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ABSTRACT
Implicit graph neural networks have gained popularity in recent
years as they capture long-range dependencies while improving
predictive performance in static graphs. Despite the tussle between
performance degradation due to the oversmoothing of learned em-
beddings and long-range dependency being more pronounced in
dynamic graphs, as features are aggregated both across neighbor-
hood and time, no prior work has proposed an implicit graph neural
model in a dynamic setting.

In this paper, we present Implicit Dynamic Graph Neural Net-
work (IDGNN) a novel implicit neural network for dynamic graphs
which is the first of its kind. A key characteristic of IDGNN is that
it demonstrably is well-posed, i.e., it is theoretically guaranteed to
have a fixed-point representation. We then demonstrate that the
standard iterative algorithm often used to train implicit models is
computationally expensive in our dynamic setting as it involves
computing gradients, which themselves have to be estimated in an
iterative manner. To overcome this, we pose an equivalent bilevel
optimization problem and propose an efficient single-loop training
algorithm that avoids iterative computation by maintaining moving
averages of key components of the gradients. We conduct exten-
sive experiments on real-world datasets on both classification and
regression tasks to demonstrate the superiority of our approach
over the state-of-the-art baselines. We also demonstrate that our
bi-level optimization framework maintains the performance of the
expensive iterative algorithm while obtaining up to 1600x speed-
up.
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1 INTRODUCTION
Graph Convolution Network (GCN) [12] and its subsequent vari-
ants [16, 32] have achieved the state-of-the-art performance in pre-
dictive tasks in various applications including molecular prediction
[23], recommendation [17], and hyperspectral image classification
[9]. GCNs have also been extended to the dynamic setting, where
the graph changes over time. Even in the dynamic setting, GCNs
have achieved state-of-the-art results for numerous tasks including
rumor detection [31] and traffic prediction [13].

Despite numerous advantages, a major limitation of existing
GCNs is that they can only aggregate information up to 𝑘-hops,
where 𝑘 is the depth of the graph convolution operation. Hence,
standard graph neural networks [12, 32] cannot capture long-range
dependencies beyond a radius imposed by the number of convo-
lution operations used. Trivial solutions like setting 𝑘 to a large
number fail in overcoming this issue as empirical evidence [15]
suggests that deepening the layers of GCN, even beyond a few
(2-4) layers, can lead to a notable decline in their performance.
This is because the stacked GCN layers gradually smooth out the
node-level features which eventually results in non-discriminative
embeddings (aka oversmoothing). This creates a dilemma where,
on the one hand, we would like to capture dependencies between
nodes that are far away in the network by stacking multiple layers
of GCN together. On the other hand, we also would like to maintain
the predictive performance by only using a few layers. To tackle
this dilemma in the static setting, Gu et al. [7] proposed an implicit
graph neural network (IGNN), which iterates the graph convolution
operator until the learned node representations converge to a fixed-
point representation. Since there is no a priori limitation on the
number of iterations, the fixed-point representation potentially con-
tains information from all neighbors in the graph. Evidence shows
that it is able to capture long-range dependency while maintaining
predictive performance. Following this, other recent works [18, 22]
also have addressed the problem in the static setting.
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In the case of dynamic graphs, where graphs evolve over time,
dynamic graph neural networks aggregate information over the
current graph topology and historical graphs to learn meaningful
representations [31, 36]. Note the architecture of the graph neural
networks within each time stamp in dynamic graph neural net-
works is similar to existing static GCNs. Hence, the information
aggregated for each node in a given time stamp is still limited to a
radius of 𝑘−ℎ𝑜𝑝𝑠 within the time stamp. Increasing the depth of the
GCN operator in each time stamp to ensure long-range dependency
exacerbates the performance degradation of dynamic graph neural
networks as these models convolve both over the time stamps and
within the time stamps, hence oversmoothing the features even
faster. Therefore, capturing long-range dependency while improv-
ing (or even maintaining) the performance is a big challenge for
dynamic graph neural networks. Despite its importance, very few
prior works have studied this phenomenon in dynamic graphs: Yang
et al. [36] propose an L2 feature normalization process to alleviate
the smoothing of features in dynamic graphs and Wang et al. [33]
mitigate the oversmoothing problem by emphasizing the impor-
tance of low-order neighbors via a node-wise encoder. However,
these approaches either rescale features or forget neighborhood
information, both of which are not ideal.

To address the challenges mentioned above, we propose IDGNN,
an implicit neural network for dynamic graphs derived from the
first principles. In designing IDGNN, we encountered multiple chal-
lenges including i) uncertainty on whether fixed-point (converged)
representations exist for implicit neural models defined over dy-
namic graphs; and ii) efficiently training a model to find these
fixed-point representations. In this paper, we overcome the first
challenge by providing theoretical guarantees on the existence
of the fixed-point representations on a single dynamic graph by
leveraging a periodic model and generalizing this result to a set
of dynamic graphs. For the second challenge, we notice that the
stochastic gradient descent via implicit differentiation (often used
by other implicit models [7, 14]) is too inefficient in our problem set-
ting. As such, we reformulate our problem as an equivalent bilevel
optimization problem and design an efficient optimization strategy.
The key contributions of the paper are as follows:

• We propose a novel dynamic graph neural network IDGNN,
which ensures long-range dependency while providing theo-
retical guarantees on the existence of fixed-point representa-
tions. IDGNN is the first approach to leverage implicit graph
neural network framework for dynamic graphs.

• We present a bilevel optimization formulation of our problem
and propose a novel stochastic optimization algorithm to
efficiently train our model. Our experiments show that the
proposed optimization algorithm is faster than the naive
gradient descent by up to 1600 times.

• We conduct comprehensive comparisons with existing meth-
ods to demonstrate that our method captures the long-range
dependency and outperforms the state-of-the-art dynamic
graph neural models on both classification and regression
tasks.

2 RELATEDWORK
Dynamic Graph Representation Learning: GNN has been suc-
cessful for static graphs, leading to the development of GNN-based
algorithms for dynamic graphs [11]. DyGNN [19] comprises two
components: propagation and update, which enable information
aggregation and propagation for new interactions. EvolveGCN [21]
uses an RNN to update GCN parameters and capture dynamic graph
properties. Sankar et. al. [29] propose a Dynamic Self-Attention
Network (DySAT) with structural and temporal blocks to capture
graph information. TGN [26] models edge streaming to learn node
embeddings using an LSTM for event memory. TGAT [35] consid-
ers the time ordering of node neighbors. Gao et al. [5] explores the
expressiveness of temporal GNNmodels and introduces a time-then-
graph framework for dynamic graph learning, leveraging expressive
sequence representations like RNN and transformers.

Implicit Graph Models: The implicit models or deep equilib-
rium models define their output using fixed-point equations. [1].
propose an equilibrium model for sequence data based on the fixed-
point solution of an equilibrium equation. El et al. [4] introduce
a general implicit deep learning framework and discuss the well-
posedness of implicit models. Gu et al. [7] demonstrate the potential
of implicit models in graph representation learning, specifically
with their implicit model called IGNN, which leverages a few layers
of graph convolution network (GCN) to discover long-range de-
pendencies. Park et al. [22] introduce the equilibrium GNN-based
model with a linear transition map, and they ensure the transition
map is contracting such that the fixed point exists and is unique.
Liu et al. [18] propose an infinite-depth GNN that captures long-
range dependencies in the graph while avoiding iterative solvers
by deriving a closed-form solution. Chen et al. [2] employ the dif-
fusion equation as the equilibrium equation and solve a convex
optimization problem to find the fixed point in their model.

Implicit Models Training: Efficiently training implicit models
has always been a key challenge. Normally, the gradient of im-
plicit models is obtained by solving an equilibrium equation using
fixed-point iteration or reversing the Jacobian matrix [7]. However,
training these models via implicit deferential introduces additional
computational overhead. Geng et al. [6] propose a phantom gra-
dient to accelerate the training of implicit models based on the
damped unrolling and Neumann series. Li et al. [14] leverage sto-
chastic proximal gradient descent and its variance-reduced version
to accelerate the training.

