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Abstract

How do we forecast an emerging pandemic in real time in a
purely data-driven manner? How to leverage rich heteroge-
neous data based on various signals such as mobility, testing,
and/or disease exposure for forecasting? How to handle noisy
data and generate uncertainties in the forecast? In this paper,
we present DEEPCOVID, an operational deep learning frame-
work designed for real-time COVID-19 forecasting. DEEP-
COVID works well with sparse data and can handle noisy
heterogeneous data signals by propagating the uncertainty
from the data in a principled manner resulting in meaningful
uncertainties in the forecast. The deployed framework also
consists of modules for both real-time and retrospective ex-
ploratory analysis to enable interpretation of the forecasts. Re-
sults from real-time predictions (featured on the CDC website
and FiveThirtyEight.com) since April 2020 indicates that our
approach is competitive among the methods in the COVID-19
Forecast Hub, especially for short-term predictions.

1 Introduction
Motivation. The devastating impact of the currently unfold-
ing global COVID-19 pandemic has sharply illustrated our
enormous vulnerability to emerging infectious diseases. Fore-
casting disease trajectories is a non-trivial and important task.
Estimating various measures related to the epidemic gives
policymakers valuable lead time to plan interventions and
optimize supply chain decisions. Hence, accurate forecasts
are critical in combating epidemic outbreaks including the
current pandemic (Holmdahl and Buckee 2020).

To encourage research in epidemic forecasting and to pro-
vide a unified prediction platform, the US Centers for Dis-
ease Control and Prevention (CDC) organized a collaborative
forecasting task under the umbrella of the COVID-19 Fore-
cast Hub (Reich et al. 2020). The forecasting targets include
various COVID-related metrics including mortality and hos-
pitalizations at various temporal and spatial resolutions. The
initiative has attracted submissions from more than 58 teams
from industry and academia (as of Sept 2020).

Majority of the participating approaches can be classified
into two categories (i) mechanistic & (ii) statistical. Mecha-
nistic approaches model the underlying disease transmission
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Figure 1: Schematic of our DEEPCOVID framework for real-
time COVID-19 forecasting. The data module is dedicated to
data pre-processing including imputation of missing values
and aggregating at the right temporal and spatial resolution.
The prediction module generates probabilistic forecasts based
on the curated data. Finally, the explainability module (with
interface) allows both the real-time and retrospective analysis
of forecasts to build intuitive explanations.

over the population under various assumptions like using or-
dinary differential equations (Zhang et al. 2017) and/or agent
based models (Venkatramanan et al. 2018). While valuable
for long-term ’what-if’ scenario generation, mechanistic ap-
proaches have several challenges in real-time forecasting of
an emerging pandemic. The first drawback is that the com-
plexity of the model rises with the number of data sources
being used. Hence, to manage the complexity, most models
often use only one or two data signals (such as weather) along
with the observed disease incidence (Shaman, Goldstein, and
Lipsitch 2010). Hence it is not trivial to extend these models
to include various other data signals (e.g. social media data).

On the other hand, statistical approaches are fairly new in
epidemic forecasting. They exploit correlations between vari-
ous data sources and the forecast targets to learn a functional



dependence between the two and use the learned function
to make predictions (Yuan et al. 2013). There are several
challenges in designing statistical approaches, as we discuss
later (see Sec. 4). Most of the existing statistical approaches
for epidemic forecasting (usually developed for influenza
forecasting, including work by the authors (Adhikari et al.
2019)) cannot be readily adapted for COVID forecasting due
to several issues such as lack of historical data and poor data
quality. Indeed, to our best knowledge, there is no work in
the literature describing a completely data-driven approach
for real-time forecasting.
Our goals. In this paper, we describe our deployed frame-
work DEEPCOVID (see Fig.1), the first purely data-driven
deep learning (DL) model for real time pandemic forecast-
ing in the COVID-19 Forecast Hub (Reich et al. 2020)1 and
the official ensemble. Our real-time forecasts are showcased
in the hub, the CDC website (CDC 2020) and the popu-
lar FiveThirtyEight website (FiveThirtyEight 2020). By our
work, we aim to address a gap in the literature pertaining
to using purely data driven approaches for emerging pan-
demics, with the following four goals. (G1) Coping with
heterogeneous, scarce and noisy data: A DL-based model
can ingest many heterogeneous signals that are more sen-
sitive to what is happening on the ground, without labori-
ous feature engineering. To fully take advantage of this, our
framework is designed with careful consideration of the data
and modeling challenges faced in robust real-time forecasting
with principled uncertainty estimation. (G2) Bring a comple-
mentary forecasting perspective: A good ensemble needs
diverse perspectives (Reich et al. 2019; Ray et al. 2020). The
overwhelming majority of the teams in the ensemble per-
form mechanistic modeling. By being the first data-driven
DL method in the ensemble, DEEPCOVID brings a unique
perspective (Sheridan 2020) closer to the observed data sig-
nals with minimal assumptions. (G3) Accurate short-term
forecasting: The utility of statistical models in short-term
forecasting has been observed before (Holmdahl and Buckee
2020), which are useful to plan intervention and allocate re-
sources. We demonstrate that DEEPCOVID excels in this task
by comparing to a strong baseline. (G4) Enable communi-
cation and interpretation: This is to ensure our framework
gives explanations for its forecasts, which are very important
for communication and interpretation by both the public and
decision makers.
Contributions. Our contributions are as follows:

