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ABSTRACT

Forecasting influenza like illnesses (ILI) has rapidly progressed in

recent years from an art to a science with a plethora of data-driven

methods. While these methods have achieved qualified success,

their applicability is limited due to their inability to incorporate

expert feedback and guidance systematically into the forecasting

framework. We propose a new approach leveraging the Seldonian

optimization framework from AI safety and demonstrate how it can

be adapted to epidemic forecasting. We study a specific of guidance-

smoothness, and show that by its successful incorporation, we are

able to not only bound the probability of undesirable behavior to

happen, but also to reduce RMSE on test data by up to 17%.
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1 INTRODUCTION

Epidemic outbreaks incur heavy burden in terms of both health and

economic costs (like the ongoing 2019-Covid corona virus epidemic).

According to the world health organization (WHO), more than 15

thousand lives were lost due to the Ebola outbreak in West Africa

between 2013 and 2016
1
. The economic cost of Ebola is estimated

to be more than 53 billion dollars
2
. Timely forecasting of epidemic

outbreaks is critical. Accurately forecasting various metrics of an

epidemic outbreak informs practitioners and policymakers about

impending scenarios and helps them devise strategic countermea-

sures, such as quarantining subpopulations, increasing vaccination

availability, and school closures.

In this paper, we focus on influenza forecasting, motivated by

the CDC FluSight prediction challenge [2] which seeks to predict

the incidence of Influenza-like-Illnesses (ILI) in the US. Influenza

is a major disease in the United States and beyond, causing thou-

sands of fatalities every year. ILI is a symptomatic definition of

1
http://apps.who.int/gho/data/view.ebola-sitrep.ebola-summary-latest

2
https://www.reuters.com/
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(a) Error (b) Guidance

Figure 1: Comparison of approaches in terms of (a) error in

forecasting and (b) a guidance metric. In both plots lower

is better. The red line in (b) is the threshold determined

by guidance. T1 to T14 is the performance of teams partici-

pating in the 2015 FluSight challenge. Our method Guided-

Epideep (G-Epideep in the plot) is the only method which

satisfies the guidance and gives the lowest prediction per-

formance error.

illnesses that serves as a bellwether for real influenza incidence in

a population. There has been a surge in recent research interest in

influenza forecasting giving rise to a variety of mechanistic [23, 33]

and statistical approaches [1, 5]. Mechanistic approaches predict

influenza burden using simulation and aggregation of large epi-

demiological models. These models require a lot of calibration and

hence are limited by their parameters to generalize well and fit the

data [19]. Hence many researchers have begun exploring statistical

approaches for this task, which train on historical ILI data and use

the trained model to make forecasts for the current season.

Influenza seasons tend to be highly dynamic and have high

variability due to numerous factors (e.g., weather, human mobil-

ity, virus strains circulating amongst the population) affecting the

overall characteristics of the season. Moreover, different seasons

and regions have different dominating influenza virus types. Fur-

ther, the surveillance data collected (using ILINet) is a composite of

multiple sources, is non-uniform, and is biased in many domain-

specific ways. Hence while statistical approaches can frequently

perform more accurate predictions than mechanistic models, they

often show undesirable, unexplainable, or otherwise unexpected

behavior.

For example, consider influenza incidence during the annual

holiday season in the US. During this period, patients typically

self-select and refrain from going to health providers, unless the

situation is serious. This causes a temporary drop in recorded ILI

incidence. However, as human mobility is high, flu activity rapidly

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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increases in the following weeks. This can not be modeled using

standard mechanistic epidemiological models [20]. At the same

time, statistical approaches ‘over-correct’ and exaggerate the tem-

porary ‘dip’. Hence if we can ensure that the forecasting model’s

predictions are reasonably ’smooth’, such a behavior can be avoided.

This ’smoothness’ of the forecasts is well-motivated from other epi-

demiological considerations as well. As Figure 1 (b) shows, almost

all the methods used in the 2015 CDC FluSight challenge show this

’lack of smoothness’ behavior (lower is better).

To tackle such issues, in this paper, we propose incorporating

expert guidance into statistical models for epidemic forecasting. In

the case above, may be the expert can give the guidance that week-

to-week forecast should be smooth, which can alleviate the over-

correction problem. Indeed, incorporating this guidance helps our

approach outperform the baselines while maintaining accuracy. Our

approach ’Guided EpiDeep’ is the only method to show desirable

behavior (having guidance metric 𝑍𝑠𝑚𝑜𝑜𝑡ℎ below the predefined

threshold (red line)) while also getting the lowest errors (Figure 1).