3 METHODOLOGY
3.1 Preliminaries
Dynamic Graphs:We are given a set of𝑁 dynamic graphs {G𝑖 }𝑁𝑖=1.
Each dynamic graph G𝑖 = {𝐺1

𝑖
, ...,𝐺𝑡

𝑖
, ...,𝐺𝑇

𝑖
} is a collection of 𝑇

snapshots. Let V denote the union set of nodes that appear in
any dynamic graph and 𝑛 := |V| be the total number of nodes.
Without loss of generality, each snapshot can be represented as
𝐺𝑡
𝑖
= {V, E𝑡

𝑖
, 𝑋 𝑡

𝑖
} since we can assume each graph is built on the

union set V and treat the absent nodes as isolated. E𝑡
𝑖
is the set

of edges at time 𝑡 in G. 𝑋 𝑡
𝑖
∈ R𝑙×𝑛 represents the node attribute

matrix, where 𝑙 is the dimension of the node attributes. Let 𝐴𝑡
𝑖
be

the adjacency matrix of 𝐺𝑡
𝑖
.
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Figure 1: Model overview. This figure indicates the forward
process of our model.

In this paper, we focus on node-level tasks (e.g. classification
and regression) for dynamic graphs. We consider the dataset as
{(G𝑖 ,𝒚𝑖 )}𝑁𝑖=1, where G𝑖 is the 𝑖-th dynamic graph, and 𝒚𝑖 ∈ R𝑛 is
the node-level labels assigned to the nodes in the last snapshot of
dynamic graph G𝑖 .
Permutation: Here, we define a permutation function to simplify
the notation in the rest of the paper. Let 𝜏 (𝑡) := 𝑇 − [(𝑇 − 𝑡 + 1)
mod 𝑇 ], where 𝑇 refers to the number of snapshots. This function
maps 𝑡 → 𝑡 − 1 for 𝑡 ∈ [2,𝑇 ] and maps 𝑡 → 𝑇 for 𝑡 = 1.
Implicit Models: In general, implicit models [4, 6, 7] have the form
𝑍 = 𝑓 (𝑍,𝑋 ), where 𝑓 is a function that can be parameterized by a
neural network, 𝑋 is the data and 𝑍 is the learned representation.
We can obtain the fixed-point representation via iteration 𝑍 ∗ =

lim𝑘→∞ 𝑍𝑘+1 = lim𝑘→∞ 𝑓 (𝑍𝑘 , 𝑋 ) = 𝑓 (𝑍 ∗, 𝑋 ).
Thus, the key to designing an implicit model for dynamic graphs

is to provide a function 𝑓 that leads to converged representations.

3.2 Implicit Model for Dynamic Graphs
We first consider a single dynamic graph G = {𝐺1, ...,𝐺𝑇 } with 𝑇
snapshots and discover its well-posedness condition in this section.
We then generalize the well-posedness conclusion for a set of dy-
namic graphs later. All the proofs are provided in the Appendix.
Now, let us consider the following stacked GCN model:

𝑍 1
𝑘+1 = 𝜎 (𝑊

1𝑍𝜏 (1)
𝑘

𝐴1 +𝑉𝑋 1)

𝑍 2
𝑘+1 = 𝜎 (𝑊

2𝑍𝜏 (2)
𝑘

𝐴2 +𝑉𝑋 2)
· · ·

𝑍𝑇
𝑘+1 = 𝜎 (𝑊

𝑇𝑍
𝜏 (𝑇 )
𝑘

𝐴𝑇 +𝑉𝑋𝑇 ) (1)

In the model presented above, the embeddings 𝑍 2
𝑘+1 of the nodes

in the second time stamp in the (𝑘 + 1)-th layer depend on the
embeddings 𝑍 1

𝑘
of nodes in the first time stamp learned in the 𝑘-

th layer and the feature of the nodes in the second time stamp
𝑋 2. This design enables us to propagate information between time
stamps when stacking layers. The parameters for the 𝑡-th layer of

the model are denoted as𝑊 𝑡 ∈ R𝑑×𝑑 and𝑉 ∈ R𝑑×𝑙 with𝑉 being a
shared weight across all layers. Note that the proposed model and
the corresponding theory still hold when 𝑉 is not shared. We opt
for a shared𝑉 for simplicity (thorough empirical discussion on this
choice is presented in the Experiment section). Following the prin-
ciple of the implicit model [1, 4, 7], we apply our model iteratively
infinite times. If the process converges, we consider the converged
result {𝑍 1

∞, . . . , 𝑍
𝑇
∞} as the final embeddings. Consequently, the

final embeddings have to satisfy the system of equations in (1) and
can be considered a fixed-point solution to (1). However, at this
point, it is not clear whether the fixed-point solution always exists
for arbitrary graph G.

Well-posedness is a property that an implicit function, such as
in (1), possesses a unique fixed point solution. While Gu et al. [7]
demonstrated the well-posedness of a single-layer implicit GCN
on a single static graph, the question remains open for dynamic
graphs. To establish the well-posedness property for our model, we
first introduce its vectorized version as follows.

𝑧1
𝑘+1 = 𝜎 (𝑀

1𝑧𝜏 (1)
𝑘

+ vec(𝑉𝑋 1))

𝑧2
𝑘+1 = 𝜎 (𝑀

2𝑧𝜏 (2)
𝑘

+ vec(𝑉𝑋 2))
· · ·

𝑧𝑇
𝑘+1 = 𝜎 (𝑀

𝑇 𝑧
𝜏 (𝑇 )
𝑘

+ vec(𝑉𝑋𝑇 )) (2)

where 𝑧 = vec(𝑍 ) is column-wise vectorization of 𝑍 , and 𝑀𝑖 =

(𝐴𝑖 )⊤ ⊗𝑊 𝑖 where ⊗ is the Kronecker product. Note that Equations
(2) can also be expressed in a single matrix form. This transforma-
tion involves sequentially connecting the shared nodes between
the graphs. Thus, the formula (2) can be reformulated as follows:



𝑧1

𝑧2

𝑧3

.

.

.

𝑧𝑇


= 𝜎

©«



0 0 · · · 0 𝑀1

𝑀2 0 · · · 0 0
0 𝑀3 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · 𝑀𝑇 0





𝑧1

𝑧2

𝑧3

.

.

.

𝑧𝑇


+



vec(𝑉𝑋 1)
vec(𝑉𝑋 2)
vec(𝑉𝑋 3)

.

.

.

vec(𝑉𝑋𝑇 )


ª®®®®®®¬
(3)

Here, we omit the subscript for simplicity. Equation (3) represents
a single equilibrium form of Equation (2). It can also be viewed as
the time-expanded static version [] of our original dynamic graph
G. Based on the Banach fixed-point theorem [27], the Equation
(3) admits a unique fixed-point if the right-hand side is a contrac-
tive mapping w.r.t. 𝑧. Therefore, we express the well-posedness
condition for our model as follows,

Theorem 3.1. For any element-wise non-expansive function 𝜎 (·),
the coupled equilibrium equations in (2) have a unique fixed point
solution if ∥M∥𝑜𝑝 < 1, where M define as

0 · · · 0 𝑀1

𝑀2 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.

0 · · · 𝑀𝑇 0


and ∥M∥𝑜𝑝 is the operator norm of M, which is the largest absolute
eigenvalue. Furthermore, this is equivalent to ∥𝑀𝑡 ∥𝑜𝑝 < 1 for any
𝑡 = 1, ...,𝑇 .
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In order to maintain ∥𝑀𝑡 ∥𝑜𝑝 < 1,∀𝑡 = 1, ...,𝑇 , it is necessary to
ensure that the condition 𝜆pr ( |𝑊 𝑡 |)𝜆pr (𝐴𝑡 ) < 1 is satisfied, where
𝜆pr (·) represents the Perron-Frobenius eigenvalue. However, satis-
fying the condition is challenging in general as it is hard to track
the eigenvalue as the underlying matrix changes. To overcome this
challenge, we impose a more stringent requirement on𝑊 which
is more easily enforceable by leveraging a convex projection. We
formally state this in the following theorem.

