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TWO-DIMENSIONAL QUADRATURE FOR FUN CTIONS WITH A
POINT SINGULARITY ON A TRIANGULAR REGION *

YAJUN YANG! AND KENDALL E. ATKINSON?

Abstract. We consider the numerical integration of functions with point singularities over a
planar wedge S using isoparametric piecewise polynomial interpolation of the function and the wedge.
Such integrals often occur in solving boundary integral equations using the collocation method.
To obtain the same order of convergence as is true with uniform meshes for smooth functions, we
introduce an adaptive refinement of the triangulation of S. Error analyses and several examples are
given for a certain type of adaptive refinement.
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1. Introduction. We consider the problem of approximating an integral of the
form

/S f(z,y)dS

where S is a closed, bounded, connected set in R2. When the integrand has singular-
ities within the integration region, the use of a standard quadrature method may be
very inefficient. There are several ways to deal with this problem. One approach is
to use a change of variables [10] to transform a singular integrand into a well-behaved
function over a new region. A second approach is to use adaptive numerical integra-
tion to place more node points near where the integrand is badly behaved to improve
the performance of a standard quadrature method. A third approach is to use ex-
trapolation methods to construct new and more accurate integration formulas based
on the asymptotic expansion for the quadrature error in the original quadrature rule.
The generalization of the classical Euler-Maclaurin expansion to functions having a
particular type of singularity, as obtained by Lyness [8], [9], provides a basis for ex-
trapolation methods in the same way as the Euler-Maclaurin expansion is used as a
basis for Romberg integration. For the one-dimensional case, a standard discussion of
these methods and others can be found in Atkinson [3].

In this paper we discuss adaptive numerical integration for the two-dimensional
case. The process of placing node points with variable spacing so as to better reflect
the integrand is called adaptive refinement or grading the mesh. We propose a type
of adaptive refinement for which the order of convergence is the same as for smooth
functions, but with the integrand function having a particular type of singularity,
specified below. ,

In the case of smooth integrand functions, Chien [6], [7] obtained that for integrals
over a piecewise smooth surface in R3, the numerical integration using isoparametric
piecewise quadratic interpolation for both the surface and the integrand leads to the
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970 YAJUN YANG AND KENDALL E. ATKINSON

order of convergence O(64). In this, § = maxi<x<n(8k),0x = maxp, qea [p—g|, and
{Ak|K =1,...,N} is a quasi-uniform triangulation of the surface. In terms of the
number N of triangles, the order of convergence is O(1/N2). We extend these results
to singular integrands.

To simplify our discussion, we study only the following class of problems. The
integration region S is a wedge, i.e.,

S={(z,y) eR?0<r<1,0<6<0O}, 0<O<m.

The integration function is singular at only the origin, and it is of the form

(11) f(x7 y) = ra<p(t9)h(7‘)g(x, y)a a> -2
or the form
(1.2) flz,y) =relnrp(@)h(r)g(z,y), a>-2.

Here (z,y) are the Cartesian coordinates with the corresponding polar coordinates
(r,0). The functions ¢(8), h(r), g(z,y) are assumed to be sufficiently smooth. This is
also the class of functions considered in Lyness [8].

In §2, we describe the triangulation of the wedge S and the adaptive refinement
scheme we use. The interpolation-based quadrature formulas are given in §3. Section
4 contains the error analyses and a discussion of the results. Numerical examples are
given in §5.

This paper presents detailed results for only the use of quadratic interpolation.
The method being used generalizes to other degrees of piecewise polynomial interpo-
lation, and the results are consistent with the kind of results we have obtained for the
quadratic case. This generalization for other degrees of interpolation is given in §6.

Because integrals of nonsmooth functions often occur in solving boundary integral
equations using the numerical method, we expect that the error analysis of the present
numerical integration methods eventually will lead to better numerical methods for
the solution of boundary integral equations.

2. The triangulation and adaptive refinement. In this section, we describe
the triangulation of the wedge S and discuss its refinement to a finer mesh. Let

(2.1) Tn = {Ag |l < K < Na}

be the triangulation mesh for a sequence n = 1,2,.... When referring to the element
Ak n, the reference to n will be omitted, but understood implicitly.