To design a forecasting framework as envisioned here, there

are several challenges. The first challenge is (a) how to design a

general framework for any influenza statistical forecasting model

to ingest and leverage expert guidance. Designing a general frame-

work to incorporate guidance allows existing approaches to include

expert guidance. The second challenge is (b) how to ensure that

the framework is easy to use and generates useful feedback to the

user. Moreover, the framework should communicate the extent to

which the guidance was successfully incorporated and whether the

guidance is helpful or not. Such a framework will aid in selecting

guidance and make the forecast interpretable with respect to the

guidance provided. None of the existing approaches is able to tackle

these challenges.

In this paper, we leverage the Seldonian Optimization framework

proposed in AI safety to enforce expert guidance (desired behavior)

and prevent undesirable behavior. Our framework provides feed-

back to the user regarding the success or failure in the incorporating

the expert insights. In case the framework fails to incorporate the

insight, it communicates the failure to the user, who in turn can

take steps to alter/improve the insight or change data or modify

model hyper-parameters. Our contributions are as follows.

• Novel method for incorporating expert guidance: We

explore a novel problem & adapt a successful framework

to obtain domain-based consistency (and guidance), and

perform extensive experiments to show properties of the

framework.

• Flexible user interaction framework: The framework

adapts to the user’s requirements.

• Real data case-study: We present concrete case studies

showing examples of expert guidance motivated by epidemi-

ologist observation, and how our method helps to achieve

experts requirements.

The rest of the paper is organized in the following way: we

first motivate our problem, and formulate it. Then we present our

method, and then empirical studies on real CDC data. We finally

end with related work and conclusions.

2 PROBLEM FORMULATION

In this section, we introduce the novel problem of aiding statistical

epidemic forecasting models with an expert’s guidance. Before, we

formalize our problem, we present the problem setting.

2.1 Epidemic Forecasting

Motivated by the setup of the CDC FluSight challenge, we study the

epidemic forecasting problem from a temporal seasonality stand-

point, such as in influenza. For this problem, we are given data

D in the form of time series (e.g. the wILI burden per week for

every season) and a predictive task T𝑤 , which sets what the target

is and the time 𝑤 (usually a week) when this prediction is to be

made. Examples of targets are immediate-future incidences, peak

intensity for season 𝑖 , and the time when the peak value occurs.

The annual FluSight Challenge hosted by CDC asks to forecast

metrics related to the current influenza season for the national and

regional levels [2, 3]. The CDC releases influenza surveillance data,

referred to as weighted Influenza-like Illness (wILI), each week for

every region. Given the latest partially observed influenza season,

often represented as a time-series, the challenge asks to perform

four different types of prediction tasks T𝑤 . They involve forecasting
the incidence (wILI) value for the next four weeks, the onset of the

season, the peak incidence value, and the timewhen the peak occurs.

wILI incidence curves for each season since 1997/98 are publicly

available
3
.

2.2 Expert guidance

Expert guidance for epidemic forecasting is about leveraging multi-

ple forms of domain knowledge and other preferences. An expert

may want to guide a statistical model based on many considera-

tions. Such considerations may include the epidemiology of the

disease, characteristics of active virus strains (e.g. transmissability,

reproduction rate), activity intensity in other other latitudes that

dealt with the same virus strain, or efficacy of the vaccines to active

strains of virus. It can also include some auxiliary knowledge. For

example, it is well known that the Christmas holiday season in the

US has specific impact on the flu spread which can not be captured

by regular mechanistic epidemiological models [20]. It can include

other public health policy considerations too, to ensure desirable

behaviors like fairness in resource allocations.

As mentioned earlier, during the holiday season recorded epi-

demic activity temporarily drops due to patients’ tendency to not

seek healthcare. However, an expert notices that predictions of

current statistical models are not ’smooth’ i.e. they change a lot

week-week and ’over-correct’ during this time (a fact we demon-

strate later in our experiments using the predictions of all the teams

which participated in the CDC FluSight 2015 challenge). Hence s/he

may want to more accurately forecast influenza incidence during

the Holiday season incorporating the ‘smoothness’ property.

2.3 Desired Properties of Guidance

In this paper, we focus on incorporating such types of guidance

into statistical epidemic forecasting models. Designing a framework

which can incorporate guidance must be able to exhibit some ideal

3
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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properties, especially as it is meant for experts who may not know

the internals or any technical details of the statistical models.

• P1. Promote one or more desirable behaviors during training.