• We propose DEEPCOVID, one of the first deep learning
based real-time COVID forecasting frameworks, whose
performance in the CDC COVID-19 Forecast Hub (since
April 2020) demonstrates that it is consistently competitive,
especially at short term forecasting.

• Using the current pandemic as a testbed, we address sev-
eral challenges of such real time forecasting including
interpretability and uncertainty estimation in a principled
fashion.

• We provide valuable observations and ’lessons learned’
from our experience for modeling emerging infectious

1Indeed, when we started participating, there were only 11 teams
in the hub. We were the first two teams predicting hospitalizations.

diseases using purely data-driven methods.

The rest of the paper is organized in the following way:
we give additional related work and background next, then
describe the modules in our framework, then empirical results
and finally conclude with discussion. Appendix and other
resources can be found online2.

2 Related Work
Epidemic Forecasting. Modeling approaches for epidemic
forecasting can be broadly categorized into mechanistic
(Zhang et al. 2017; Shaman and Karspeck 2012) and sta-
tistical (Tizzoni et al. 2012; Osthus et al. 2019; Brooks et al.
2018), the latter closely related to time series analysis (Box
et al. 2015; Jha et al. 2015). Past work, especially in the con-
text of influenza, has explored leveraging multiple sources
of data, from search engine (Ginsberg et al. 2009; Yuan et al.
2013) to weather data (Shaman, Goldstein, and Lipsitch 2010;
Tamerius et al. 2013; Volkova et al. 2017). Deep learning for
epidemic forecasting is gaining more research interest lately.
Recent works include (Adhikari et al. 2019), which learns
low-dimensional embeddings of influenza seasons for fore-
casting and (Wang, Chen, and Marathe 2019) which exploits
both intra and inter seasonal similarity of historical seasons.
COVID-19 Forecasting. Other approaches adopted by the
contributing models are mechanistic (Zou et al. 2020; Chi-
nazzi et al. 2020; Baek et al. 2020) and statistical (Altieri et al.
2020; Murray et al. 2020). The official hub ensemble (Ray
et al. 2020) combines forecasts from ours and other models.

3 Background
Forecasting requirements from CDC. Starting in April
2020, CDC requests probabilistic forecasts for COVID-19
associated mortality and hospitalizations at various temporal
and spatial resolutions to be used by policymakers to plan
intervention and allocate resources. As mentioned before, our
model has been part of the ensemble since its inception.
Targets. The forecasting targets are the following: (T1) In-
cidence and cumulative weekly deaths: Reported incidence
(new) and cumulative deaths for US states and the US overall.
The data reported by Johns Hopkins University (JHU) (Dong
et al. 2020) serves as gold standard for the CDC. (T2) Inci-
dence daily hospitalizations: Reported new hospitalizations
for US states and the US overall. CDC had not fixed a gold
standard for this (as of Sept 2020) but we found the data
provided by the COVID Tracking Project (COVID-Tracking
2020) to be the most complete.
Problem formulation. We can state our real-time forecast-
ing problem for a specific geography as follows.
Given: an observed multivariate time series of COVID-
related signals X = {xi}Ni=1 and corresponding values for
the forecasting target Y = {yi}Ni=1, where N is the size of
the sequence until the current date.
Predict: next k values of forecasting target, i.e. {ŷi}N+k

i=N+1,
where k = 4 for T1 (4 weeks ahead) and k = 28 for T2 (28
days ahead).