Theorem 3.2. Let 𝜎 be an element-wise non-expansive function.
If the coupled equilibrium equations satisfy the well-posedness con-
dition, namely ∥M𝑡 ∥𝑜𝑝 ≤ ∥𝑊 𝑡 ∥𝑜𝑝 ∥𝐴𝑡 ∥𝑜𝑝 < 1,∀𝑡 = 1, ...,𝑇 , then
there exists rescale coupled equilibrium equations, which satisfy the
condition ∥𝑊 𝑡 ∥∞∥𝐴𝑡 ∥𝑜𝑝 < 1,∀𝑡 = 1, ...,𝑇 , and the solutions of these
two equations are equivalent.

Proof. Suppose {𝑊 𝑡 } satisfy ∥𝑊 𝑡 ∥𝑜𝑝 ∥𝐴𝑡 ∥𝑜𝑝 < 1 for all 𝑡 , then
the following equation has a unique fixed point.

𝑧1

𝑧2

𝑧3

.

.

.

𝑧𝑇


= 𝜎

©«



0 0 · · · 0 𝑀1

𝑀2 0 · · · 0 0
0 𝑀3 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · 𝑀𝑇 0





𝑧1

𝑧2

𝑧3

.

.

.

𝑧𝑇


+



vec(𝑉𝑋 1)
vec(𝑉𝑋 2)
vec(𝑉𝑋 3)

.

.

.

vec(𝑉𝑋𝑇 )


ª®®®®®®¬

and this condition implies ∥M∥𝑜𝑝 ≤ 1. Based on Theorem 4.3, there
exists a set of diagonal matrices {𝑆𝑡 } such that

�̂� 𝑡 = 𝑆𝑡𝑊 𝑡 (𝑆𝑡 )−1,𝑉 = 𝑆𝑡𝑉

Then the fixed-point of following equations

𝑧1

𝑧2

𝑧3

.

.

.

𝑧𝑇


= 𝜎

©«



0 0 · · · 0 �̂�1

�̂�2 0 · · · 0 0
0 �̂�3 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · �̂�𝑇 0





𝑧1

𝑧2

𝑧3

.

.

.

𝑧𝑇


+



vec(𝑉𝑋 1)
vec(𝑉𝑋 2)
vec(𝑉𝑋 3)

.

.

.

vec(𝑉𝑋𝑇 )


ª®®®®®®®¬

satisfies the following relation
𝑧1

.

.

.

𝑧𝑇

 =


(𝑆1)−1 · · · 0
.
.
.

. . .
.
.
.

0 · · · (𝑆𝑇 )−1



𝑧1

.

.

.

𝑧𝑇


□

As previously stated, the theorem is formulated for a single
dynamic graph. In the following Remark, we present a broader and
more general conclusion for a set of dynamic graphs.

Remark 1. Considering a set of dynamic graphs denoted as {G𝑖 }𝑁𝑖=1,
achieving fixed-point representations for all dynamic graphs using
our model is guaranteed if the condition ∥𝑊 𝑡 ∥∞∥𝐴𝑡

𝑖
∥𝑜𝑝 < 1 holds

for all time steps 𝑡 = 1, ...,𝑇 and all graph indices 𝑖 = 1, ..., 𝑁 .

Proof. Given a set of dynamic graphs {G𝑖 }𝑁𝑖=1, we can construct
a single dynamic graph by merging the snapshots that are from the
same time stamp, then we obtain

Ĝ = {[𝐺1
𝑖 , ...,𝐺

1
𝑁 ], ..., [𝐺𝑇

𝑖 , ...,𝐺
𝑇
𝑁 ]} (4)

Let 𝐴𝑡 denote the adjacency matrix of [𝐺𝑡
𝑖
, ...,𝐺𝑡

𝑁
]. By theorem

3.2, we need to ensure ∥𝑊 𝑡 ∥∞∥𝐴𝑡 ∥𝑜𝑝 < 1. Since 𝐴𝑡 contains

𝑁 disconnected graphs, ∥𝐴𝑡 ∥𝑜𝑝 ≤ max𝑖 ∥𝐴𝑡𝑖 ∥𝑜𝑝 , which means
∥𝑊 𝑡 ∥∞∥𝐴𝑡

𝑖
∥𝑜𝑝 < 1 needed to be satisfied for all 𝑖 . Since 𝑡 is ar-

bitrary, the remark holds. □

In practice, we can track the matrices with the largest operator
norms (max𝑖 ∥𝐴𝑡𝑖 ∥𝑜𝑝 ) at each time step. Focusing on these "critical"
matrices and their corresponding constraints ensures our model
meets the required conditions.
Incorporating DownstreamTasks: Based on the established con-
ditions, we can obtain the fixed-point representation by iteratively
applying our model. Now, we want the fixed-point representations
suited for specific downstream tasks with their own optimization
objective. Let us now introduce the comprehensive objective which
incorporates both the application loss and the convergence require-
ments mentioned above. To this end, we utilize a neural network
𝑓𝜃 (.), parameterized by 𝜃 , to map graph embeddings to their respec-
tive targets. Let W := {𝑊 1, ...,𝑊𝑇 }. The comprehensive objective
can now be summarized as follows:

min
𝜃,W,𝑉

L(𝜃,W,𝑉 ) =
𝑁∑︁
𝑖=1

ℓ (𝑓𝜃 (𝑧𝑇𝑖 ),𝒚𝑖 ) (5)

s.t. 𝑧1𝑖 = 𝜎

((
(𝐴1

𝑖 )
⊤ ⊗𝑊 1

)
𝑧
𝜏 (1)
𝑖

+ vec(𝑉𝑋 1
𝑖 )

)
· · ·

𝑧𝑇𝑖 = 𝜎

((
(𝐴𝑇𝑖 )

⊤ ⊗𝑊𝑇
)
𝑧
𝜏 (𝑇 )
𝑖

+ vec(𝑉𝑋𝑇
𝑖 )

)
,

∥𝑊 𝑡 ∥∞ ≤ 𝜅

∥𝐴𝑡
𝑖
∥𝑜𝑝

,∀𝑖 = 1, ..., 𝑁 , 𝑡 = 1, ...,𝑇

Where ℓ is a loss function ( e.g. cross entropy loss, mean square
error), and 𝜅 is a positive number that is close to 1, which is added
for numerical stability.

To find the fixed-point representation (i.e. forward pass), we can
use fixed-point iteration or other root-finding algorithms. Backprop-
agation requires storing intermediate results, which is infeasible
since there might be hundreds of iterations in discovering the rep-
resentation. Thus, the key challenge in solving Equation (5) lies in
determining how to perform backpropagation effectively, especially
in the context of dynamic graphs.

4 TRAINING
In this section, we provide two algorithms to solve Equation (5). We
first explore the stochastic gradient descent (SGD) method where
we estimate the gradients leveraging the Implicit Function Theorem.
This approach offers several advantages, such as eliminating the
need to store intermediate results during the forward pass and en-
abling direct backpropagation through the equilibrium point. While
widely used in various techniques [1, 7], this approach presents
certain drawbacks when applied to our specific model, particu-
larly regarding computational overhead. Subsequently, we intro-
duce an efficient training algorithm for our model, which adopts a
bilevel viewpoint of our problem. This novel approach allows us to
overcome the limitations of the vanilla SGD method, resulting in
improved computational efficiency during training.
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4.1 SGD with Implicit Differentiation
The algorithm operates as follows: it first finds the fixed-point
embedding through iteration and then computes the gradient based
on this embedding. It then updates the weights using SGD. The
main obstacle in our way is estimating the gradient.

The parameters that need to be updated are𝑊,𝑉 (from GCN
layers), and 𝜃 (from the classifier). The gradient with respect to
parameter 𝜃 can be obtained as 𝜕L

𝜕𝜃
, which can be computed using

autograd functions given the fixed point. However, computing the
gradient for other parameters presents a greater challenge. Let 𝜕L

𝜕𝑃𝑖
represent the gradient with respect to𝑊𝑖 or 𝑉𝑖 . Then, the gradient
is computed as 𝜕L

𝜕𝑃𝑖
=

∑𝑇
𝑗=1

𝜕L
𝜕𝑧 𝑗

𝜕𝑧 𝑗
𝜕𝑃𝑖

. The computation of 𝜕L
𝜕𝑧 𝑗

can be
achieved through the autograd mechanism. However, determining
𝜕𝑧 𝑗
𝜕𝑃𝑖

is non-trivial due to the cyclic definition of 𝑧 𝑗 .
By the definition of our model, the learned embeddings must

satisfy the following equations:

𝑧1 − 𝜎 (𝑀1𝑧𝜏 (1) + vec(𝑉𝑋 1)) = 0

𝑧2 − 𝜎 (𝑀2𝑧𝜏 (2) + vec(𝑉𝑋 2)) = 0
.
.
.

