. This can lead to suboptimal outcomes due to potential
inaccuracies in the first stage. Our method, in contrast, directly
tackles both challenges simultaneously through an end-to-end
optimization process. This enables us to avoid the limitations
of MCA and achieve greater accuracy and efficiency in
identifying asymptomatic cases.

B. Performance on real HAI outbreaks: observed infection
prediction

Here we demonstrate the application of our approach in
predicting future infections. As asymptomatic infections are
still infectious, the nodes that interact with the identified
asymptomatic cases are at a higher risk of developing infection
than others. Here, we start by sampling one month of interac-
tions from UIHC to construct G. We chose the time span with
68 observed cases. Out of the 68 observed cases, we chose
80% of these to be in the ‘training set’ and were given our
approach and the baselines as the observed infections. After
each method infers the asymptomatic infections, we compute
the so-called asymptomatic pressures [9] (i.e., a normalized
metric computing interaction frequency with asymptomatic
cases) for all the nodes. Note that the asymptomatic pressure
metric is useful only if the inferred asymptomatic cases

are accurate. We then trained a multi-layer perceptron with
standard risk factors of CDI and asymptomatic pressures to
predict observed cases. The multi-layered perceptron was also
trained on the same 80% of the observed cases in the training
data. We then compute AUC to evaluate the accuracy of the
predicted observed infections.

The result is presented in Figure 3. Here, we add an
additional baseline Risk-factors-only. The baseline trains the
MLP without taking any asymptomatic pressure into account.
As seen from the figure, TopoLSTM, MCA, and our approach
lead to a significant gain over the Risk-factors-only baseline.
This demonstrates that identifying asymptomatic cases helps
with infection prediction in general. We observe that CuLT is
unable to improve upon the Risk-factors-only baseline in this
graph. We believe this is due to the fact that CuLT assumes
underlying disease process in SI-like, however, healthcare-
associated infections such as Clostridiodes Difficile do not
lend themselves to a simple SI model. As in the previous
experiment, we can observe that our approach clearly beats
all the baselines.

C. Case Study on CDI outbreak

To demonstrate that the asymptomatic cases predicted by
our method are clinically meaningful, we perform case studies
on the same one month interaction network collected from
UIHC as in Subsection IV-B. Here, we took all the 68 observed
infections from the previous setup and leveraged our approach
to identify asymptomatic infection. We obtained the solution
tree and visualized a pruned version of it in the Figure 4.

Here, we highlight two cases, node A and node B, de-
termined to be asymptomatic by our approach (in red). The
patients represented by the nodes turned out to be high-risk
newborns who stayed in the intensive care unit (ICU) for 10
and 12 days respectively and then transferred to the neonatal
intensive care unit (NICU) and stayed there for another 3 and
11 days respectively. Admissions to intensive care unit and
small age are both known risk factors of CDI [37], [38], [39].
Moreover, the patients with symptomatic CDI cases (namely
node A2 and node B2) were also in the same unit during
that period. Hence, it is very likely that the newborn pa-
tients contracted Clostridiodes Difficile pathogens while in the
NICU and transmitted the infections to observed cases. This
experiment highlights the importance of the proposed work as
accurate identification of the red nodes as asymptomatic would
have enabled healthcare providers to deploy intervention (such
as isolation), which would have prevented downstream cases.

D. Performance on simulated COVID-19 outbreaks

In the next experiment, we leverage our approach to detect
asymptomatic COVID-19 infections in synthetic outbreaks.
Here, we first run the COVASIM model to simulate COVID-19
outbreaks in UIHC graphs [40]. COVASIM is an open-source
agent-based model where infected agents can also be asymp-
tomatic. As in our earlier setup, we run the COVASIM model
on our graphs and generate symptomatic and asymptomatic
infections. The graph and the symptomatic infections are



Fig. 4: Case study on UIHC graph. The detected asymptomatic
cases (nodes A and B visualized in Red) were later determined
to be high-risk nodes and were present in the same unit as
symptomatic nodes.

revealed in all the methods. We measure success by contrasting
the inferred asymptomatic cases with the simulated ’ground-
truth’ asymptomatic infections. We conducted this experiment
on UIHC1 and UIHC2 datasets. Our results are summarized
in the Table I.

TABLE I: Comparison of performance of our approach against
state-of-the-art baselines in detecting COVID-19 asymp-
tomatic cases. Our approach significantly outperforms the
baselines

Method UIHC 1 UIHC 2
micro-F1 macro-F1 micro-F1 macro-F1

CuLT 0.37 0.43 0.21 0.26
TopoLSTM 0.34 0.38 0.12 0.08

MCA 0.49 0.44 0.38 0.32
Ours 0.68 0.63 0.48 0.41

As observed in the table, our approach significantly outper-
forms all the baselines in both datasets. As in the previous
experiment, MCA’s performance is closest to ours followed
by CuLT and TopoLSTM. In UIHC 1, the best-performing
baseline, MCA, was able to achieve a micro-F1 score of
0.49 and a macro-F1 score of 0.44. Our approach’s micro-
F1 and macro-F1 scores were 0.68 and 0.63 (an impressive
approximate 40% improvement). Our approach outperformed
the best baseline, MCA, by 25% in terms of micro-F1 score
and by 28% in terms of macro-F1 score in the UIHC 2 dataset.

