
NetGist: Learning to generate task-based network
summaries

Sorour E. Amiri Bijaya Adhikari Aditya Bharadwaj B. Aditya Prakash
Department of Computer Science, Virginia Tech
Email: [esorour, bijaya, adb, badityap]@cs.vt.edu

Abstract—Given a network, can we visualize it for any given
task, highlighting the important characteristics? Networks are
widespread, and hence summarizing and visualizing them is of
primary interest for many applications such as viral marketing,
extracting communities and immunization. Summaries can help
in solving new problems in visualization, sense-making, and
in many other goals. However, most prior work focuses on
generic structural summarization techniques or on developing
specific algorithms for specific tasks. This is both tedious and
challenging. As a result, for several popular tasks, there do not
exist readymade summarization methods.

In this paper, we explore a promising alternative approach
instead. We propose NetGist, a framework which automatically
learns how to generate a summary for a given task on a given
network. In addition to generating the required summary, this
also allows us to reuse the learned process on other similar
networks. We formulate a novel task-based graph summarization
problem and leverage reinforcement learning to design a flexible
framework for our solution. Via extensive experiments, we
show that NetGist robustly and effectively learns meaningful
summaries, and helps solve challenging problems, and aids in
complex task-based sense-making of networks.

I. INTRODUCTION

Networks are common and occur in many different domains
such as social networks, protein-protein interaction, commu-
nication networks and so on. Understanding these networks is
essential for many tasks, such as viral marketing, community
detection, anomaly identification and finding different patterns.
One approach is to construct network summaries by merging
(grouping) nodes and edges into super-nodes and super-edges.

Moreover, task-based summaries can help in solving various
problems. For instance, identifying epidemiologically relevant
anomalies in dynamic human-mobility networks [12]. There
are ways to identify anomalies on a network, but in a dynamic
network, it is not straightforward how to use the information
of previous snapshots to detect anomalies effectively and
efficiently. On the other hand, if we learn a function that
summarizes each snapshot of the network and highlights the
anomalies on them, it would make it easier to detect anomalies
on the dynamic graph. So, given a task-based summary for the
task, we can potentially discover epidemiologically relevant
anomalies in dynamic human-mobility networks. Fig. 1 shows
the summary networks using a learned summarization function
for three different snapshots of such networks in the context
of interactions between different departments of a company;
the anomalous nodes are shown in black; as discussed in ex-
periments later, the summaries consistently identify anomalies

Fig. 1: Summary graph of three snapshots of Work-Place
data. Black nodes are anomalies.

correctly matching the given ground-truth.
Similarly, task-based summaries can help in sense-making

and visualizing hidden patterns in networks, e.g., for identify-
ing bridges in different types of networks. Finally, task-based
summaries can also help in getting a better quality solution
for tasks with known algorithms [17]. Usually, past work
has looked into constructing summaries preserving important
characteristics of the network (e.g., structural characteristics).

Based on previous work, we make three observations. (1)
Different tasks give rise to different network summaries. For
example, the desired summary for the community detection
task (which tries to find cohesive regions) is very different
from the summary for a task like influence maximization
(which seeks to find central nodes). (2) There are tasks with no
summarization algorithms such as the anomaly detection prob-
lem discussed above, traveling salesman problem, etc. Also,
new tasks are getting defined on networks which may make
it impractical to develop specific algorithms for each of them.
(3) In real-world, we usually solve the same task repeatedly
on similar networks that belong to the same distribution. For
example, generating layouts for similar graphs is helpful in
context of protein networks [4], network-traffic data [28] etc.
Similarly, an advertiser may target the same social network
repeatedly with probabilistic influence patterns [10]. Samples
of networks from the same distribution are frequently observed
in intelligence analysis [8], epidemiology [3] and many other
settings.

Hence, leveraging these three observations, in such scenar-
ios, the inherent similarity between networks and the variety
of tasks opens a space for learning task-based network sum-
maries for networks coming from a distribution. This motivates

the following informal learning problem:
Problem: Task-based Summaries. Given a problem Prob,
and a distribution D of network instances, can we learn how
to generate meaningful network summaries that generalizes to
unseen instances from D?

Leveraging recent advances in reinforcement learning and
deep learning [7], [20], we develop NetGist, a flexible ap-
proach which automatically learns how to generate a summary
for a given set of tasks. To the best of our knowledge, past
work has not looked into this novel problem. Our contributions
in this paper are, (I) Problem formulation (II) Designing
effective learner and (III) Extensive Experiments.