2Resources website: http://deepcovid.github.io

http://deepcovid.github.io


Table 1: Summary of challenges and solutions

Aspect Challenges Our Approaches

Data

(C1) Data collection: Data signals come from multiple sources with formats varying
over time

Create a flexible data extraction pipeline specialized to each data format

(C2) Selection of signals: Data signals need to represent the underlying disease
spread and enable insights and interpretation

Select epidemiologically meaningful data, connecting to mechanistic insights, which can represent
underlying dynamics, syndromic states, exposure, connectivity etc. Also use explainability module
to filter out ineffective signals

(C3) Temporal misalignment: Signals have various reporting delays, temporary
pauses in reporting, and differ in temporal granularity

Handle delays by creating aligned versions of training data; for smaller reporting pauses treat as
delays; try to normalize and convert granularities in a reversible way (daily to weekly and vice
versa)

(C4) Spatial misalignment: Signals are reported at different spatial granularities
(county vs state vs national etc)

Aggregate and de-aggregate signals considering their semantics

(C5) Data quality and missing values: Some predictors and even targets are missing,
noisy, and unreliable for some geographical regions

Impute targets based on epidemiologically-grounded assumptions; tried learning dependence of fea-
tures on each other; remove predictors when not available; also create easy-to-update visualizations
to help assess their quality and utility efficiently in a dynamic way

Prediction

(C6) Data Sparsity: Scarce and limited data due to the novel and dynamic nature of
the disease. Learning generalizable models in this setting is challenging.

Employ a neural architecture with a smaller number of parameters to avoid overfitting, and handle
other inconsistencies separately

(C7) Robust point and probabilistic forecasting: Predictions need to be robust to
noise and data issues; CDC requires predictions to always be accompanied by un-
certainty bounds

Robust initialization of optimization; leverage bootstrapping for flexible and cheap quantification of
epistemic uncertainty

(C8) Temporal consistency between consecutive forecasts: Each forecast further into
the future should be consistent (both in values and uncertainties) with previous ones.
Due to data sparsity we can not train architectures that could enforce this automati-
cally (e.g. LSTM).

Use self-regressive forecasting - predictions of week k as part of training data for week k+1; this
way we can also propagate uncertainty to future predictions in a principled way via sampling

Explainability
(C9) Real-time insights of forecasts for decision-making and communication:
Decision-makers and public prefer forecasts relatable to epidemiological knowledge
and allowing reasoning on their reliability.

Data ablation for all sets of signals for the current week to observe the predictive contribution of
each set; use statistical significance tests to identify sets of signals driving the predictive behavior;
visualize these important signals to reason about the reliability of such predictions

(C10) Retrospectively understand signal strengths: Signal strengths inform policy
development and allow continual improvement of forecasts.

Data ablation for past predictions; use significance tests to identify set of signals affecting perfor-
mance compared to ground truth; visualize their contribution and inform the selection of signals of
the data module by removing the ones with negative contribution

4 Our Framework: DeepCOVID
We built DEEPCOVID, our framework for explainable real-
time COVID-19 forecasting, which contains three modules
depicted in Fig. 1: data module, prediction module, and ex-
plainability module. By separating data and prediction mod-
ules, our goal is to differentiate between the handling of
noisy data from the learning process. For the predictive mod-
ule, we use deep learning because it is a flexible, scalable,
and efficient technology, and an excellent choice to model
non-linearities, with the capability to ingest heterogeneous
datasets. As mentioned before, explainability is a challenge
in data-driven models. We want to understand and connect
forecasts with epidemiological reasons. Once we have in-
sights about our predictions, we will have a feedback loop to
improve performance. Therefore, we have an explicit mod-
ule for explainability which helps to shed some light on our
predictions in a dynamic situation. We next discuss chal-
lenges and our approaches for our modules in more detail
(see Table 1 for a summary).

4.1 Data Module
In this section, we describe our data collection and pre-
processing for input to our prediction module.
Challenges. Data pre-processing for real-time COVID fore-
casting brings several challenges primarily due to a novel
emerging scenario. (C1) Data collection: Collecting data in
such a chaotic scenario is challenging because it comes from
multiple sources (often collected by volunteers), is in dif-
ferent formats, some even changing over time (e.g. reported
deaths from JHU). (C2) Selection of signals: Selected sig-
nals should describe the different facets of the disease spread.
To enable epidemiological observations about our predic-
tions, this selection has to be driven by appropriate rationale.