𝑧𝑇 − 𝜎 (𝑀𝑇 𝑧𝜏 (𝑇 ) + vec(𝑉𝑋𝑇 )) = 0 (6)

We apply column-wise vectorization on matrices𝑊 and 𝑉 respec-
tively to obtain 𝑤 and 𝑣 . We can then calculate the gradients 𝜕𝑧

𝜕𝑤

and 𝜕𝑧
𝜕𝑣 using the implicit function theorem. Here, we will show the

details of the derivation.
Let 𝑍 𝑡

𝑖 𝑗
, 𝐴𝑡

𝑖 𝑗
, 𝑋 𝑡

𝑖 𝑗
and𝑊 𝑡

𝑖 𝑗
denote the element at the 𝑖-th row and 𝑗-

th column of 𝑍 𝑡 , 𝐴𝑡 , 𝑋 𝑡 and𝑊 𝑡 , respectively. Taking the derivative
of element-wise form of Equation (6), 𝑍 𝑡

𝑖 𝑗
−𝜎 (∑𝑙

∑
𝑛𝑊

𝑡
𝑖𝑙
𝑍
𝜏 (𝑡 )
𝑙𝑛

𝐴𝑡
𝑛 𝑗

+∑
𝑙 𝑉𝑖𝑙𝑋

𝑡
𝑙 𝑗
) = 0, with respect to𝑊 𝑎

𝑏𝑐
we obtain

𝜕𝑍 𝑡
𝑖 𝑗

𝜕𝑊 𝑎
𝑏𝑐

− Σ𝑡𝑖 𝑗
©«
∑︁
𝑛

𝛿𝑎𝑡𝛿𝑏𝑖𝑍
𝜏 (𝑡 )
𝑐𝑛 𝐴𝑡𝑛 𝑗 +

∑︁
𝑙

∑︁
𝑛

𝑊 𝑡
𝑖𝑙

𝜕𝑍
𝜏 (𝑡 )
𝑙𝑛

𝜕𝑊 𝑎
𝑏𝑐

𝐴𝑡𝑛 𝑗
ª®¬ = 0

where 𝛿𝑎𝑡 is the indicator function which equals 1 only when 𝑎 = 𝑡 ,
and ⊙ denotes element-wise multiplication. Let 𝜎′ (.) represent the
derivative 𝜎 (.), and we define

Σ𝑡𝑖 𝑗 := 𝜎
′ (

∑︁
𝑙

∑︁
𝑛

𝑊 𝑡
𝑖𝑙
𝑍
𝜏 (𝑡 )
𝑙𝑛

𝐴𝑡𝑛 𝑗 +
∑︁
𝑙

𝑉𝑖𝑙𝑋
𝑡
𝑙 𝑗
)

which means Σ𝑡 is a matrix and has a shape like 𝑍 𝑡 . Let 𝐻𝑡 :=
(𝑍𝜏 (𝑡 )𝐴𝑡 )𝑇 , and 𝐻𝑡

·𝑐 denotes the 𝑐-th column of 𝐻𝑡 . Let 𝑒𝑏 be a col-
umn vector with value 1 at𝑏-th entry and 0 elsewhere. Enumerating
𝑍 𝑡
𝑖 𝑗
for all 𝑖, 𝑗 , we have

𝜕𝑧𝑡

𝜕𝑊 𝑎
𝑏𝑐

− vec(Σ𝑡 ) ⊙
(
𝛿𝑎𝑡𝑒𝑏 ⊗ 𝐻𝑡

·𝑐 +𝑀𝑡 𝜕𝑧
𝜏 (𝑡 )

𝜕𝑊 𝑎
𝑏𝑐

)
= 0

Therefore, for any time stamp 𝑡 , the gradient of 𝑧𝑡 with respect to
the 𝑎-th layer of GCN,𝑤𝑎 , can be expressed as:

𝜕𝑧𝑡

𝜕𝑤𝑎
− Ξ𝑡 ⊙

(
𝛿𝑎𝑡𝐻

𝑡 ⊗ 𝐼 +𝑀𝑡 𝜕𝑧
𝜏 (𝑡 )

𝜕𝑤𝑎

)
= 0 (7)

WhereΞ𝑡 is a matrix that has identical column vectors, and each col-
umn vector is the vec(Σ𝑡 ). Similarly, we can compute the gradient
of 𝑍 𝑡

𝑖 𝑗
w.r.t. 𝑉𝑏𝑐 .

𝜕𝑍 𝑡
𝑖 𝑗

𝜕𝑉𝑏𝑐
− Σ𝑡𝑖 𝑗

©«𝛿𝑏𝑖𝑋 𝑡
𝑐 𝑗 +𝑊

𝑡
𝑖𝑙

𝜕𝑍
𝜏 (𝑡 )
𝑙𝑛

𝜕𝑊 𝑎
𝑏𝑐

𝐴𝑡𝑛 𝑗
ª®¬ = 0

Therefore,

𝜕𝑧𝑡

𝜕𝑣
− Ξ𝑡 ⊙

(
(𝑋 𝑡 )⊤ ⊗ 𝐼 +𝑀𝑡 𝜕𝑧

𝜏 (𝑡 )

𝜕𝑣

)
= 0 (8)

While these equations provide a path for gradient computation,
it is essential to note that all gradients are interconnected within
a system of equations. The resolution of such a system entails a
substantial computational overhead.

Per-iteration Complexity of naive gradient descent: Equa-
tions (7) and (8) reveal that a set of equilibrium equations determines
the gradients. Consequently, to compute the gradients, we need to
solve these equations using fixed-point iteration. Each layer neces-
sitates one round of fixed-point iteration, and in total, including
𝑉 , we need to perform fixed-point iteration 𝑇 + 1 times. The ma-
jor computational overhead arises from the multiplication of 𝑀
with the derivatives, resulting in a complexity of 𝑂 ((𝑛𝑑)2𝑑2). Each
fixed-point iteration involves 𝑇 instances of such computations.
Consequently, the overall runtime for each update is 𝑂 (𝑇 2𝑛2𝑑4).
Although the adjacency matrix is sparse, it only reduces the com-
plexity to 𝑂 (𝑇 2𝑛𝑑4). This limits the application of our model in
large-scale dynamic graphs and hampers our ability to utilize large
embeddings.

4.2 Efficient Update via Bilevel Optimization
To address the previously mentioned challenges, we turn to Bilevel
Optimization [3] as a potential solution. We reformulate the prob-
lem presented in Equation (5) as the following standard bilevel
optimization problem.

min
𝜃,W,𝑉

L(𝜃,W,𝑉 ) =
𝑁∑︁
𝑖=1

ℓ (𝑓𝜃 (𝑧𝑇𝑖 ,𝒚𝑖 ) (9)

s.t. 𝑧𝑇𝑖 = argmin
𝑧

∥𝑧 − 𝜙 (𝑧,W,𝑉 ;G𝑖 )∥22

∥𝑊 𝑡 ∥∞ ≤ 𝜅

∥𝐴𝑡
𝑖
∥𝑜𝑝

,∀𝑖 = 1, ..., 𝑁 , 𝑡 = 1, ...,𝑇

Where𝜙 (𝑧,W,𝑉 ;G𝑖 ) = 𝜎 (𝑀𝑇
𝑖
...𝜎 (𝑀1

𝑖
𝑧+vec(𝑉𝑋 1

𝑖
))...+vec(𝑉𝑋𝑇

𝑖
)).

The main differences between these problems lie in the constraints.
Equation (9) introduces explicit constraints solely on the last snap-
shot, leading to a multi-block bilevel optimization problem. This
type of problem has been investigated recently by [25] and [10].
[25] focus on top-K NDCG optimization, formulating it as a com-
positional bilevel optimization with a multi-block structure. Their
approach simplifies updates by sampling a single block batch in
each iteration and only updating the sampled blocks. [10] employs
a similar technique but addresses a broader range of multi-block
min-max bilevel problems.