• P2. Have a mechanism to guarantee tolerance on deploy-

ment.

• P3. Be flexible to any generic ad-hoc guidance and be com-

patible with state of the art epidemic forecasting models.

• P4. Be easy to use for the user/expert.

• P5. Provide feedback to user if guidance could not be incor-

porated.

Let us discuss the underlying reasons behind the importance of

each of the properties described above. P1 is an important facet of

guidance: when training, the preference should be given to can-

didate models aligned with guidance goals. In addition, an ideal

framework should be able to enforce more that one desirable behav-

ior. Once the training completed, one can not expect that guidance

will be met in unseen data at all times. Hence, it is natural to think

about a probability of the trained model in meeting the guidance

in unseen data. P2 sets guarantees on the expected probability of

a model to exhibit the desirable behavior on unseen (test) data.

P3 takes into consideration that experts’ requirements may be re-

lated to any characteristic of the epidemic season. Furthermore,

to leverage existing statistical forecasting models, the framework

should provide a path to easily incorporate them. P4 aims to pro-

vide the user an easy interface to leverage the framework, treating

the statistical model essentially as a black box. Finally, P5 impor-

tantly aspires to clearly communicate the result of attempting to

incorporate the proposed guidance. Note that in our context, expert

guidance can be motivated by practical considerations, and the data

is really a composite signal (ILI cases rather than exactly flu cases).

Hence sometimes expert guidance can indeed not be borne out by

data, or be ’completely wrong’ (unlike theory-guided data science

[16], where scientific knowledge is considered ground truth) – so

our framework needs a principled mechanism to signal this fact

and provide feedback. The feedback provided opens possibilities

to fruitful interactions as the expert may explore with different

behaviors and tolerances to find the most suitable, and even test

’what-if’ scenarios.

2.4 Definitions

Taking these properties in consideration, we make the following

definitions to then state our problem.

Definition 2.1. Expert guidance: We represent expert guidance as

a tuple ⟨𝑔, 𝛿⟩, where 𝑔 : Θ → R is a function that maps a candidate

forecasting model 𝜃 ∈ Θ to a measure of desirable or undesirable

behavior of 𝜃 , and 𝛿 ∈ [0, 1] is a tolerance which constraints the

probability of the model to exhibit this behavior.

Definition 2.2. Successful incorporation of guidance: We success-

fully incorporate guidance when we obtain a forecasting model 𝜃

for which our desired tolerance is met.

Note that our definition of expert guidance allows any framework

which adopts it to exhibit all five desirable properties. Since the

function 𝑔 encodes one or more desirable behavior quantitatively,

it can be used to enforce the behavior, satisfying P1. The parameter

𝛿 is the tolerance of undesirable behavior as mentioned in P2. Our

definition of guidance is general enough to incorporate wide range

of user insights to meet property P3. The only requirement is that

the deviation from the desired behavior needs to be captured by

the function 𝑔. Similarly, the user/expert do not need to be aware

of underlying optimization framework and statistical model to

incorporate the guidance as the function 𝑔 is independent of both,

satisfying P4. Similarly, if the value of the function 𝑔 is greater than

the threshold 𝛿 , the framework can communicate with the user

regarding its inability to meet the guidance. We show how we can

adapt our examples given before using our framework later (in

Section 3.4).

2.5 Problem Statement

Having defined the notion of guidance that meets all the desired

properties, we can state our problem as follows:

Guided Epidemic Forecasting: Given a forecasting model which
defines hypothesis space Θ, data D, a predictive task T𝑤 , and expert
guidance ⟨𝑔(𝜃 ), 𝛿⟩, we are required to return an optimal model 𝜃 ,
if found, that successfully incorporates expert guidance or return
feedback that such 𝜃 could not be found.

In this paper, the predictive task we consider is the future in-

cidence forecasting. Our task T𝑤 asks for influenza incidence at

week𝑤 + 1 given that the incidence till week𝑤 is observed. And

as the problem states, our goal is to enforce expert guidance, while

solving for the predictive task. However our framework can easily

handle other predictive tasks as well (like peak prediction etc).

3 OUR METHOD

As stated above, the Guided Epidemic Forecasting problem re-

quires a base forecasting model upon which the guidance is en-

forced. To enforce the guidance, we need a framework which opti-

mizes for performance with respect to the predictive task T𝑤 as well

as ensures that the constraint imposed by the guidance ⟨𝑔(𝜃 ), 𝛿⟩ is
met. Here we leverage Seldonian Optimization which does this.