(C3) Temporal misalignment: Since the signals are collected
from multiple sources, they often have temporal misalign-
ment. Some signals presented 1-2 weeks of lag due to delays
in reporting from hospitals, public records and government
officials; furthermore, some temporary pauses in reporting
occurred without previous notice. In addition to that, some
signals have different temporal resolutions (days vs weeks).
(C4) Spatial misalignment: Some records are reported at
specific spatial granularity (county or state level) and their
conversion to higher geographical levels is non-trivial. (C5)
Data quality and missing values: Most prominently, one of
our forecasting targets, incident hospitalizations, has not been
reported in 11 states (CA, DC, TX, IL, LA, PA, MI, MO, NC,
NV, DE). Additionally, some predictor signals have been re-
ported only in a few states (e.g. CDC-reported hospitalization
rates).
Our approach. To address (C1), we developed a flexible data
extraction pipeline personalized for each data format to con-
vert them all to a standard format. For (C2), we extensively
searched for meaningful signals from an epidemiological
perspective. The outcome of our search is summarized in
Table 2 for the signals consistently used in our predictions.
We collected the signals for 52 geographical regions: US
National, the 50 US states and Washington D.C. We address
the data misalignment in (C3) as follows. For the lags in re-
porting, we downshift the signals. Our idea is to align all the
signals based on their latest records since it is safe to assume
that the latest records are more indicative for future targets.
For smaller pauses in reporting, we treat them as delays. To
address weekly/daily inconsistency, signals require differ-
ent treatment depending on their nature. For example, since
weekly hospitalization rate and CLI% ER visits have been
recorded as percentages, we choose to consider the same



value for daily incidences because it is not meaningful to
transform it. For (C4), signal 13 in Table 2 is recorded only
at county-level, while other signals (6 and 7) contain records
at the HHS region-level3. To provide a state-wise forecast
model, we transformed the signal record state-wise by aggre-
gating and de-aggregating, respectively. For this, it is crucial
to consider the population of such geographic regions. Lastly,
it is important to address (C5) in a meaningful way. For 11
states with missing values, we had related signals such as
hospitalization and ICU patients. We inferred missing values
by leveraging these signals and making reasonable assump-
tions (such as the effect of people’s recovery and death in one
week). More details about handling these challenges and our
data signals can be found in the appendix.

4.2 Prediction Module
Challenges. Real-time COVID forecasting is a difficult prob-
lem with challenges originating from data and CDC require-
ments. Some of the challenges we encountered in designing
the prediction module are the following. (C6) Data Sparsity:
One of the major challenges in forecasting emerging disease,
especially at an early stage, is the scarce and limited data
due to the novel and dynamic nature of the disease. Extract-
ing enough information from the few available data points
to ensure generalizable forecasts is a challenging problem.
(C7) Robust point and probabilistic forecasting: Forecasting
disease in real-time is already challenging, and the problem
is even more difficult in presence of data issues mentioned
above and public health requirements (CDC requires pre-
dictions to always be accompanied by uncertainty bounds).
Hence, the questions we tackle in designing our framework
are (1) how do we principally quantify uncertainty of our
forecasts?; and (2) how do we ensure that our approach is
robust to the noise and other data issues such that ensures
reliable point and probabilistic forecasts? (C8) Temporal con-
sistency between consecutive forecasts: Due to data sparsity
we cannot hope to train deep networks enforcing temporal
consistency (values and uncertainties consistent with previ-
ous ones) such as LSTM and GRU. So the question is, how
to design a neural architecture, which has few enough pa-
rameters to train from sparse data while ensuring temporal
consistency between the forecasts?
Our approach. See Alg. 1. When we started to participate
in the CDC task (April 2020), there was only 1 month of
meaningful (non-zero) data; so it was unclear how to effec-
tively train a recurrent neural network. Hence we opted to
use a feedforward network with autoregressive inputs to in-
corporate short-term dependencies in the time series. To fully
address (C6), we also need to avoid overfitting, for which
we empirically evaluated several parameters including the
number of layers & sizes. We found that our network needed
a small number of parameters to generalize well, specifically
the following. Input layer size: number of signals to be in-
cluded (may vary by period and geography depending on
insights from explainability module) plus 1 for the target (i.e.
one autoregressive input). Hidden layers size: We found that
three hidden layers with sizes 10, 5 and 2 generalized well.