The rest of the paper is organized in the usual way.

II. PROBLEM FORMULATION

Following prior work in network summarization [23], [11],
[24], in a summary, it is natural to group (‘merge’) similar
nodes to construct a graph of ‘super-nodes’ and ‘super-edges’
with a smaller size than the original network. In this way,
each super-node represents homogeneous regions [11] in some
sense and the connection between super-nodes highlights the
overall structure of the network and important regions of the
original graph [23]. Intuitively, our goal is to find a good
network summary which guides us to find the solution for
a given task.
Tasks: The first question is what kind of tasks we want to
handle? As our first step towards learning task-based sum-
maries for networks, we choose to solve a set of problems
we call Graph Optimization Problems (GOP) which includes
many popular graph mining problems. Suppose we have a
graph G(V,E) where V and E are sets of nodes and edges
of the network. Also, assume Θ is the set of parameters of
the given task. In a problem prob ∈ GOP, the goal is to
select O ⊆ U (i.e. a set of objects O from the universe U
of objects determined by the problem), that maximizes some
quality function Fprob(O;G,Θ). For all GOP problems, U is
some set of objects defined over the graph G (e.g. nodes,
edges, subgraphs, etc.). Note Fprob maps a sets of objects to a
real value based on the given task prob and its parameters Θ on
the graph G. We formally define the set of graph optimization
problems as follows:

Definition 1: Graph Optimization Problem (GOP)
Given a graph G(V,E), a set of input parameters Θ and a
quality function Fprob(O;G,Θ) ∈ R and set U ,
Find the best set of objects O∗ such that,

O∗ = arg max
O⊆U

Fprob(O;G,Θ) (1)

Note, many combinatorial problems such as Minimum Steiner
Tree, Maximum Clique, etc. [15] that defined over graphs
can naturally be written as a GOP problem. So, the set of GOP
problems is broad and includes many problems of interest.
We use two common GOP problems to showcase our method:
Influence maximization and Community detection.
What is a good summary? To generate any summary we
need to (Q 1) Evaluate the structure of the summary graph; and

(Q 2) Identify homogeneous regions. Our main insight is that
both of these issues are task-dependent. We show the summary
for the Influence maximization problem in figure (b). It
shows the given tasks guide us to both evaluate the structure
and characterize homogeneous regions in the summary graph.

(a) Original graph

()
(b) Summary of inf. max. task

The summary highlights how dif-
ferent super-nodes (regions) are
connected to each other based
on the given task and highlight
the central region of the graph
(Q1). Also, each super-node in
the summary shows a region in
the graph which contains nodes
with the same role (effect on the
solution) based on the given task.
So, the central node in the graph

is central in the central region as well (Q 2). Note that these
properties also lead to visually appealing summaries, as they
highlight the structural characteristics of the graph important
to the given task.
Measuring Summary Quality is challenging as the answers
are inter-dependent. Defining what characterizes a homoge-
neous region necessarily impacts the right measure to evaluate
the overall structure (and vice versa). Our idea is to identify
properties and develop a procedure which answers both ques-
tions simultaneously.

We first formalize the notions of a ‘good summary’. Let
G∗(V ∗, E∗) be an ideal summary of the original network
G(V,E) for an arbitrary GOP problem prob with parameters
Θ. Also let O∗ be the optimal solution for prob on G. Then
we want the following properties to hold for G∗.

Property 1: Let O
′∗ = arg maxFprob(O

′
, G∗,Θ∗). Then,

∀o∈O∗ ,∃H(o) = x ∈ O′∗.
Property 1 states that there exists a mapping H which maps

all objects in the optimal solution for prob on G to an element
of the optimal solution for the prob on G′. This property
indicates that G and G′ have structural similarity w.r.t. prob.

Property 2: For any two pairs of nodes vi and vj in an
arbitrary super-node x in the summary,

Fprob({vi}, G,Θx) > Fprob({vj}, G,Θx) =⇒
Fprob({vi}, x,Θ) > Fprob({vj}, x,Θ)

Property 2 implies that the order of role of nodes inside each
super-node, is preserved. It means the nodes in each super-
node have a homogeneous role in determining the solution
and they lead to the right solution as their order is preserved.