3.1 Seldonian Optimization

The Seldonian optimization framework [26] was recently proposed

for Artificial Intelligence (AI) safety. It is designed to prevent AI

models from showing undesirable behavior such as gender or racial

bias. Traditional AI algorithms optimize an objective function to

select a model 𝜃 as a solution from the space of all possible models

Θ. This framework precludes undesirable behavior of AI model

by enforcing behavioral constraints on the optimization objective.

Hence, a probabilistic constraint is added to the optimization such

that the probability that the value of a predefined undesirable be-

havior metric 𝑔(𝜃 ) is greater than 0. After training, to ensure the

behavioral constraint will be met when the solution is deployed,

this framework has a safety test mechanism, which is performed

in unseen data. If the model meets the requirements of the safety

test, the trained model is returned, else the framework returns no

solution found (NSF).

A natural question that arises is what kind of base forecasting

model (which is required by our problem) best works with the Seldo-

nian optimization framework. Intuitively, models which learn/train

by back-propagating errors are most suited for the Seldonian Frame-

work as it learns through back-propagating as well. Hence, here we
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chose a recently proposed deep learning based influenza forecasting

model EpiDeep [1] as the base model upon which the guidance is

to be enforced. We desribe Epideep briefly next. However, we wish

to emphasize that our framework is general.

3.2 EpiDeep

Epideep [1] is a recent deep neural architecture designed specifically

for influenza forecasting. It exploits seasonal similarity between

the current season and historical seasons via deep clustering [31].

The clustering module learns a latent low dimensional embedding

of the seasons, such that the similarity between the seasons in

the embedding space is meaningful for the task at hand. The clus-

tering module in EpiDeep is designed such that it is possible to

learn the embedding of the partially observed current season in

the space of fully observed historical seasons. Epideep also uses

long short-term memory (LSTM) [10] to encode in-season patterns

of the current season. It then combines the embeddings from the

clustering module and the LSTM and feeds the aggregated embed-

ding to the decoder module, which make predictions for task T𝑤 .
For the set of seasons S where each season 𝑆 ∈ S is represented

as a time series 𝑆 = 𝑠1, 𝑠2, . . . , 𝑠𝑇 in the training season, to predict

the incidence observed in week 𝑤 EpiDeep is trained with a loss

function L(𝜃 ) = ∑
𝑆 ∈S | |𝑦 − 𝑠𝑤 | | + 𝛽 , where 𝜃 ∈ Θ is the trained

model,𝑦 is the prediction made by 𝜃 and 𝑠𝑤 is the observed inci-

dence and 𝛽 is the internal loss for Epideep not directly related to

the task 𝑇𝑤 . Note that while training only the weeks prior to week

𝑤 is leveraged.

3.3 Expert-guided EpiDeep

The next natural question is how to adapt the Seldonian optimiza-

tion framework to train EpiDeep with expert guidance. Before we

answer that, let us define some notations. Let us have several dif-

ferent expert guidance to incorporate {⟨𝑔𝑖 , 𝛿𝑖 ⟩}𝑛𝑖=1. We adopt the

convention that if 𝑔𝑖 (𝜃 ) ≤ 𝜖 for some small 0 ≤ 𝜖 , the forecasting

model 𝜃 does not exhibit undesirable behavior. Hence we impose

probabilistic constraint on 𝑔𝑖 (𝜃 ), on the model optimization. Hence,

our updated optimization objective is as follows.

argmin

𝜃

∑
𝑆 ∈S

| |𝑦 − 𝑠𝑤 | | + 𝛽

𝑠.𝑡 . Pr (𝑔𝑖 (𝜃 ) ≤ 𝜖) ≥ 1 − 𝛿𝑖 ,∀𝑖 ∈ {1, . . . , 𝑛} (1)

Here, 𝑦 is the prediction made by model 𝜃 for the prediction

task T𝑤 . The objective above indicates that we want to ensure the

probability that the desirable behavior (i.e, 𝑔𝑖 (𝜃 ) ≤ 𝜖) occurs is

greater than 1 − 𝛿𝑖 for some small 0 ≤ 𝛿 ≤ 1, while the difference

between predicted incidence value and the eventually observed

value is minimized. Note that, we also want to ensure that the prob-

ability that the desirable behavior holds even in test/deployment

stage.