The initial triangulation 71 of S is obtained by connecting the midpoints of the
sides of S using straight lines. The sequence of triangulations 7,, of (2.1) will be
obtained by successive adaptive and uniform refinements based on the initial trian-
gulation. We construct this sequence as follows, and we call it an La + u refinement
with L a positive integer. Given {Ag |l < K < N,}, we divide the triangle con-
taining the origin into four new triangular elements. For the resulting triangulation,
repeat the preceding subdivision. After doing this L times, we divide simultane-
ously every triangle into four new triangles. The final triangulation is denoted by
{AKkn+1|1 < K < Npt1}. In other words, at level n, we perform L times an adaptive
subdivision on the triangle containing the origin, and then we do one simultaneous
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Fic. 1. n=1.

NN
A

Fi1G. 2. n=2.

subdivision of all triangles. An advantage of this form of refinement is that each set
of mesh points contains those mesh points at the preceding level.

As an example, we illustrate the 2a + u refinement for n = 1,2 in Figs. 1 and 2.
When n = 2, there are three different-sized triangular elements. Let n = 1?2‘0?9, and
define

- n
By = {(w,y) €Sz +y 2> 2},
Bi={@uy eS/a<ne+y<l},
- n
B; = {(w,y) €S0<nz+y< 4}.

The set B; is the union of the triangles of the same size in S, and therefore it is
uniformly divided by the triangulation. The diameter of triangles in B; is O(2~(2+0).
Moreover, functions in (1.1) and (1.2) are smooth on By U Bj.

More generally, by examining the structure of the La + u refinement, we can
calculate the total number N, of triangles at level n: this is (L +1)22" —4L = O(22%),
There are Ln— (L — 1) different-sized triangular elements. The closer the triangle is to
the origin, the smaller it is. As the triangles vary in size from large to small, we name
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Fi1G. 3. A symmetric pair of triangles.
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F1G. 4. The unit simplex.
the region containing triangles of the same size to be By, Bi, ..., Bpn—L, respectively.

The diameter of triangles in B;, denoted by §;, is O(2—(»+)). Let N; be the number of
triangles in B;, Then N, is proportional to 47~% where | = L 44 for 0 <i; < L —1.
The distance from the arigin to By, denoted by ry, is O(1/(2(L+1)¢)),

In each Bi(l = 1,.,.,Ln — L), the triangular elements Ak are true triangles
and all are congruent. The triangular elements in By are nearly congruent. More
importantly, any symmetric pair of triangles, as shown in Fig. 3, have the following
properties;
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v1 —vg = —(v1 — v4),
v1 —v3 = —(v1 — vs).
The total number of symmetric pairs of triangles in B; is O(NN;), and the remaining
triangles in B; is O(v/Ny).
If L = 0, then the refinement is quasi uniform. The analysis given in [6] indicates
that a quasi-uniform refinement is a better scheme to use with smooth integrands.

3. Interpolation. Let o denote the unit simplex in the st-plane
o={(s,t)|0 < s,t,s+t <1},

Let p1,...,pe denote the three vertices and three midpoints of the sides of o, which
are numbered according to Fig. 4.

To define interpolation, introduce the basis functions for quadratic interpolation
on o. Letting u =1 — (s + t), we define

L(s,t) =u2u—1), (s, t) =t(2t—1), I3(s,t)=s(2s-1),
la(s, t) = 4tu, I5(s,t) = 4st, le(s,t) = 4su.
We give the corresponding set of basis functions {l; x(¢)} on Ax by using its pa-

rameterization over o. As a special case of piecewise smooth surfaces in R3, discussed
in [5]-[7], there is a mapping

(3.1) mK:al;l>AK

with mg € C8(o). Introduce the node points for Ax by v; x = mk(p;),j =1,...,6.
The first three are the vertices and the last three are the midpoints of the sides of
Ag. Define

lix(mk(s,t) =li(s,t), 1<j<6, 1<K<N.

Given a function f, define

6
P f(q) = Z filik(e), g€ Ak
for K =1,...,N. This is called the piecewise quadratic isoparametric function inter-

polating f on the nodes of the mesh {Ag} for S.