These two properties indicate if an ideal summary G∗ for
G w.r.t. to GOP problem prob exists, we can reconstruct the
optimal solution to prob. So, to determine how far a summary
is from G∗, we propose a divide-and-conquer Algorithm 1
to measure the quality of any summary G′ of G: first solve
prob on G′ and recursively solve for prob on each solution
obtained in the first step. And intuitively the quality of the
solution tells us how good the summary is. Lemma 1 indicates
that the Divide and Conquer framework we propose returns
optimal score for the summary network that satisfies both the
properties.

Lemma 1: Algorithm 1 on a summary network G′ returns
the optimal solution O∗ and optimal score Fprob(O

′∗;G′,Θ)
if G′ satisfies both Properties 1 and 2.

Note that validating whether a summary satisfies Property 2
is computationally expensive as it involves repeatedly measur-
ing Fprob. Our approach avoids this step and still manages to
output the ideal solution and the corresponding optimal score
Fprob with respect to prob if the summary network satisfies
both the properties.

Algorithm 1 Divide and Conquer

Require: G(V,E), G′(V ′, E′) , prob ∈ GOP
1: O′∗ ← ∅
2: //Divide
3: Φ∗ ← arg maxFprob(Φ;G′,Θ)
4: // Conquer
5: for φ ∈ Φ∗ do
6: Gφ ← subgraph of φ in G
7: Θφ ← sub-parameters that related to φ
8: o∗φ = arg maxFprob(oφ;Gφ,Θφ)
9: O′∗ ← O′∗ ∪ o′∗φ

10: return O′∗ and Fprob(O′∗;G,Θ)

Problem definition: We are now ready to define our problem
formally. Suppose we have a network G(V,E) where V and
E are sets of nodes and edges of the network respectively.
Also, suppose we are given a graph optimization problem
prob ∈ GOP (Def. 1) which asks to find the best set of
objects O∗. The parameters of prob and the graph G are drawn
from a probability distribution D (i.e. (G(V,E),Θ) ∼ D).
For example, D can be the set of probabilistic influence
patterns (as discussed in the introduction). We want a summary
network G′(V ′, E′) for any graph G(V,E) drawn from D
such that |V ′| = α · |V |, where α is the ‘reduction factor’. It
is expensive to generate the high-quality summary for all the
graphs in D. Hence, our idea is to learn the process of learning
the summaries instead of merely the final summary graphs.
Our goal is to learn a graph summarization process such
that solving the given problem on G′ using our divide-and-
conquer strategy (Algorithm 1) results in a set O′∗ such that
Fprob(O

′∗;G,Θ) is similar to the Fprob(O
∗;G,Θ). Formally:

Problem 1: Task-Based Network Summarization (TBNS)
Given a graph optimization problem (prob ∈ GOP), a distribu-
tion of problem instances D, and a reduction factor 0 < α ≤ 1.
Learn a graph summarization process such that for any
(G(V,E),Θ) ∼ D,

max ρ = E(G,Θ)∼D

[
Fprob(O

′∗;G,Θ)

Fprob(O∗;G,Θ)

]
(2)

where, O′∗ is the solution of the given problem prob on the
summary graph G′ using Alg. 1.
Comments: Generalizing a learned model to unseen instances
is important from the learning perspective. A good model
which is trained on a particular ‘training’ data is expected
to do reasonably well in the ‘test’ data drawn from the same
distribution [19]. Hence, our ultimate goal is to maximize the
expected ratio ρ over all the instances (including the unseen

ones) of (G,Θ) drawn from D. Note that in some real-world
scenarios, D can be a single (G,Θ).

III. OUR METHOD

Next, we show how to solve our TBNS problem. We want
to precisely learn the steps to be taken for the summarization
process, so that we can re-apply the same approach on other
graphs from the same distribution. A basic summarization
step we take is some sort of a ‘merge’ operation. The merge
operation basically groups nodes in the original network and
results in a so-called ‘super-node’ in the summary network.
The question at hand is that once the summarization step is
decided, how do we measure the ‘goodness’ of each step and
how do we obtain a quality summary? Reinforcement Learning
(RL)—more specifically Q-learning [25]—is a natural solution
to the above questions. In general, RL methods learn to take an
‘action’ in an ‘environment’ to maximize cumulative ‘reward’
based on a ‘transition’ function.