3https://www.hhs.gov/about/agencies/iea/regional-offices/index.html

Algorithm 1 Predictive module training

1: Input: Observed multivariate time series X = {xi}Ni=1; target
labels Yk =

{
yki
}N−k

i=1
for each days/weeks ahead to predict

k = 1, . . . ,K; no. of bootstrap samples M
2: Output:

{
Zk
}K
k=1

, where Zk is a set of M predictions
3: for k = 1 to K do
4: if k > 1 then
5: {Sample prev. forecasts and add to next train data}
6: Uniform sample ykN−j+1 ∼ Zk−j for j = 1 to k − 1,

and include each of them in the (N − j + 1)-th position of Yk

7: end if
8: Zk ← Fit/predict M models, each trained with a bootstrap

sample from (X ,Yk).
9: end for

10: Return Zk for k = 1, . . . ,K

We used ReLU activation function, which is especially useful
in the output layer as we want our predictions to be positive.

To address (C7), we want to capture epistemic uncertainty
coming from data in a principled way. Note that we want
data-based uncertainty, not model-based uncertainty (e.g. MC
dropout). Thus, we use bootstrapping (Gelman and Vehtari
2020): for each future incidence target k (lines 3-9), we gen-
erate one prediction per bootstrap sample so that we obtain
a set of M predictions representing uncertainty in data (line
8)–note this process is ‘embarrassingly’ parallelizable. Ro-
bustness of our point and probabilistic predictions are closely
related to optimization. Optimizing the parameters of a neural
network with sparse, noisy and heterogeneous data is chal-
lenging. In fact, we found that our optimization sometimes
was trapped in a local optima. Hence, to improve robustness,
we used batch normalization (Ioffe and Szegedy 2015) to
alleviate initialization problems. Beside that, for each boot-
strap sample, we run the same optimization with different
initializations and select the one that leads to lowest loss in
the (training) data. We found that setting M = 80 and 20
initializations led to robust predictions in a timely manner
with our computing resources.

To address (C8), we enforce temporal consistency and
capture temporal correlations between consecutive forecasts
by using predictions from targets 1, . . . , k − 1 as part of the
training data for target k (self-regressive forecasting, as noted
in Fig. 1). In this way, we are also propagating uncertainty to
future predictions (lines 4-7). This process can be regarded
as a semi-supervised learning procedure because we use our
model to create new labels that are used in training data for
future targets.
Note: Cumulative counts are non-decreasing. Adding this re-
striction to our optimization would make it even more prone
to get stuck in local optima. Therefore, for predicting cumu-
lative deaths, once we get incidence predictions, we convert
them to cumulative ones by aggregating the point predictions.
We found this gives consistent and stable performance.

4.3 Explainability Module
Challenges. Policymakers have been constantly placing and
lifting travel restrictions and quarantine orders to balance the

https://www.hhs.gov/about/agencies/iea/regional-offices/index.html


Table 2: Overview of data signals used in DEEPCOVID. (ILI=Influenza like Illness; CLI=COVID like Illness)

Type of signal Description Signals Rationale
(DS1) Line list Directly related to the disease spread (derived from 1. Confirmed cases; 2. UCI beds currently occupied; Traditional surveillance for tracking

records of who, when, and where a person got 3. People on ventilation; 4. Recovered; patients and symptoms (CDC 2020)
infected) (COVID-Tracking 2020; JHU 2020) 5. Hospitalization rate (COVID-Net);

6. ILI% ER visits; 7. CLI% ER visits; 8. Excess Deaths;
(DS2) Testing Related to social policy and behavioral 9. People tested; 10. Negative cases; To capture changing screening and

considerations (COVID-Tracking 2020) 11. Emergency facilities reporting; diagnostic artifacts on surveillance
12. Number of providers;

(DS3) Crowdsourced Collected from individuals using Kinsa digital 13. Digital thermometer readings provide ILI%; Syndromic symptomatic surveillance
symptomatic thermometers at home (Miller et al. 2018)
(DS4) Mobility Indicate people visits in multiple POIs (Google 2020) 14. Retail and recreation; 15. Grocery and pharmacy; Evidence of changing spatio-temporal

(Apple 2020) 16. Parks; 17. Transit stations; 18. Residential contact patterns due to non pharma.
19. Workplaces; 20. Overall-region-based interventions and behavior changes