Following [26], we ensure that our approach optimizes the objec-

tive while not violating the constraints and it generalizes to other

unseen data with high confidence. It does so by dividing the given

training data D into two partitions 𝐷𝑐 and 𝐷𝑠 . 𝐷𝑐 partition is used

for the model selection/optimization, while 𝐷𝑠 partition is only

used to verify that the guidance behavior is met in unobserved

data. If the guidance behavior is not met in 𝐷𝑠 , then the framework

ensures that no model is returned. In Algorithm 1, we leverage the

Seldonian framework to design our algorithm Guided EpiDeep as

follows.

Algorithm 1 Guided EpiDeep

1: Input: D, ⟨𝑔, 𝛿 ⟩,𝑈L .
2: Partition D into 𝐷𝑐 (for candidate selection) and 𝐷𝑠 (for safety test)

3: 𝜃𝑐 ∈ argmin𝜃∈Θ CandidateLossFunction(𝐷𝑐 , 𝛿, 𝜖,𝑈L , |𝐷𝑠 |)
4: { Safety test using 𝐷𝑠 }

5: if UpperBound(𝜃𝑐 , 𝐷𝑠 , 𝛿,𝑈L ) ≤ 𝜖 then

6: return 𝜃𝑐

7: else

8: return No Solution Found (NSF)

9: end if

Here, the function UpperBound in line 5 measures if the behavior

of candidate model 𝜃𝑐 is desirable as per the guidance provided.

Based on predictions made by 𝜃𝑐 , variable 𝑍 is defined to quantify

the deviation from the desirable behavior for each prediction made.

We discuss how variable 𝑍 is constructed for the guidance we

consider in Section 3.4. Once 𝑍 is defined, we assume it follows a

normal distribution and compute UpperBound as suggested in [26].

We employ an empirical upper bound on the magnitude ofL, which

is denoted as 𝑈L . This bound is necessary to prevent gradient

explosion when switching losses in our CandidateLossFunction.

Next we present the CandidateLossFunction subroutine in line 3 of

Algorithm 2.

In the CandidateLossFunction subroutine, we use the 𝐷𝑐 parti-

tion of the training data to train on both the objective with respect

to the task T𝑤 and to ensure that the returned model, 𝜃 is consistent

with the guidance. To do so, variable 𝑍 = {𝑍𝑖 |∀𝑖 ∈ 𝐷𝑐 } is created
using the predictions made by the model 𝜃 . Then the upper bound

on variable𝑍 is computed as in [26]. If the upper bound computed is

less than 𝜖 , indicating that the model is showing desirable behavior

with respect to the guidance, then loss on L(𝜃 ) is returned else,

the loss on the bound is returned. Note that internally, 𝜆 ∈ 𝑅>=0
balances the trade-off between loss and guidance.

Algorithm 2 CandidateLossFunction

1: Input: Candidate 𝜃𝑐 , 𝐷𝑐 , ⟨𝑔, 𝛿 ⟩,𝑈L , |𝐷𝑠 |
2: Create an array of 𝑍𝑖 , where 𝑖 ∈ 𝐷𝑐

3: �̂� = PredictedBound(𝑍𝑖 , 𝛿, |𝐷𝑠 |)
4: if �̂� ≤ 𝜖𝑖 then

5: return

∑
𝑆∈S | |�̂� − 𝑠𝑤 | | + 𝛽 + 𝜆 1

|𝑍 |
∑|𝑍 |

𝑖=1
|𝑍𝑖 |

6: end if

7: return𝑈L + �̂� + (𝜆 − 1)𝜖

Now, the question is how to define the variables 𝑍 for a given

guidance. We discuss it next.

3.4 Constructing Behavioral Constraints

In this paper, we select smoothness as our expert guidance for

seasonal influenza forecasting. In this section, we show the con-

struction of constraint objectives for these expert guidance in the

form of the 𝑍 variables.
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3.4.1 Smoothness. Mechanistic epidemiological models reveal that

the epidemiological curves tend to be smoothwith a single peak [24].

Hence, we expect epidemic influenza seasons to be generally smooth.

In fact, we observe influenza incidence curve to be smooth with the

consecutive values not changing drastically. Usually, incidence are

low in the beginning of the season, they gradually rise till the peak

is observed and then decline near monotonically. Hence, forecast-

ing that the influenza incidence while ensuring that the predictions

are smooth is a desirable property.

The smoothness also helps in correcting the drop observed in

the influenza activity during the holiday season (discusses ear-

lier), which arises due to the artifact of data collection. The exist-

ing approaches tend to overcompensate for the drop. Enforcing

smoothness in forecasts prevents such undesirable behavior. Here

we describe smoothness as follows:

Definition 3.1. Smoothness is the max allowed difference 𝜖 be-

tween the predicted value and its predecessor.