Recently, the success of deep reinforcement learning [20],
where convolutional neural networks are used to learn a
representation of ’states’, in solving various AI tasks has
gained much attention. It is known to perform better and
converge faster than the traditional reinforcement learning.
Hence, we propose to leverage a deep reinforcement learner
to solve our TBNS problem.

A. Overview of NetGist framework

Algorithm 2 Overview of NetGist
Require: prob ∈ GOP, α, D

1: Randomly Initialize the deep Q-learning parameters
2: for i = 1 To num of samples do
3: Sample G(V,E) and Θ drawn from D
4: // learning how to summarize
5: for episode=1 to T do
6: G′(V ′, E′)← G(V,E)
7: while |V ′| > α · |V | do
8: Merge G′(V ′, E′) // (See Section III-B)
9: // Evaluate

10: O′, Fprob ← DivideAndConquer(G,G′, prob) Alg. 1
11: // Optimize
12: Update the deep Q-learning parameters to yield better

summary (see Section III-D)
13: Return the trained model (which solves the TBNS problem)

We now give an overview of our NetGist approach (Al-
gorithm 2). Overall, in our deep reinforcement learning
paradigm, the initial ‘state’ is the network G(V,E) drawn
from D and each ‘action’ the learner takes reduces the size
of original network G to produce a new ‘state’, a summary
network G′(V ′, E′). The learner repeatedly takes actions till
the summary network G′(V ′, E′) is of desired size. Next, we
evaluate the prob on G′ using Algorithm 1. Based on the
quality of the solution, the learner’s parameters are updated.
The learner repeats the process on more samples from D until
it learns to summarize any (G,Θ) ∼ D to G′, such that ρ is
maximized. To formalize our framework, we need to answer
some questions and make design choices. These question

are: Q1 How to define the universe of meaningful actions
that summarizes any network G(V,E) drawn from D into
G′(V ′, E′)? Q2 What is the universe of all possible ‘states’?
and Q3 What are the reward, policy, transition functions and
the overall learning procedure? We answer these questions
next.

B. Q1. Universe of Actions
An action a taken at state s basically gives us the next state

s′. Since our initial state is a network G from D and our
goal is to summarize it, each action a should reduce the size
of the network G. As briefly indicated above, we basically
define our action as a merge operation. Specifically, a merge
operation on a node pair {a, b} in the network G would result
in a new super-node c in G′. Moreover, new edges (v, c)
for all nodes v which are neighbors of either nodes being
merged would be added to G′. It is important to note that
merging different types of nodes is useful for different graph
optimization problems. For example, for tasks like community
detection, it may be more meaningful to merge nodes which
have an edge connecting them to ensure that densely connected
nodes are grouped together (Fig. below (c)). In contrast, for
task like immunization, it may be more meaningful to merge
nodes around a central node to ensure that the central node,
which is more likely to be in the solution, remains central in
the summary network (Fig. below (b)). Therefore, we allow
merging nodes that are any distance apart. To formalize this
intuition, we define a kth-order merge as follows:

Definition 2: (kth-Order Node Pair Merge) A kth-Order
node pair merge operation merges nodes a and b into a new
node c, such that a ∈ V , b ∈ V , and d(a, b) = k. We add new
edge (c, k) for all the nodes k ∈ NB(a) ∪NB(b).

(a) Original graph (c) Community detection(b) Immunization

In a single ac-
tion a, we first de-
cide on the order
k of the merge op-
eration. Then we
merge all possible

node pairs, which can be merged with a kth-order merge.
Formally, our universe of actions is defined as follows:

Definition 3: Universe of Actions The universe of actions
A in NetGist is a set of all possible kth-order merges.

Note that our single action is a set of kth-order merge
operations, for a fixed order k. Hence, we usually merge more
than a single pair of nodes. This ensures that our universe
of actions is broad enough to incorporate meaningful merge
operations for different tasks and yet restrictive enough to be
tractable for learning purposes.

Lemma 2: kth-Order node pair merge is order sensitive.
(Proof omitted for the lack of space)

Given the lemma 2 the order of taken actions is essential
in generating the summaries. Hence, we should learn the
sequence of actions as well as the set of actions to take.

C. Q2. Universe of States
The initial state in our RL framework is any network

G(V,E) drawn from D and each action the learner takes,

results in a summary network G′(V ′, E′). Recall that our one
action is a set of kth-order merge operations. Any state s other
than the initial state is a result of one or more actions on the
initial state, the network G. Hence the universe of states, which
includes the original network as well, is defined as follows:

Definition 4: Universe of States The universe of states S
in NetGist is a set of networks G′(V ′, E′), such that G′ is a
result of zero or more merges on the network G from D.