(DS5) Exposure Collected from tracking overlapping location of distinct 21-22. Device exposures (normal & adjusted); Measure social contacts and direct
based smartphones in commercial venues (Couture et al. 2020). potential exposures
(DS6) Social Surveys Facebook symptomatic survey (CMU-Delphi 2020) 23. CLI%; 24. ILI% Measuring related symptomatic burden

trade-off between the pandemic burden and economic costs.
These policies differ in each administrative region; hence,
the data signals that we collect have different meaning and
usability at different times and regions. (C9) Real-time in-
sights of forecasts for decision-making and communication:
Decision-makers and public prefer forecasts relatable to epi-
demiological knowledge, a feature that enables reasoning
on their reliability. (C10) Retrospectively understand signal
strengths: Enabling retrospective analysis of signal strengths
over different geographies and periods allow continual im-
provement of the model.
Our approach. See Alg. 2. We selected data ablation accom-
panied with an interface as means for these two challenges.
It is a systematic and simple way to quantify the contribution
of signals in the predictions. In Alg. 2, we train models with
every group of signals removed and quantify the deviation
with respect to a reference point. Then, we rank the groups
of signals by this deviation, and check if the contribution of
the signal is statistically significant with respect to the model
with all signals (this model is denoted as s = ∅). Our refer-
ence can be of two types: (1) available ground truth values
for target yN+k until time N (lines 8-9), useful to explain
strengths of signals in the past; or (2) mean of predictions
of s = ∅ (lines 11-12), useful to enable understanding of the
effect of signals in the current predictions. To test statistical
significance, we use two-sample t-test with null hypothesis
H0 : E[I(s)] = E[I(∅)] (line 17). This test will tell if remov-
ing signals in s will truly change predictions. If we fail to
reject H0, then s is removed from the ranking output.
Interface: To enable interaction in the process of understand-
ing the predictions, we constructed a web-based graphical
user interface using Vega, a tool for creating web-based in-
teractive visualization designs. The user interacts with our
interface (see Fig. 1) by setting which region to analyze. The
system retrieves a ranking of the signals whose removal im-
pacts the most to the predictions (output of Alg. 2). Then, the
user can visualize the actual predictions along with the input
predictors for a selected geographical region.
Enabled Analysis: Together with Alg. 2 and the interface,
our module enables the following two-fold analysis, both

Algorithm 2 Explanations
1: Input: Group of signals to analyze A; statistical significance
α; days/weeks for analysisW

2: Output: Groups of signals ranked by impact
3: for s ∈ A∪{∅} do {s = ∅ is to have a model with all signals}
4: I(s)← ∅ {Initialization}
5: for w ∈ W do
6: Remove signals in s from dataset
7: Train as per Alg. 1 and obtain predictions

{
Zk(s)

}K
k=1

8: if ground truth available then
9: Rk ← yN+k

10: else
11: { Average predictions of model with all signals }
12: Rk ←

∑
zk/M where zk ∈ Zk(s = ∅)

13: end if
14: I(s) = I(s) ∪

∣∣Zk(s)−Rk

∣∣, ∀k ∈ {1, . . . ,K}
15: end for
16: end for
17: Rank mean of I(s) for all s ∈ A whose means are different

from mean of I(∅) with statistically significance α
18: Return ranking of signals based on I(s)

driving insights that can inform our data module (feedback
loop in Fig. 1). Real-time insights for (C9): With our inter-
face, a user can understand which signals are driving the
predictive behavior (e.g. trends, slope). In addition, we can
reason about what is happening with this group of signals.
Important insights can be that an important group of signals
is displaying erratic or unreliable behavior. If such signals are
found, then we might choose not to include it in our model or
we might want to see if there are any issues with the collec-
tion, cleaning or transformations (i.e. send them back to the
data module). Retrospective insights for (C10): Our interface
also enables analysis of signal strengths in past predictions.
We can evaluate how we could have done in the past given
that we had removed some signals (using the training data
available in that week). Therefore, we can understand which
signals have a positive contribution to our performance and
which others have a negative contribution, which ultimately
informs our data module.



5 Empirical Results
We first present the metrics used to evaluate predictive perfor-
mance, and then make quantitative and qualitative observa-
tions about our performance and properties of our forecasts.
Setup. All experiments are conducted with a Linux machine
of 40 processors Intel Xeon CPU E5-2698 v4 @ 2.20GHz,
with 252 GB of RAM. Training and obtaining predictions is
fast, for a single target takes about 1.5 min. All the results
are based on the real-time forecasts submitted during three
months (June 8 to September 7 2020).
Metrics. In epidemic forecasting, predictive performance
is usually measured for both point estimates and confi-
dence intervals of our probabilistic distribution of predictions
(Tabataba et al. 2017). Hence we utilize the one metric to
evaluate each aspect of the predictive power of our method.