We have a smoothness parameter 𝜖 , which is the maximum

change allowed between current influenza incidence and the next

incidence. In simple words, we want to ensure that the probability

of smoothness function being greater than 𝜖 .

𝑔(𝜃 ) = 𝐸 ( |𝑦𝑡+1 − 𝑌𝑡 |) ≤ 𝜖 (2)

Here, 𝐸 ( |𝑦𝑡+1 − 𝑌𝑡 |) is the expected absolute difference between

the predicted incidence 𝑦𝑡+1 by the model 𝜃 and the last observed

incidence𝑌𝑡 . The guidance function 𝑔(𝜃 ) quantifies the smoothness

by computing the difference between predicted and the previously

observed value. The equation above, highlights that the expected

difference between the forecasted value and the previously observed

value should be less than some constant 𝜖 ensuring that the forecast

maintains week-to-week smoothness. Following this, we define the

varaible 𝑍 for smoothness as follows:

𝑍
smooth

= |𝑦𝑡+1 − 𝑌𝑡 | (3)

3.5 Expert Interaction

As mentioned in Section 2, two of the desirable properties of a

framework to incorporate guidance is that it should be easy to

use (P4) and should be able to provide feedback to user (P5). In

this section, we present how our framework can be leveraged for

exploration as well as demonstrate how an user might be able to

interact with the framework.

From a user perspective, our framework provides three knobs:

data, model, tolerance. An user is able to decide on how to partition

the data into 𝐷𝑐 for candidate model selection and 𝐷𝑠 for safety

test. Similarly, the user can decide on the base model suitable for

the task at hand. The final knob corresponds to the tolerance with

which the failure to incorporate the provided guidance is allowed.

An expert/user can interact with the system by varying the values

corresponding to the knobs.

Since ourmodel has amechanism for the safety test, it may return

’No Solution Found’ (NSF) indicating that the guidance provided

could not be met given the values of the knobs. If the model returns

NSF, it is an indication for the user to either consider the guidance

provided or to vary the knobs. For example, if guidance related to

smoothness is decided to be changed, this can be changed from

Figure 2: Flow diagram of expert interaction with Guided

EpiDeep. Expert is given twomodes: direct guidance and au-

tomatic guidance. The choice depends on the underlyingmo-

tivation of the expert. Depending on the mode selected, the

feedback is adapted to report success or failure.

𝜖 = 0.5 to 𝜖 = 1. If tolerance is changed, confidence in guidance

is changed. Hence, the model might be able to incorporate the

guidance with a lower confidence on its generalizability. On the

other hand, an expert can also change data by deciding to exclude

some historical seasons that are preventing the guidance provided

from being.

For ease of usage and interaction, our framework provides two

modes of usages, namely Direct guidance and Automatic guidance,

and depicted in Figure 2. We discuss each of the usages next.

3.5.1 Direct Guidance. In this mode, the user specifies guidance

along with all the all parameters. Then our framework tries to

incorporate the guidance within the constraints imposed by the

parameters. If the framework fails to find a forecasting model which

guarantees guidance incorporation, the the framework returns NSF.

The direct guidance framework is presented in Algorithm 1.

3.5.2 Automatic Guidance. The user or epidemiological expert may

not have data science/mathematical background to estimate the

parameters with which the guidance can be incorporated and is

willing to explore. Hence, in such cases, the framework tries to

find the parameters which ensures that the guidance is met and the

performance is maintained.

Our framework is able to provide such a exploration mode for

users. Here the user may specify a subset of the parameters, and re-

quirements in terms of performance. Our framework then explores

the parameter space to find such a model. If none of the parameters

explored is able to induce a model which satisfies the user require-

ments, the the framework returns NSF, indicating tha the guidance

could not be incorporated. In this paper, as an example of automatic

guidance, we ask our framework to explore the parameter 𝜖𝑖 such

that no compromise is made in terms of RMSE.

4 EXPERIMENTS

4.1 Setup

We describe the experimental setup next. All experiments are con-

ducted using a 4 Xeon E7-4850 CPU with 512GB of 1066 Mhz main

memory. Our method is very fast, training for one prediction task

(on 1 week) in about 3 mins. We will release the code for academic

purposes.
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Data Here we use the weighted Influenza-like Illness (wILI) data

released and updated by the CDC. CDC collects the wILI data

through the Outpatient Influenza-like Illness Surveillance Network

(ILINet) which consists of more than 3,500 outpatient healthcare

providers all over the United States.CDC defines Influenza-like

Illness (ILI) as “fever (temperature of 100◦F [37.8◦C] or greater)

and a cough and/or a sore throat without a known cause other

than influenza. Weekly wILI incidence curves for each season since

1997/98 are publicly available
4
.