However, these state-of-the-art bilevel optimization algorithms
are designed to address problems with strongly convex lower-level
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Algorithm 1 Bilevel Optimization for IGDNN

Require: D = {(G𝑖 ,𝒚𝑖 )}𝑁𝑖=1, 𝜂1, 𝜂2, 𝛾
Ensure: 𝜔, 𝜃
1: Randomly initialize 𝑧0

𝑗
and 𝑣0

𝑗
for 𝑗 = 1, ..., 𝑁

2: for 𝑘 = 0, 1, ..., 𝐾 do
3: Sample a batch data B

4: 𝑧𝑘+1
𝑗

=

{
(𝐼 − 𝜂1)𝑧𝑘𝑗 + 𝜂1𝜙 (𝑧

𝑘
𝑗
, 𝜔𝑡 ;G𝑖 ) 𝑗 ∈ B

𝑧𝑡
𝑗

o.w.

5: 𝑣𝑘+1
𝑗

=

{
(𝐼 − 𝜂2∇2

𝑧𝑧𝑔(𝑧𝑘𝑗 , 𝜔
𝑘 ))𝑣𝑘

𝑗
+ 𝜂2∇𝑧ℓ𝑗 (𝑧𝑘𝑗 , 𝜔

𝑘 ) 𝑗 ∈ B
𝑣𝑡
𝑗

o.w.
6: Update gradient estimator

Δ𝑘+1 =
1
|B|

∑︁
𝑗∈B

[
∇𝜔 ℓ𝑗 (𝑧𝑘𝑗 , 𝜔

𝑘 ) − ∇2
𝜔𝑧𝑔 𝑗 (𝑧𝑘𝑗 , 𝜔

𝑘 )𝑣𝑘𝑗
]

7: 𝑚𝑘+1 = (1 − 𝛾)𝑚𝑘 + 𝛾Δ𝑘+1

8: 𝜔𝑘+1 = ΠΩ

(
𝜔𝑘 − 𝜂0𝑚𝑘+1

)
9: end for

problems, which does not hold true for our problem. It is evident
that our lower-level problems in 9 are generally nonconvex with
respect to 𝑧 since they involve highly nonlinear neural networks.
Additionally, these methods utilize stochastic gradient descent on
the lower level in each iteration, which may lead to potential extra
computation in estimating the gradient. Nevertheless, it is crucial
to note that the optimal solution to our lower-level problem cor-
responds to the fixed point of Eq (2). Leveraging this insight, we
employ a fixed-point iteration to update the lower-level solution.
We propose a single loop algorithm (see Algorithm 1) with fixed-
point updates.

To better illustrate our algorithm, let 𝜔 = {W,𝑉 }, and 𝑔𝑖 (𝑧, 𝜔)
represents the 𝑖-th-block lower-level problem, defined as ∥𝑧 −
𝜙 (𝑧, 𝜔 ;G𝑖 )∥22, and let ℓ𝑖 (𝑧, 𝜔) := ℓ (𝑓𝜃 (𝑧), 𝑦𝑖 ). The key to solving
the bilevel optimization problem in (9) is to estimate the hyper-
gradient ∇L(𝜃, 𝜔) and backpropagate. The hypergradient of our
objective in (9) with respect to 𝜔 as follows:

∇L(𝜃, 𝜔) = 1
𝑁

𝑁∑︁
𝑖=1

∇ℓ𝑖 (𝑧𝑇𝑖 , 𝜔)

− ∇2
𝜔𝑧𝑔𝑖 (𝑧𝑇𝑖 , 𝜔)

[
∇2
𝑧𝑧𝑔𝑖 (𝑧𝑇𝑖 , 𝜔)

]−1
∇𝑧ℓ𝑖 (𝑧𝑇𝑖 , 𝜔)

Explicitly computing the invertedHessianmatrix
[
∇2
𝑧𝑧𝑔𝑖 (𝑧𝑇𝑖 , 𝜔)

]−1
in computation of our hypergradient is computationally expen-
sive. Inspired by [10] and [25], we instead directly approximate[
∇2
𝑧𝑧𝑔𝑖 (𝑧𝑇𝑖 , 𝜔)

]−1 ∇𝑧ℓ𝑖 (𝑧𝑇𝑖 , 𝜔) using 𝑣𝑖 for each block by moving
average estimation (line 5). More specifically, we track the optimal
point ofmin𝑣 1

2𝑣
⊤∇2

𝑧𝑧𝑔𝑖 (𝑧𝑇𝑖 , 𝜔)𝑣 − 𝑣
⊤∇𝑧ℓ𝑖 (𝑧𝑇𝑖 , 𝜔) for each block by

maintaining 𝑣𝑖 . Let 𝑧𝑖 be a moving average approximation to the
optimal lower-level solution 𝑧𝑇

𝑖
. We use a single fixed-point update

for 𝑧𝑖 (line 4). We do not want to update all blocks in every iteration
since this is impractical when the number of blocks is large. To
address this issue, we use stochastic training. For sampled blocks,
we update their 𝑧 and 𝑣 , and we compute the hypergradient (line 6).
Note that the multiplication ∇2

𝜔𝑧𝑔 𝑗 (𝑧𝑘𝑗 , 𝜔
𝑘 )𝑣𝑘

𝑗
(in line 6) can also

be efficiently computed using Hessian vector product [24]. .As a
result, the training time for our algorithm is proportional to normal
backpropagation, eliminating the need for fixed-point iterations.

Note that in cases where the lower-level problem is strongly
convex, the errors introduced by these approximations are well-
contained [10]. Our lower-level problem admits a unique fixed
point, hence, employing fixed-point iteration becomes an efficient
means of attaining the optimal lower-level solution, akin to the
effectiveness of gradient descent under strong convexity. Therefore,
it is justifiable to assert that our approximations are effective in this
scenario, with empirical evidence robustly endorsing their practical
efficacy.

Per-iteration Complexity of bilevel optimization: Themain
computational overheads are updating 𝑣 and estimating gradient.
Both steps are involved with estimating a huge Hassian matrix,
but, in practice, we use Hessian vector product to avoid explicitly
computing the Hessian matrix. Therefore, the dominant runtime
of bilevel optimization is three times backpropagation. Each back-
propagation takes 𝑂 (𝑇𝑛𝑑2 +𝑇𝑛2𝑑).

5 EXPERIMENTS
In this section, we present the performance of IDGNN in various
tasks, including effectiveness in capturing long-range dependencies
and avoiding oversmoothing on a synthetic dataset. We benchmark
IDGNN against nine state-of-the-art baselines on multiple real-
world datasets, comprising three node classification and four node
regression datasets. Key dataset statistics are summarized in Table
2, with further details available in section 5.1. Due to the space
constraints, specifics on experimental setup and hyperparameters
are provided in Appendices A.1 and A.2 respectively. Our code is
publicly available for reproducibility. 1 .

5.1 Datasets
Brain dataset is derived from a real-world fMRI brain scans dataset
2. In this dataset, nodes represent brain tissues, and edges capture
nodes’ activation time similarity in the examined period. The node
attributes are generated from the fMRI signals [34]. Given the tem-
poral graph, our goal is to predict the functionality of each node,
which is in one of the 10 categories.
DBLP is an extracted co-author network from DBLP website 3,
where nodes are authors and edges represent co-authorship rela-
tionships. The extracted authors are from 5 research areas [34],
serving as our class labels. Note attributes are word2vec represen-
tations of titles and abstracts from related papers.
Reddit dataset is extracted from a popular online platform Red-
dit 4 [8], where nodes represent posts, and edges are constructed
between nodes having similar keywords. The node attributes are
word2vec representations of the comments of a post [34], and node
labels correspond to one of the 4 communities or “subreddits" to
which the post belongs.
PeMS04 & PeMS08 These two datasets represent traffic sensor net-
works in two distinct districts of California during various months.

1https://github.com/yongjian16/IDGNN
2https://tinyurl.com/y4hhw8ro
3https://dblp.org/
4https://www.reddit.com/

https://github.com/yongjian16/IDGNN
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Table 1: Performance for classification task (ROCAUC) and regression task (MAPE (%)). Performances on Brain10, England-
COVID, PeMS04, and PeMS08 for baseline methods are taken from [5]. The best performance for each dataset is highlighted in
bold, while the second-best performance is underlined.