For measuring performance of our point estimates, we use
the mean absolute percentage error measures the average of
absolute percentage error, i.e., MAPE = 1

N

∑N
i=1 |

ei
yi
|

and its value describes how large on average the error is,
compared with the actual value.

For measuring performance from a probabilistic perspec-
tive, we adopt the probabilistic interval performance metric
used in the COVID-19 Forecast Hub introduced in (Bracher
et al. 2020). Given the central 1− α prediction interval, the
interval score Γα is computed as follows:

Γα = (u− l) +
2

α
(l − y)1(y < l) +

2

α
(y − u)1(y > u)

where y is ground truth, 1(·) is the indicator function, l cor-
responds to the α

2 confidence interval number, and u corre-
sponds to the (1− α

2 ) confidence interval number.
Questions. We aim to demonstrate the our framework DEEP-
COVID achieves our goals introduced in Section 1. The spe-
cific questions we explore via our empirical study are listed
below. Recall that the main goal of this paper is to explore the
utility of purely data-driven models for emerging pandemics.
Questions Q1-4 directly address this, and Q5 is related to
communication, an important asset in a forecasting model.

Q1 Is DEEPCOVID able to anticipate trend changes? (G1: first
goal from Section 1, G2)

Q2 Does DEEPCOVID capture finer grain patterns? (G1, G2)
Q3 How does DEEPCOVID perform in US National short-term

forecasting? (G1, G3)
Q4 Does DEEPCOVID’s emphasis on short-term forecasting

sacrifice longer-term performance? (G3)
Q5 Can DEEPCOVID explain its predictions to epidemiologi-

cal experts for interpretation? (G4)

5.1 Observations
Observation 1 [Q1] DEEPCOVID is able to anticipate im-
portant changes in trends several weeks ahead.

We are able to anticipate important changes in trends several
weeks ahead, which suggests that we achieve goals G1 and
G2 thanks to our capability of exploiting many heterogeneous
signals that are sensitive to what is happening in the ground.
Most notably, in Fig. 2(a), we can see we predicted the second
peak value and time for US National three weeks early. Our
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(a) US peak prediction (b) CA uptrend prediction

Figure 2: Two examples when we were able to anticipate the
upcoming change of trends.
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(a) Oregon (b) Florida

Figure 3: Two examples of finer grained reporting patterns
captured by DEEPCOVID. Note the dips in reporting for
weekends.

method also predicted with three weeks of anticipation that
California, after a stable period, was going to suffer a new
increase in deaths (epidemic onset) (Fig. 2(b)).

Observation 2 [Q2] DEEPCOVID is able to capture finer
grained reporting patterns.

One of the advantages of purely data-driven is that they are
able to capture micro patterns in time series data, which
brings a complementary forecasting perspective (goals G1
and G2). In forecasting daily hospitalizations, we noticed
many regions have the following patterns: P1: drop during
weekends; P2: rise on Monday, and continues stable during
weekdays. DEEPCOVID is able to capture them as noted in
Fig. 3. In fact, our model is the only approach submitting
forecasts to the CDC that captures these patterns (CDC 2020).

Observation 3 [Q3] DEEPCOVID excels in US National
short-term forecasting.

Here we compare against the official ensemble of all con-
tributing models in the COVID-19 Forecast Hub (including
ours). The ensemble has been regarded as one of the best
performing models by different independent assessments
published on the Web. Needless to say, national-level fore-
casts are crucial for federal decision makers and are the most
visible forecasts in national media. In Fig. 4(a), DEEPCOVID
clearly outperforms this strong baseline in 1- and 2-week
ahead across three months. Fig. 4(b) indicates probabilistic
performance of our confidence intervals. The fact that we are
close suggests we are propagating the uncertainties in the
right way. These results show success in goals G1 and G3.

Observation 4 [Q4] DEEPCOVID does not compromise
longer-term performance.
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Figure 4: (a) DEEPCOVID outperforms the official ensemble
in US National short-term (1-2 wk ahead) forecasting in
MAPE. (b) Our US National short-term confidence intervals
are close using probabilistic metric Γα with α = 0.7. (c)
Our focus on short-term predictions does not compromise
longer-term (1-4 wk ahead) performance in multiple regions.