Research questions to address. In our experiments we want to

compare the performance of our approach Guided-EpiDeep with

the baselines for smoothness. We also want to evaluate the au-

tomatic guidance mode of Guided-EpiDeep. Specifically, we are

interested in answering the following questions.

Q1. Is Guided-EpiDeep successful in incorporating guidance?

Q2. Does Guided-EpiDeep give feedback?

Q3. Is Guided-EpiDeep successful in realistic scenarios on real

WILI data?

Evaluation. Here, we use the test data 𝑇 , which is separated out

during training to evaluate the performance of Guided-EpiDeep.

Note that the test data is not used in either partition of the training

data, namely 𝐷𝑐 used for candidate model selection and 𝐷𝑠 used

for safety test.

To evaluate Guided-EpiDeep with respect to Q1, we will test

if the guidance is incorporated in the test data. For Q1, we train

the model on 𝐷𝑐 and 𝐷𝑠 to incorporate the guidance. Once the

model is trained we evaluate whether the behavior of the model

in forecasting influenza season in 𝑇 is desirable with respect to

the given guidance. To evaluate the degree to which the behavior

mandated by guidance is met in the test, we compute the probability

that the behavior defined by the guidance𝑔(𝜃 ), as defined in Section
3, falls outside the bounds. We name this metric as the failure rate

of the model 𝜃 . Formally, we define the failure rate as Pr (𝑔𝑖 (𝜃 )). To
evaluate Guided-EpiDeep with respect to Q2 and Q3, we perform

several case-studies.

Baselines. We use EpiDeep for performance and state of art base-

lines from the FluSight challenge (team names anonymized) for our

case studies to show how they perform in a real-world scenario as

posed by the CDC FluSight challenge.

4.2 Direct Guidance

As mentioned earlier, in the direct guidance mode, the user/expert

provides guidance as well as other parameters. Here, Guided-

EpiDeep searches for the model which in able to incorporate the

guidance within the constraints imposed by the parameters. For

direct guidance, we evaluate Guided-EpiDeep in terms of Q1 and

Q3.

4.2.1 Performance. Here, we want to quantify the rate at which

Guided-EpiDeep is able to ensure that the behavior imposed by

the guidance is met in the test set. To do so, here we split the

historical seasonal influenza data into the training set 𝐷 which

consists 80% of the seasons and test set𝑇 , which has the remaining

seasons. Guided-EpiDeep is trained on 𝐷 with the smoothness

constraint with a 𝜖 = 0.25 and 𝛿 = 0.2 to return a model 𝜃 . We

4
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

repeat the experiment to make forecasts starting at week 40 of the

epidemiological season till week 17. We then measure the failure

rate, as defined earlier, of 𝜃 on the test set 𝑇 for each week. Then

we repeat the experiment with 𝜖 = 0.5 and 𝛿 = 0.1. The results are

presented in Figure 3.

As seen in both Figure 3, for both settings, Guided-EpiDeep

almost always ensures that the behavior imposed by the guidance

is carried to the test data 𝑇 . We observe that only 1 out of 80 obser-

vations, only one Guided-EpiDeep has a failure rate higher than

the threshold 𝛿 . On the other hand, the baseline EpiDeep has signifi-

cantly higher failure rate consistently, with the failure rate for many

observations greater than 𝛿 . This experiment demonstrates that

Guided-EpiDeep ensures that the desirable behavior is observed

while forecasting on test data, while the baselines fail to do so.

Failure in Incorporation of Guidance. In the rare case when

the Guided-EpiDeep fails to return a model (NSF) or the returned

model does not ensure that the desirable behavior is observed in

test data, as in week 52 in Figure 3 (left), the user is free to adjust

one or more of the three knows our framework, data, model, and

tolerance to allow the framework to search for a better forecasting

model. For example, in the same example, setting a higher 𝛿 may

ensure that the selected model satisfies the constraint in the test

data as well.

4.3 Automatic Guidance

Asmentioned earlier, in the automatic guidancemode, the user/expert

provides the guidance. However, the other parameters are not

known. Here, Guided-EpiDeep searches for the ideal parameter set

which can incorporate the guidance. Here, for automatic guidance,

we evaluate Guided-EpiDeep in terms of all the questions.