Note that our universe of states does not include all possible
summary networks of network G from D. This is because
our action merges multiple nodes at once. This reduces the
size of the universe of states, which in turn helps in learning.
However, as discussed earlier, this set is still large enough to
explore meaningful summaries across the search space.

D. Q3. Reward, Policy, Transition and the Learning Procedure
Having described the states and actions earlier, now we can

describe our method to learn meaningful summary.
1) Reinforcement learning.: Our idea is to use deep Q-

learning as it is an off-policy RL which known to be more
sample efficient than the policy gradient methods [25].

We define the reward to be −1 for a state s, unless it is
a terminal state. A terminal state in our case is a summary
network G′(V ′, E′) which has the desired size. Formally, we
define our reward function as follows:

r(s, a) =

{
max
O⊆U

Fprob(O; snext,Θ) if snext is a terminal state

−1 otherwise
(3)

In Eq. 3 we compute Fprob(O; snext,Θ) on the summary
snext with our divide and conquer framework in Alg. 1.

Our goal is to learn optimal Q-value(s, a) which estimates
the cumulative reward after taking action a at state s [25] and
select actions that result in the highest cumulative reward.

2) Learning algorithm: Next, we elaborate on the whole
learning pipeline. Note that our pipeline learns the summa-
rization procedure for graphs in D such that it is gener-
alizable to the unseen graphs. First we define how to es-
timate Q-value(s, a), using the Q-learning algorithm. In
order to have an end-to-end framework to learn the optimal
Q-value(s, a) we combine CNNs [13] with Q-learning as
often done in literature. CNN helps us to have a compact
representation of each state s in the universe of states.

In our deep RL framework the input state s is fed into the
CNN layer. The CNN outputs a feature representation of the
state, which is then fed into a fully connected Feed Forward
Network, FFN. The output layer of the FFN is d-dimensional,
where d is the number of possible actions. Each ith entry in
the output vector represents the predicted Q-value function
Q-value(s, ai) for the state s and the action ai.

Lemma 3: Time complexity of NetGist is O(Itr ·
V E log V), where Itr is the number of iterations.

IV. EMPIRICAL STUDY

We design various experiments to evaluate NetGist. Our
code is available for research purposes1. We set α = 0.3 for

1http://github.com/SorourAmiri/NetGist

all our experiments. However, we examined the robustness of
NetGist to changes in α and Θ as parameters of the TBNS
problem and found it to be stable over wide ranges.
Data. We collected a number of datasets from various
domains for our experiments. See Table I for details.

Dataset #Nodes #Edges Description

Sy
nt

he
tic 1 ER [5] 20-2000 50-10000 Erods-Reyni graph

2 BA [5] 20-2000 40-4000 Barabasi-Albert
preferential
attachment graph

3 Block Model [5] 20-2000 40-30000 Block models
graph

R
ea

l-
w

or
ld

4 Karate Club 34 78 A social network
among members of
a karate club

5 Work-Place [2] 92 755 mobility networks
6 High-School [2] 327 5,818 mobility networks
7 Political Blogs 1,490 16,783 Network of hyper-

links between web-
blogs on US poli-
tics

8 Facebook [1] 4,039 88,234 A social network
9 As-Oregon [1] 7,000 15,743 An autonomous

systems peering
information
network

TABLE I: Datasets details.

Baselines. We compare the performance of NetGist with other
summarization techniques: (I) Random selects random node-
pairs and merges them. (II) CoarseNET [23] summarizes
the network while ensuring that the propagation properties
are preserved. (III) METIS [16] and Spectral [26] partition
the network G while ensuring the summary is useful for the
Community detection task. We take each partition as the
super-node of the summary and connect two super-nodes if
there is at least one edge between the nodes in them.