Classification Regression
Model Brain10 DBLP5 Reddit4 England-COVID PeMS04 PeMS08

Trans. Induc. Trans. Induc. Trans. Induc.

EvolveGCN-O 0.58±0.10 0.639±0.207 0.513±0.008 4.07±0.73 3.88±0.47 3.20±0.25 2.61±0.42 2.65±0.12 2.40±0.27
EvolveGCN-H 0.60±0.11 0.510±0.013 0.508±0.008 4.14±1.14 3.50±0.42 3.34±0.14 2.84±0.31 2.81±0.28 2.81±0.23
GCN-GRU 0.87±0.07 0.878±0.017 0.513±0.010 3.56±0.26 2.97±0.34 1.60±0.14 1.28±0.04 1.40±0.26 1.07±0.03
DySAT-H 0.77±0.07 0.917±0.007 0.508±0.003 3.67±0.15 3.32±0.76 1.86±0.08 1.58±0.08 1.49±0.08 1.34±0.03
GCRN-M2 0.77±0.04 0.894±0.009 0.546±0.020 3.85±0.39 3.37±0.27 1.70±0.20 1.20±0.06 1.30±0.17 1.07±0.03
DCRNN 0.84±0.02 0.904±0.013 0.535±0.007 3.58±0.53 3.09±0.24 1.67±0.19 1.27±0.06 1.32±0.19 1.07±0.03
TGAT 0.80±0.03 0.895±0.003 0.510±0.011 5.44±0.46 5.13±0.26 3.11±0.50 2.25±0.27 2.66±0.27 2.34±0.19
TGN 0.91±0.03 0.887±0.004 0.521±0.010 4.15±0.81 3.17±0.23 1.79±0.21 1.19±0.07 1.49±0.26 0.99±0.06

GRU-GCN 0.91±0.03 0.906±0.008 0.525±0.006 3.41±0.28 2.87±0.19 1.61±0.35 1.13±0.05 1.27±0.21 0.89±0.07
IDGNN 0.94±0.01 0.907±0.005 0.556±0.017 2.65±0.25 3.05±0.25 0.53±0.05 0.63±0.04 0.45±0.11 0.50±0.05

Figure 2: The left and middle are accuracy and loss curves when using 10 layers. The x-axis is epochs, and the y-axis is accuracy
and cross entropy loss, respectively. The right plot represents the accuracy results of all baselines under different layer settings.

Table 2: Statistics of datasets. 𝑁 : number of dynamic graphs,
|𝑉 |: number of nodes, min |𝐸 |: minimum number of edges,
max |𝐸 |: maximumnumber of edges,𝑇 : window size,𝑑 : feature
dimension, 𝑦 label dimension

𝑁 |𝑉 | min |𝐸 | max |𝐸 | 𝑇 𝑑 𝑦

Brain10 1 5000 154094 167944 12 20 10
DBLP5 1 6606 2912 5002 10 100 5
Reddit4 1 8291 12886 56098 10 20 4
PeMS04 16980 307 680 680 12 5 3
PeMS08 17844 170 548 548 12 5 3

England-COVID 54 129 836 2158 7 1 1

In this context, each node symbolizes a road sensor, while the edge
weights denote the geographical distance between two sensors
(with uniform weights across all snapshots). Every sensor captures
average traffic statistics such as flow, occupancy, and speed over a
5-minute interval. The datasets utilized in this study are identical
to those in [5], where we exclusively forecast attribute values for a
single future snapshot.

England-COVID This temporal graph dataset is taken from [5],
which is created by aggregating information from the mobility log
released by Facebook under Data For Good program 5 for England
[20]. The nodes are cities, and the edges are transportation statistics
between them. Given a temporal graph of length 7, which represents
the a week, we need to predict the infection rate for the next day.

5.2 Regression
For node-level tasks, there are two evaluation paradigms: trans-
ductive and inductive. Transductive evaluation allows the model
to access identities of the nodes and edges in testing data during
training (i.e., only the labels are hidden), while inductive evaluation
involves testing the model on new nodes and edges. In simpler
terms, transductive evaluation separates training and testing sets
based on nodes, while inductive evaluation separates them based on
time stamps (i.e., models are trained on past time stamps and tested
on the future). Here, we conduct experiments on both settings.

The datasets we used for the regression task are England-COVID,
PeMS04, and PeMS08. We use the mean average percentage error

5https://dataforgood.fb.com/tools/disease-prevention-maps/
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Table 3: Memory and runtime comparison results for all
methods on reddit4 and DBLP5 datasets. We report the mem-
ory usage using MB and runtime using seconds per window

.
Reddit4 DBLP5

Mem. Time Mem. Time

EvolveGCN-O 42 0.0649±0.017 52 0.0672±0.014
EvolveGCN-H 52 0.0904±0.020 82 0.0997±0.037
GCN-GRU 221 0.0733±0.012 200 0.1142±0.045
DySAT-H 181 0.1613±0.056 165 0.1343±0.012
GCRN-M2 322 0.4345±0.080 319 0.4934±0.076
DCRNN 223 0.1697±0.019 278 0.2121±0.039
TGAT 793 0.0750±0.014 338 0.0770±0.015
TGN 450 0.0417±0.004 233 0.0454±0.012

GRU-GCN 4116 0.0199±0.008 580 0.0161±0.007
IDGNN 89 0.0291±0.007 75 0.0302±0.002

(MAPE) as our evaluation metric. The results are reported in Table
1 with mean MAPE and standard deviation. Our proposed method
outperforms other methods in both transductive and inductive
settings, with the exception of the inductive case in England-COVID.
Our method demonstrates a significant improvement for PeMS04
and PeMS08, particularly in the transductive learning scenario. In
comparison to the second-best method, our proposedmodel reduces
the error by over 1% of MAPE, but our model on the inductive
learning scenario does not enjoy such improvement. We attribute
this difference to our model’s tendency to separate nodes, even
when they have the same labels and topology. We delve into this
phenomenon in the Appendix B.

5.3 Classification
We conduct classification experiments on Brain10, DBLP5, and
Reddit4 datasets. Since these datasets consist of only one dynamic
graph, we focused on testing the transductive case. The evaluation
was done using the Area under the ROC Curve (AUC) metric. The
average prediction AUC values and their corresponding standard
deviations are presented in Table 1. Our proposed model achieved
the top rank in 2 out of 3 datasets and was the second best in the
remaining dataset. These results demonstrate that our model suc-
cessfully captures the long-range dependencies within the dynamic
graphs, as reflected in the learned embeddings.

5.4 Long-range Dependency and
Oversmoothing

Long-range Dependency: Here we first consutrct a toy data that
aims to test the ability of all approaches to capture long-range
dependencies. Our toy data consists of {5, 10, 15} snapshots, with
each snapshot being a clique of 10 nodes. Each node has 10 asso-
ciated attributes. The task is to classify nodes at the last snapshot,
where each node represents its own class (i.e., there are a total
of 10 classes). The node attributes consist of randomly generated
numbers, except for the first snapshot, which uses the one-hot
representation of the class. Successful classification of this dataset
requires effective information aggregation starting in the initial

time stamp, propagating the class label information over time, and
avoiding oversmoothing as the information is propagated. In this
dataset, there are no testing nodes; all nodes are used for training.

The training results are presented on Figure 2. Our model is
compared with TGCN [37]. We also propose two more modified
baselines: IGNN-GRU and TIGNN, which are obtained by replacing
the GCNs within GCN-GRU [30] and TGCN by IGNN. We ensure
the comparison is fair by ensuring a similar number of parameters
are used, and we test all models on {5, 10, 15} layers. All meth-
ods are trained for a maximum of 2000 epochs, followed by the
hyper-parameter selection approach described in the Appendix. As
shown in the figure, we explored the impact of varying the number
of layers on both baseline models and our proposed model. We
documented the resulting accuracies accordingly. Notably, TGCN
exhibits a discernible pattern of over-smoothing, evidenced by a per-
formance decline with increasing layers. Conversely, IGNN-GRU
and TIGNN do not demonstrate such susceptibility. Additionally,
we observed challenges in data fitting for both methods, whereas
our model consistently achieved 100% accuracy across different
layer configurations. This experiment underscores the robustness
of our architecture in fully unleashing the potential of implicit
models in dynamic graph learning.