In Fig. 4(c), we can notice that our excellence in short-term
forecasting does not compromise performance when we con-
sider longer-term predictions in the evaluation. We outper-
form the ensemble in US National but at state-level our per-
formance is mixed. We are close to this strong baseline in
states such as Utah (UT) and California (CA), and slightly far-
ther in Texas (TX). This is indicative that there are still open
questions for data-driven forecasting in lower-level granu-
larities, where some signals are more bursty. This is also a
good example of where mechanistic models can help. This
complements our success for goal G3.

Observation 5 [Q5] DEEPCOVID helps explain its predic-
tions to domain experts for interpretation and determine
important signals for its predictive performance.

Our explainability module has been key to enable the pre-
viously shown quantitative and qualitative performance in
real-time forecasting, meeting goal G4. This also provides
feedback to the data module for selection of signals.

For example, to predict the second US peak in Fig. 2(a),
we were able to understand that mobility was the main signal
driving this prediction with a clear statistical significance
(α = 0.05), followed by testing, whose predictions were par-
tially statistically significant. By July, it was unclear if mobil-
ity patterns were still capturing social distancing measures,
however, the fact that testing signals (which were rapidly
increasing in the US) were also contributing to predict the
same peak time allowed us to have more confidence in this
peak prediction. For predicting the uptrend in Fig. 2(b), us-
ing our explainability module, we found that impact of line
list, mobility and exposure were statistically significant (with
α = 0.05) and removing them one at a time did not change
the uptrend, which suggests that signals from different groups
are being utilized to predict the uptrend. This gave us confi-
dence in our predictions of such important characteristics of
the epidemic trajectory.

Similarly, by analyzing over the span of three months, we
noticed that the mobility and testing signals were the most
important for predictive performance (see Table 3) on av-
erage. However, each geographical region may require its
own optimized set of data signals as contribution to perfor-
mance varies by region. For example, including line list had
a positive contribution in California, but had a large negative
contribution in Texas; this may suggest varying data quality.

Table 3: Contribution of signals in 1-4 wk ahead forecasting
for US National and three states. We present the t-stat (higher
value, higher contribution). Green indicates positive, red neg-
ative, and black non-statistically significant contributions.

1-4 wk ahead
US CA GA TX

Line list 3.51 6.09 1.34 -14.17
Mobility 10.02 9.40 3.28 2.85
Testing 6.10 8.77 2.66 2.63

Exposure 3.02 1.11 -0.82 0.04

6 Conclusions
In this paper, we introduced DEEPCOVID, an operational DL
driven framework for real-time COVID forecasting, whose
predictions have been submitted to the CDC via COVID-19
Forecast Hub on a weekly basis since April 2020. This was
the first purely data driven and DL approach to be submitted
to the COVID-19 Forecast Hub. We show that DEEPCOVID
exhibits very good short-term and trend performance, in-
terpretability, principled uncertainty estimation, correlation
between forecasts, and ingestion of several data sources de-
spite the novel and fast-moving pandemic scenario which
naturally brings several modeling and data challenges. Over-
all our results give encouraging evidence about using DL for
emerging real-time epidemics.
Discussion: There are several lessons learned from our expe-
rience including the observations noted in Section 5. First is
the lack of standard data reporting, even among traditional
sources (e.g. several states do not report new hospitalizations,
or report deaths in different ways causing different lags). This
means that while some artifacts can be handled statistically
(lags), some mild assumptions are also needed to make mean-
ingful predictions (like for hospitalizations) which are still
useful. Second, due to the chaotic situation, a purely data
driven model needs to be regularly (weekly) updated to re-
flect the changing dynamics and data quality, to ensure good
performance. Third, explainability is very important, as it
can serve as a sanity check based on domain knowledge and
also highlight why we are making forecasts at different points
of the pandemic. Finally, we also found that data revisions
are pervasive, and even the ground truth can be revised (see
appendix), which implies measures of performance may be
unreliable till data stabilizes.

Extending our methodology to handle such ‘backfill’ re-
visions and also work more robustly at smaller scales (e.g.
county level), would be interesting. Also, fully automating
the deployed version of DEEPCOVID would be useful e.g.
self-discovery of data discrepancies to adapt ‘on-the-fly’.
In the prediction module, more end-to-end models for un-
certainty estimation should also help in better training and
inference. Differentiating between symptomatically similar
diseases (such as COVID-19 and flu) would be interesting
as well. Finally, we can aim to design more mechanistically
motivated neural models to automatically highlight problem-
atic predictions that require further investigation using the
explainability module. These directions will enable faster
deployment during pandemics.
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