A. Q1. Quality of NetGist on distribution D

Here we evaluate the quality of NetGist on various net-
works and distributions and show a sample visualization.
Synthetic and real-world networks: We use popular syn-
thetic networks (Erdos-Renyi (ER), Barabasi-Albert (BA) and
Block Models) and different real datasets to evaluate NetGist
on distribution D. For synthetic graphs we trained NetGist
on 80 randomly sampled networks from a distribution and
test on 20 previously unseen networks from the same dis-
tribution. The Avg. ρ and s.t.d. on the test with respect to
Influence maximization tasks are shown in Fig. 2. Also,
Fig. 2b shows the result on real-world datasets. In overall,
NetGist generalizes well and gets high ρ for all the network
distributions with various sizes and even outperforms baseline
methods specifically designed for the task, implying NetGist
summaries can help solve GOP tasks. (Community detection
task is omitted due to lack of space).
Sample Visualization: Here we visualize our learnt sum-
maries from the well-known Karate Club network (Figure
3) to demonstrate the difference between various tasks. The
Influence maximization task-based summary consists of two
super-nodes which have considerably higher degree than the
rest of the network. These two super-nodes contain the optimal

20 50 100 500 1k 2k

Number of nodes

0

0.5

1

1.5

(a) Influence maximization

Kar
at

e
C
lu
b

W
or

kp
la
ce

Sch
oo

l

Pol
iti
ca

l B
lo
gs

Fac
eb

oo
k

As-
O
re

go
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

NetGist Spectral Metis
CoarseNet Random

ρ

(b) Influence maximization

Fig. 2: (a) NetGist obtains high ρ consistently indicating that it
learns well how to summarize networks for a given task. NetGist
outperforms all the baselines and performs consistently for all the
tasks and datasets. Note, the quality of NetGist solutions is equal or
even better than the algorithms that are designed for the given task
across all datasets.

solution, while the rest of the super-nodes consists of homoge-
neous nodes with low influence. For the Community detec-
tion task as well, we see that two super-nodes in the summary
highlight the homogeneous regions well (which match closely
with the ground truth communities in the network). We show
more such examples in the appendix.

(a) Original graph (b) Influence maximization (c) Community detection

Fig. 3: Karate Club. (a) Original graph (b and c) Summary graphs
of two GOP tasks.

B. Q3. Detecting anomalies on mobility graphs

Here we leverage NetGist for the application of discover-
ing epidemiologically relevant anomalies in the Work-Place
networks, which are based on a mobility log of employees
in a company with five departments. The dataset has been
studied before for vaccination problems [12]. Due to variation
in organizational roles and mobility patterns, some nodes may
play anomalous roles in any epidemic outbreak. Such nodes
are difficult to mine due to the temporal nature of data and as
different nodes could be anomalous at different times.

Our main idea here is to leverage the inherent uncertainty in
the data (the fact that any two people interacting at a given time
is probabilistic) to learn the summarization process specific
to the epidemiologically related influence maximization task.
Once trained, we summarize the contact networks generated
from the mobility log by applying the learned policy. Finally,
we use the summaries to identify the anomalous nodes. Note
that independently summarizing each network snapshot will

not be useful as it discards the relationship between the
snapshots (as we observe in our experiments as well).

NetGist runs in less than 0.5s per iteration. In Fig. 1,
we show the learnt summary networks for three different
snapshots. Color represents different departments and the size
of the ‘super-nodes’ is proportinal to the number of nodes
inside them. First note that all the departments are clearly
visible in the summaries. This highlights that NetGist is
able to capture the temporal stability of the departments
in the dataset. Secondly, we take the singleton (unmerged)
nodes connecting different departments as the anomalous
nodes (shown in black). Interestingly the nodes we identify as
anomalous (80, 131, 751, 222, 134) have also been labelled as
the ‘linkers’ in [12]. We consistently find some of the linkers
in most time-stamps highlighting the stability of linkers over
time as discussed in [12]. On the other hand, we also find
different nodes as linkers in different timestamps highlighting
that different nodes play anomalous roles at different times.
Hence, the visualization of the summaries helps in sense-
making of the anomalous nodes and the role they play, which
is not obvious from the original networks.

V. RELATED WORK

We briefly discuss related work from multiple areas here.
Network Summarization. There are many summarization
methods in many domains [17] for community detection
problem [16], diffusion-related problem [23] and network
sparsification [18]. We add a new direction to this line of work,
by aiming to learn task-based summaries automatically instead
of designing a different algorithm for each one separately.
Deep Learning for Graphs. Researchers have exploited deep
learning for various graph mining tasks like node embed-
ding [14], graph classification [21], and graph kernels [27]
and structural data embedding [9]. As far as we know, we are
the first to leverage deep learning for network summarization.
Learning to learn on Graphs. The field is seeing increasing
recent interest. Methods include RNN based meta heuristic for
shortest paths [6], neural networks for quadratic problems over
graphs [22], reinforcement learning for the traveling salesman
problem [7], RL to solve combinatorial problems [10], and so
on. In contrast, we present deep reinforcement learning for
network summarization in task dependent manner.