Moreover, we perform an alternative experiment, wherein we
shift label information from snapshot 1 to snapshot 5. This adjust-
ment ensures consistent difficulty in leveraging label information
across all models. Due to space constraints, we provide the detailed
results in the Appendix; however, the overall conclusion remains
unaffected.
Oversmoothing: Here, we employ Dirichlet energy to assess the
smoothness of the learned embeddings [28]. The Dirichlet energy
measures the mean distance between nodes and is defined as fol-
lows:

𝐷𝐸 (𝑍 ) =
√︄

1
|V|

∑︁
𝑖∈V

∑︁
𝑗∈N𝑖

∥𝑍𝑖 − 𝑍 𝑗 ∥2

Here, N𝑖 denotes the neighbors of node 𝑖 . Low Dirichlet energy
means smooth embedding. We compare our model with two differ-
ent baselines:

• Static: We create a static graph by averaging the adjacency
matrices of all snapshots and using the feature matrix of
the last snapshot as its feature. Subsequently, we learn the
embeddings using a vanilla multi-layer GCN.

• W/o loop: This model shares the structure of IDGNN but
does not enforce the learned embeddings to be a fixed point.

We evaluate these methods on the Brain10 dataset, and the results
are presented in Table 4. The "static" method exhibits oversmooth-
ing as the layer count increases, and a similar issue is observed for
the "W/o loop" method, despite stacking one layer for each snap-
shot. These findings strongly indicate that our model effectively
addresses oversmoothing in dynamic graph learning by leveraging
the implicit model structure.

5.5 Efficiency
We compare runtime and performance between SGD and bilevel
optimization algorithms. To this end, we compare Brain10, England-
COVID, PeMS04, and PeMS08. The results are summarized on the
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Table 4: Evaluating the smoothness of embeddings and the
AUC on Brain10.

Dirichlet Energy ↑ AUC ↑
Static (3 layers) 10.660 89.79
Static (4 layers) 8.781 88.67
Static (5 layers) 3.399 81.49
W/o looping 8.957 85.61

IDGNN 35.299 94.87

Table 5: Runtime and performance comparison between SGD
and Bilevel Methods.

Runtime (s/win) Performance
SGD Bilevel SGD Bilevel

Brain10 624 0.390 94.7 94.9
PeMS04 0.72 0.049 0.63 0.63
PeMS08 0.29 0.046 0.56 0.50

England-COVID 0.092 0.030 2.97 3.05

Table 5. The results are computed by averaging the runtime of a
whole epoch with the number of dynamic graphs 𝑁 .

These methods have similar performance, but the runtime results
show that the bilevel optimization algorithm is much faster than the
SGD. Especially, in the Brain10 dataset, bilevel algorithm achieves
1600 times of speedup compared with SGD. Furthermore, we notice
that the ratio of runtimes in PeMS04 and PeMS08 is 0.72

0.29 = 2.48, and
the squared ratio of their number of nodes is ( 307170 )

2 = 3.26. This
confirms our complexity result for SGD, which is quadratic regard-
ing the number of nodes. On the other hand, the bilevel method
exhibits only linear dependency. We also present the memory usage
and runtimes of all methods on Reddit4 and DBLP5. The memory ef-
ficiency of implicit models comes from the fact that implicit models
can use few parameters and do not need to store the intermediate
results. However, we need to store intermediate results and back-
propagate for our bi-level method. Due to the simple RNN-free
architecture of our method, our approach is competitive in runtime
and memory. We provide a memory and runtime comparison on
DBLP5 and Reddit4. The results are summarized in Table 3.

5.6 Ablation Study
In this section, we delve into the various configurations of our
model. Drawing from the properties mentioned earlier, our model
can be represented by the formula (1). We have deliberately decided
to assign different weights (𝑊 ) to each timestamp while maintain-
ing weight-tied for𝑉 . Alternatively, the model comprises𝑇 layers of

Table 6: Evaluating different variants of our model. Present-
ing AUC results on Brain10 datasets

Share both IDGNN Share 𝑉 Not share W/o loop

AUC 94.29 94.87 94.87 94.90 85.62

GCN and one linear layer. The linear layer serves to aggregate static
information, while the GCNs handle dynamic information. To vali-
date our architecture choice, we conducted a thorough comparison
of our model against other configurations:

• Share both: Both𝑊 and 𝑉 are shared across layers.
• Share 𝑉 : Only 𝑉 is shared across layers.
• Not share:𝑊 and 𝑉 are not shared.
• W/o loop: as defined in Section 5.4.

The results are presented in Table 6. As observed, the share-
both model exhibits the poorest performance. We believe this is
due to the limited number of free variables available for learning,
which makes the training process challenging. In our approach and
the share-𝑉 method, we achieve very similar results. Our model
utilizes 𝑇 layers of GCN for dynamic information and one linear
layer for static information, while the share-𝑉 method employs
one GCN and 𝑇 linear layers. The not-share method achieves the
best result, although the improvement is negligible. However, it
increases the parameter size, resulting in significant computational
overhead. Hence, we opt for the current configuration, as it delivers
good performance while minimizing parameter size, especially
since the number of attributes may exceed the hidden dimension.
We additionally evaluate an alternative baseline, denoted as "w/o
loop," wherein we eliminate the looping structure from IDGNN.
The obtained results reveal that this model exhibits the lowest
performance, underscoring the efficacy of our proposed approach.

6 CONCLUSIONS
In this paper, we proposed a novel implicit graph neural network
for dynamic graphs. As far as we know, this is the first implicit
model on dynamic graphs. We demonstrate that the implicit model
we proposed has the well-posedness characteristic. We proposed a
standard optimization algorithm using the Implicit Function Theo-
rem. However, the optimization was too computationally expensive
for our model. Hence, we proposed a novel bilevel optimization
algorithm to train our proposed model. We conducted extensive
experiments on 6 real-world datasets and one toy dataset. The re-
gression and classification tasks show that the proposed approach
outperforms all the baselines in most settings. Finally, we also
demonstrated that the proposed bilevel optimization algorithm
obtains significant speedup over standard optimization while main-
taining the same performance. A key limitation of our proposed
approach is that it can only predict the consecutive snapshot. In the
future, we plan on addressing this issue and also provide a diffusion
model-based training algorithm.
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Layers GCN-GRU T-GCN IDGNN
8 0.6217 0.9934 1.1113
16 0.5204 0.8719 1.0982
32 0.0077 0.7176 1.0019

Table 7: Smoothness of embeddings. (The larger the better)

A EXPERIMENT
A.1 Experiment Setup
We follow the procedure from [5] and utilize the provided code
as the code base to compare all the baselines and our method.
Specifically, we first split the dataset into three portions with ratios
70%-10%-20% for training, validation, and testing, respectively. Split-
ting is based on nodes for transductive tasks and time for inductive
tasks. We then normalize node attributes and edge attributes with
the 0-1 normalization method. We train on the training portion,
find the best hyperparameters using the validation set, and report
the performance on the test set. We also use ROCAUC score to
evaluate classification tasks and mean average percentage error
(MAPE) for regression tasks.

A.2 Hyperparameter
For detailed baselines’ architecture, please refer to [5]. Notice that,
for all the methods and all task, we fixed the embedding size as
16, and we searched the learning rates from 0.1, 0.01, and 0.001.
For Brain10, we observed that our method converged slowly, then
we let it run for 1000 epochs. For DBLP5 and Reddit4, we let all
the methods run 500 epochs for 5 times for each learning rate and
report the performance on the test set where the performance of the
validation set is the best. For regression datasets, we run 100 epochs
for England-COVID and 10 epochs for PeMS04/PeMS08. The hyper-
parameter our model 𝜂1 ∈ {0.5, 0.7, 0.9, 1}, 𝜂2 ∈ {0.001, 0.01, 0.1}.