Interestingly, all the methods performed better in detect-
ing asymptomatic COVID-19 cases than in detecting asymp-
tomatic CDI cases. This behavior could be attributed to the
fact that there were more observed COVID-19 cases than CDI
cases, making the task easier.

E. Ablation-study

We conducted additional experiments on the simulated
CDI outbreak in the UIHC-1 dataset to demonstrate how
the performance changes when we change our end-to-end
framework. Here, we ran two modifications of our approach. In
the first modified approach, Mod-1, we use the GCN module
for prize estimation and use the MCA approach for solving the
Prize-Collecting Steiner-tree problem. Similarly, in the second
modified approach, Mod-2, we use GCN for prize estimation
and standard non-deep approximate Q-learning approach for
the Steiner tree. The performance of these modified approaches
with our original approach is presented in Table II.

TABLE II: Performance of modified approach.

Method micro-f1 macro-f1
Ours 0.50 0.51

Mod-1 0.42 0.39
Mod-2 0.38 0.32

We see a consistent performance drop in both scores with
the modified approaches. Mod-1 results in 16% and 23% drop
in micro and macro F1 scores respectively. Similarly, Mod-2
results in 24% and 35% drop in the same metrics. The results
show that if we simply replace our deep Q networks with
combinatorial algorithms or standard Q-learning algorithms,
the results deteriorate.

We would like to point out that a key advantage of the
proposed method over these baselines, and those discussed
earlier, is that our approach allows for end-to-end inference of
both the prizes (susceptibility risk) and the cascade (infection
transmission), contributing significantly to its performance
superiority.

F. The effect of α and γ on the performnace.

There are two hyper-parameters in our proposed approach,
namely α and γ. Recall that the parameter α quantified the
importance of the individual risk as compared to the trans-
mission risk, and parameter γ is the edge weight connecting
the dummy root node with all the nodes in G (see Section
3). Note that larger values of γ prefer fewer branches out of
the root node, hence resulting in a smaller number of trees in
G. In our experiments, we tried to nullify the effect of α by
normalizing both the edge weights and the predicted prizes
(node weights). Here, we show the effect of varying γ and α
on a small UIHC 1 graph with 500 nodes. We vary α from 0
to 4 while keeping γ fixed. We repeat this for γ values of 0,
16, and 128. The result is presented in Figure 5.

As observed in the figure, the F1-score peaks at α = 1 for
γ of 16 and 128. Similarly, it has a clear elbow at α = 1 for
γ = 0. Similarly, in the next set of experiments, we varied γ
for different values of α and noticed that the F1-score usually
increases with γ. This is probably due to the fact that there
were very few observed cases in the graph, and most of them
could be easily connected with each other; hence the larger
value of γ, which prefers fewer branches out of the dummy
root, performs the best.



Fig. 5: Performance of our approach with different α and γ

V. DISCUSSION

Here we dive deeper into the aforementioned challenges and
justify the superiority of our method. The three challenges
in detecting asymptomatic cases that we identified were (C1)
Data Scarcity, (C2) Poor generalization from symptomatic
cases, and (C3) Bias towards symptomatic cases. The first
challenge arises due to difficulty in collecting data associated
with asymptomatic infections which are usually only obtain-
able by conducting extensive blanket serological testing. We
address this challenge by leveraging symptomatic case data
in a careful manner. Note that the likelihood of a node being
asymptomatic hinges on two key factors: 1) the probability of
a node being exposed to the virus via symptomatic or other
asymptomatic cases and 2) the likelihood of a node remaining
asymptomatic upon exposure. Our approach incorporates both
of these aspects. Most previous approaches focus on one
of these factors exclusively. When only considering the first
factor, it gives rise to the second challenge (i.e. poor general-
ization) as we only observe symptomatic cases. On the other
hand, addressing the second factor solely from symptomatic
data leads to the third challenge (bias towards symptomatic).
In our novel approach, we introduce an end-to-end risk-aware
framework that addresses the first factor by constructing in-
fection paths represented as a prize-collecting Steiner tree. We
handle the second factor by incorporating risk-aware incentives
into the Steiner tree problem. Furthermore, our end-to-end
framework allows for the joint optimization of both aspects,
leading to enhanced generalization capabilities compared to
the traditional two-stage optimization approaches.

VI. CONCLUSION

In this paper, we formalized the asymptomatic case de-
tection problem as a prize-collecting Steiner-tree problem
with latent prizes. We then reduced this problem to a bi-
level reinforcement learning problem. Our reduction is exact,
meaning solving the reinforcement learning problem will also
solve the prize-collecting Steiner tree problem. We then solved

the bi-level reinforcement learning problem using a deep Q-
learning approach. We conducted extensive experiments on
graphs of different sizes extracted from the operations data
from the University of Iowa Hospitals and Clinics. Our results
on synthetic outbreaks show that the proposed approach is able
to identify asymptomatic infection with high accuracy while
the baseline approaches are less accurate. We see a similar
trend in our second experiment where we leveraged inferred
asymptomatic infection for observed infection prediction. Our
result improves significantly over the baseline which only
takes individual risk factors into account. Other baselines are
less successful in doing so. Finally, our case study reveals
that the inferred asymptomatic cases are meaningful and are,
in fact, high-risk patients.
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