VI. CONCLUSIONS

In this paper, we generalize over multiple threads of
prior work and propose a novel Task-Based Network Sum-
marization (TBNS) problem to automatically learn how to
generate task specific network summaries. We proposed an
effective method NetGist by leveraging the deep Q-learning
framework. As shown by our experiments on both real and
synthetic data, NetGist is able to learn meaningful summaries
for various tasks and generalize them to the unseen instances.
Also, NetGist helps in complex sense-making and anomaly-
detection in temporal networks. We can explore using this
framework for even more tasks and applications that can be
transformed to GOP. Generalizing the set GOP (like to include

graph alignment) and speeding up NetGist by leveraging deep
network embedding would also be fruitful.
Acknowledgment. This paper is based on work partially
supported by the NSF (CAREER IIS-1750407), the NEH (HG-
229283-15), ORNL, National Cancer Institute of the National
Institutes of Health (UH2CA203768), and a Facebook faculty
gift.

REFERENCES

[1] http://snap.stanford.edu.
[2] http://www.sociopatterns.org/.
[3] B. Adhikari, Y. Zhang, S. E. Amiri, A. Bharadwaj, and B. A. Prakash.

Propagation-based temporal network summarization. TKDE, 2018.
[4] G. Amitai, A. Shemesh, E. Sitbon, M. Shklar, D. Netanely, I. Venger,

and S. Pietrokovski. Network analysis of protein structures identifies
functional residues. Journal of molecular biology, 2004.

[5] A.-L. Barabási et al. Network science. Cambridge university press,
2016.

[6] A. Bay and B. Sengupta. Approximating meta-heuristics with homotopic
recurrent neural networks. arXiv preprint arXiv:1709.02194, 2017.

[7] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural
combinatorial optimization with reinforcement learning. arXiv preprint
arXiv:1611.09940, 2016.

[8] T. Coffman, S. Greenblatt, and S. Marcus. Graph-based technologies
for intelligence analysis. Communications of the ACM, 2004.

[9] H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent
variable models for structured data. In ICML, 2016.

[10] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song. Learning
combinatorial optimization algorithms over graphs. NIPS, 2017.

[11] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without
eigenvectors a multilevel approach. PAMI, 2007.

[12] M. Génois, C. L. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin, and
A. Barrat. Data on face-to-face contacts in an office building suggest
a low-cost vaccination strategy based on community linkers. Network
Science, 2015.

[13] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning.
MIT press Cambridge, 2016.

[14] A. Grover and J. Leskovec. node2vec: Scalable feature learning for
networks. In KDD, 2016.

[15] D. S. Johnson. Approximation algorithms for combinatorial problems.
Journal of computer and system sciences, 1974.

[16] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint
graph partitioning. In Proc. SC98, 1998.

[17] Y. Liu, A. Dighe, T. Safavi, and D. Koutra. A graph summarization: A
survey. arXiv preprint arXiv:1612.04883, 2016.

[18] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen.
Sparsification of influence networks. In KDD, 2011.

[19] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine learning:
An artificial intelligence approach. Springer Science & Business Media,
2013.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. Nature,
2015.

[21] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural
networks for graphs. In ICML, 2016.

[22] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna. A note on learning
algorithms for quadratic assignment with graph neural networks. arXiv
preprint arXiv:1706.07450, 2017.

[23] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian.
Fast influence-based coarsening for large networks. In KDD, 2014.

[24] L. Shi, H. Tong, J. Tang, and C. Lin. Vegas: Visual influence graph
summarization on citation networks. TKDE, 2015.

[25] R. S. Sutton and A. G. Barto. Introduction to reinforcement learning.
MIT press Cambridge, 1998.

[26] U. Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 2007.

[27] P. Yanardag and S. Vishwanathan. Deep graph kernels. In KDD, 2015.
[28] H. Zhang, D. D. Yao, and N. Ramakrishnan. Detection of stealthy

malware activities with traffic causality and scalable triggering relation
discovery. In Proceedings of the 9th ACM symposium on Information,
computer and communications security.