PROOFS
Lemma A.1. If ∥.∥𝑜𝑝 is the matrix operator norm on R𝑛×𝑛 and

𝜆PF (𝐴) outputs the largest absolute eigenvalue of 𝐴, then, for any
matrix 𝐴 ∈ R𝑛×𝑛 ,

𝜆PF (𝐴) ≤ ∥𝐴∥𝑜𝑝
Proof. Let 𝜆 be the eigenvalue of 𝐴, and let 𝑥 ≠ 0 be the corre-

sponding eigenvector. From 𝐴𝑥 = 𝜆𝑥 , we have

𝐴𝑋 = 𝜆𝑋

where each column in 𝑋 is 𝑥 . Further, we have

|𝜆 |∥𝑋 ∥𝑜𝑝 = ∥𝜆𝑋 ∥𝑜𝑝 = ∥𝐴𝑋 ∥𝑜𝑝 ≤ ∥𝐴∥𝑜𝑝 ∥𝑋 ∥𝑜𝑝
Since ∥𝑋 ∥ > 0, taking the maximal 𝜆 gives the result. □

Lemma A.2. The equilibrium equation 𝑧 = 𝜎 (𝑀𝑧+𝑏) has a unique
fixed point solution if ∥|𝑀 |∥𝑜𝑝 < 1, where ∥.∥𝑜𝑝 is the operator norm,
and 𝜎 (·) is an element-wise non-expansive function.

Proof. Based on Lemma A.1 and Theorem 4.1 in [7], this lemma
is immediately followed. □

Proof of Theorem 3.1
Proof. By Lemma. A.2, the well-posedness requirement for For-

mula. (3) is ∥M∥𝑜𝑝 | ≤ 1. Since Formula. (3) and (2) are equivalent,
the well-posedness requirement for Formula. (2) is also ∥|M|∥𝑜𝑝 <

1.

Let 𝑀 :=
[
0 𝑀1
�̂� 0

]
where �̂� :=


𝑀2 . . .

0
. . . 0

0 . . . 𝑀𝑡

 . Let �̃� :=[
�̂� 0
0 𝑀1

]
. Then

∥|𝑀 |∥𝑜𝑝 = ∥|�̃� |
[
0 𝐼𝑚
𝐼𝑛 0

]
∥𝑜𝑝 ≤ ∥|�̃� |∥𝑜𝑝 · ∥

[
0 𝐼𝑚
𝐼𝑛 0

]
∥𝑜𝑝

= ∥|�̃� |∥𝑜𝑝 = max{∥|𝑀1 |∥𝑜𝑝 , ..., ∥|𝑀𝑡 |∥𝑜𝑝 }
This means if all subsystems satisfy the largest eigenvalue con-

straint, then the coupled equilibrium equation has a fixed point
solution by Lemma A.2. □

B EMBEDDING VISUALIZATION
In this section, we explore an interesting aspect of our method
that can provide empirical insights into its ability to mitigate over-
smoothing. We conduct experiments on a synthetic dataset that
bears resemblance to toy datasets.

The dataset comprises 10 snapshots, with each snapshot rep-
resenting a clique of 10 nodes. Each node is associated with 10
attributes. The nodes fall into two distinct classes, but we delib-
erately conceal the label information in the attributes of the first
snapshot. Specifically, the first two dimensions of the attributes
represent the one-hot encoding of the labels, while the remaining
dimensions are set to zero. Additionally, we assign unique IDs to
the nodes in sequential order. Nodes with IDs ranging from 0 to 4
belong to class 0, while those with IDs ranging from 5 to 9 belong
to class 1. To assess the effectiveness of our method, we visually
compare the embedding results with those obtained from TGCN.

Upon examining the visualizations, we observe that our model’s
embeddings exhibit gradual changes, whereas TGCN’s embeddings
remain consistent for nodes belonging to the same class. From a
node-centric perspective, TGCN’s embeddings seem reasonable.
Nodes of the same class possess identical features and exhibit the
same topological structure. Therefore, it is logical for them to share a
common embedding. However, our embeddings tend to differentiate
each individual node. We believe that this characteristic plays a
role in mitigating the oversmoothing problem within our model.

Furthermore, we conducted an additional experiment to quanti-
tatively evaluate our model’s ability to tackle over-smoothing. This
experiment is conducted on the binary toy dataset: the toy data
we constructed consists of a dynamic graph with a maximum of
64 snapshots (adapt to layers), with each snapshot being a clique
of 10 nodes. Each node has 10 associated attributes. The task is
binary classification where each node’s class information is hidden
in its first time-stamp’s attributes. Attributes of other time stamps
are randomly sampled from the normal distribution. All methods
are trained with a maximum of 2000 epochs and a learning rate
of 0.001. Finally, we evaluate their smoothness using the Mean
Average Distance (MAD). Results are summarized in Table 7.
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Figure 4: Additional result.

(a) Our model

(b) TGCN

Figure 3: The embedding visualization of our method and
TGCN

C HESSIAN VECTOR PRODUCT
To compute the product of Hassian and a vector: 𝐻𝑣 , and 𝐻 =

𝜕2 𝑓
𝜕𝑥2 .

We compute the product by 𝐻𝑣 = 𝜕 ( 𝜕𝑓
𝜕𝑥

)𝑇 𝑣
𝜕𝑥 . In this way, we are not

explicitly computing the Hessian. 6

D ADDITIONAL RESULT ON TOY DATA
This synthetic experiment shifts label information from time stamp
1 to time stamp 5. This adjustment ensures uniform difficulty in
utilizing label information across all models. Implementing this
change postpones our method towards achieving 100% accuracy
by approximately 50 epochs. However, even with this modification,
the baselines still struggle to fit the data.

D.1 Complexity
To contrast with the emprical runtime, here we present the theoret-
ical time complexities for our approach and the baselines. For an
arbitrary temporal graph, we denote the total number of snapshots
as 𝑇 , the total number of nodes as 𝑛, the number of edges of time 𝑡
as 𝐸𝑡 , and 𝐸𝑎𝑔𝑔 as the number of aggregated edges, which satisfies
𝐸𝑎𝑔𝑔 ≪ ∑

𝑡 𝐸𝑡 or 𝐸𝑎𝑔𝑔 ≈ ∑
𝑡 𝐸𝑡 . Some basic complexities: GRU, self-

attention, and LSTM have complexity 𝑂 (𝑇 2) if the input sequence
6https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
has length𝑇 ; GCN and SpectralGCN have complexity𝑂 (𝑛𝑑2 + 𝐸𝑑);
GAT has complexity 𝑂 (𝑛𝑑 + 𝐸𝑑2). The complexities of all models
are summarized in Table 8. Based on the complexity results, IDGNN
is faster than EvolveGCN-O, EvolveGCN-H, GCN-GRU, GCRN-M2,
and DCRNN due to the absence of RNN in our model.

EvolveGCN-O 𝑂 (𝑇𝑑2 +𝑇𝑛𝑑2 + ∑
𝑡 𝐸𝑡𝑑)

EvolveGCN-H 𝑂 (𝑇𝑑2 +𝑇𝑛𝑑2 + ∑
𝑡 𝐸𝑡𝑑)

GCN-GRU 𝑂 (𝑇𝑑2 +𝑇𝑛𝑑2 + ∑
𝑡 𝐸𝑡𝑑)

DySAT 𝑂 (𝑇𝑑2 +𝑇𝑛𝑑 + ∑
𝑡 𝐸𝑡𝑑

2)
GCRN-M2 𝑂 (𝑇𝑑2 +𝑇𝑛𝑑2 + ∑

𝑡 𝐸𝑡𝑑)
DCRNN 𝑂 (𝑇𝑑2 +𝑇𝑛𝑑2 + ∑

𝑡 𝐸𝑡𝑑)
TGAT 𝑂 (𝑇𝑛𝑑 + ∑

𝑡 𝐸𝑡𝑑
2)

TGN 𝑂 (𝐸𝑎𝑔𝑔𝑑 +𝑇𝑛𝑑2 + ∑
𝑡 𝐸𝑡𝑑

2)
GRU-GCN 𝑂 (𝐸𝑎𝑔𝑔𝑑 +𝑇𝑛𝑑2 +𝑇𝐸𝑎𝑔𝑔𝑑2)
IDGNN 𝑂 (𝑇𝑛𝑑2 + ∑

𝑡 𝐸𝑡𝑑)
Table 8: Summary of complexities of all models

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
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