4.3.1 Performance. Here, we want to measure if Guided-EpiDeep

can find a parameter which can satisfy the constraints imposed by

the guidance provided by the user. Here we use the same setup

as in Direct guidance. We split the data into training 𝐷 and test 𝑇

sets with 4:1 ratio. The expert’s requirement here is to ensure that

the performance of Guided-EpiDeep is better than the baseline

model EpiDeep. We do so by enforcing that the ratio of RMSE of

Guided-EpiDeep to the RMSE of Epideep is less than 1. And the

parameter to explore/detect is 𝜖 .We repeated the experiment for

each week in the influenza season. Figure 4 shows the result.

As seen in the figure, for most of the week Guided-EpiDeep is

able to find an 𝜖 such that the constraint defined by the user is met.

Among, 40 weeks Guided-EpiDeep fails to find 𝜖 in only 6 weeks,

demonstrating that our framework is able to incorporate expert’s

guidance in the automatic guidance mode. For the weeks where 𝜖

could not be found, Guided-EpiDeep communicates its inability to

find a solution to the user.

5 RELATEDWORK

Epidemic Forecasting: Epidemic forecasting models and gen-

erally categorized into statistical [1, 6, 20, 27] and mechanistic

based approaches [24, 33]. Ensemble of mechanistic and statistical

approaches too have been proposed [21]. There also has been in-

terest in leveraging external data source in epidemic forecasting

such as social media [8, 17], search engine [11, 32], environmental
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Figure 3: Performance of Guided-EpiDeep in specific guidance. Figures show failure rate (𝑓 ) for different combinations of

𝜖 and 𝛿 : (left) 𝜖 = 0.25 and 𝛿 = 0.2; (right) 𝜖 = 0.5 and 𝛿 = 0.1. Guided EpiDeep is successful incorporating expert guidance in

epidemic task T𝑤 for every week𝑤 in standard flu season as it is mostly within the bounds given by 𝛿 . Note that 𝑓 in EpiDeep is

higher than the required tolerance 𝛿 , butGuided-EpiDeep is able to exhibit the desired behaviorwithin the required tolerance.

40 41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Week (w)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 4: Automatic guidance over weeks. The y axis shows

the value of 𝜖 found by Guided-EpiDeep in automatic guid-

ance mode. The red crosses represent the weeks where no

suitable 𝜖 was found.

and weather reports [23, 25], and a combination of heterogeneous

data [7].

Recently, there has been surging interest in leveraging deep learn-

ing for influenza forecasting. Adhikari et al. [1] proposed EpiDeep

which leverages deep architecture to exploit seasonal similarity for

epidemic forecasting. Similarly, Wang et al. proposed DEFSI [30]

which exploits intra and inter seasonal data for forecasting. Other

approaches like [28, 29] have limited use case (example, for mil-

itary population) and/or require external data sources (example,

twitter, weather). However, none of these approaches are able to

incorporate expert guidance.

Time Series Analysis: A field related to o epidemic forecast-

ing in data mining is Time Series Analysis. Several approaches

have been proposed such as auto-regression, kalman-filters and

groups/panels [4, 13, 22]. Several deep learning approaches have

also been used for time series analysis [9, 12].

Guidedprediction framework: The Seldonian optimization frame-

work [26] discussed earlier presents a general framework for expert

guided prediction framework. Based on the Seldonian framework,

Metevier et al. [18] proposed Robinhood, an algorithm for fairness

in a bandit setting. Several other approaches have been proposed

for specific fairness objectives as well [14, 15]. However, to the best

of our knowledge, we are the first to introduce a guidance-based

machine learning approach for epidemic forecasting.

6 CONCLUSIONS

In this paper, we study the novel general problem of incorporating

expert guidance to statistical epidemic forecasting methods, using

influenza prediction as an example. Leveraging the Seldonian opti-

mization framework, we showcase a flexible, adaptable framework

which can ensure that the given guidance can be incorporated

subject to some probabilistic tolerance, whilst also maintaining

performance accuracy. Additionally, our method also gives valu-

able feedback to the expert, if the guidance can not be successfully

incorporated, to promote interactions. Via one natural guidance

scenario (smoothness) we show on real CDC surveillance data, that

our method bounds the probability of undesirable behavior while

also reducing RMSE by 17%. As future work, one can focus on ex-

tending this framework to more types of guidance such as regional

equity, and also handling probabilistic predictions (as opposed to

point predictions we considered here).
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