4. Numerical integration and error analyses. With the triangulation {Ag}
and the mapping mg : o —l:t—1> Ak, we have
onto

(4.1) [ r@as= / F(muc(s,8))|Dsmic(s,t) x Demc (s, )] ds dt.

D, and D; denote differentiation with respect to s and ¢, respectively. The quantity
|[Dsmg (s,t) x Dymg (s, t)| is the Jacobian determinant of the mapping mg (s, t) used
in transforming surface integrals over Ak into integrals over 0. When A is a triangle,
the Jacobian is twice the area of Ak.



974 YAJUN YANG AND KENDALL E. ATKINSON

The numerical integration formula used here is

[9(pa) + g(p5) + g(ps)],

D =

(4.2) /g(s,t) dsdt =~

which is based on integrating the quadratic polynomial interpolating g on o at p1, ...,
pe. This integration has degree of precision 2. Applying (4.2) to the right side of (4.1),
we have

6

(43) F@dS % &3 Flmrc (o) Domsc(s,1) x Demc(5, 1),

Ak e

A major problem with (4.3) is that Dymg and Dym are inconvenient to compute
for some elements Ax on many surfaces S. Therefore, we approximate mx(s,t) in
terms of only its values at p1, ..., ps. Define

6 6
=Y mr(pi)li(s,t) =Y vjxli(s,t).
=1 =1

For the case of the wedge of a circle, in this paper only the outer triangles will be
affected by this approximation. Then

6
1
[ 1@ dS = &3 o) IDomsc(5,8) x (s, 1),
Ak j=4

= Z“’j,Kf('Uj,K)

j=4
where

1 - -
Wj,K = 6|DsmK(5at) X D (8,t)|p;-

LEMMA 1. Let {Ak} be the irregular triangulation defined by the La + u refine-
ment, and let N be its total number of triangles. Assume that f is of the form (1.1).
Then

(4.4) /B  f@as- Y Zwa,xf ) <0( Nm>

AgCBprn-1 j=4

where p; = -——(L+1)2(a+2).
Proof. Let

5 _ 1
LIn-L = on+(Ln-L)"

The partition of Br,-r is shown in Fig, 5. Let {Ax|K = 1,...,16} denote the
sixteen triangles in Br,_r, and let A; contain the origin. Then the area of Ay is
62, sin(©/2).

(a) We first estimate the error of

6
g)dS =Y wj1f(vj1)
j=4
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F1G. 5. The partition of Bpn_p.

Define

91(z,y) = @(0)h(r)g(z,y),
and note that g;(x,y) is integrable over A;. Since 7> > 0, by the integral mean value
theorem we have

f(g)dS = u/ ra ds

Al A1

where
inf g1(z,y) < pu < supgi(z,y).
Ay Aq

Also, p is bounded:
lul < sup l91(z, y)|
< sup l(6)] sup |h(r)] sup lg(z, y)|
= max, I«p(é’)l Jmax, Ih( )| max |g(z, y)|
=M < oo.

Therefore,

£(q) dS’ <M [ reds

6Ln L
=M / / ra+1dg dr

6a+2
Ol+2 Ln—-L

A

On the other hand,

6
> wiif(vsa)
=4

< 6°‘+2Lsm9 (21“0 +

T

()
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This inequality comes from the following:

1, 3
wj1 = —leml(s,t) X Dy (s, t)|p;

é 2(Area of A,)
= %60""2Lsm9 for j =4,5,6
and
[f (v, )] < fvjaleM
_ { (=) M ifj=4,
68,1 lcos (8)|"M ifj=5.
Hence,

<0632 ).

6
[ f@)ds = S wsaftwsa)
A prat

Notice that 61,1 = O (frin7z) - It follows that the error over A; is O (757) -
(b) The error over Ax(K = 2,...,16) can be obtained by using Taylor’s error

. . . 1-1 .
formula. Since f is smooth on Ag and mg : o — Ak is also smooth, we have
onto

6
(4.5) Fmic(s,8) = 3 flmuc(03)i(s,8) = Hyxe(s,t:¢,m)
j=1

where

3
Hy(s,t:6m) = o [(5‘9— +t53) Fmatcn)

- Z (SJ +1t Ot) F(mi (i,m4)i(s,t) | .

In this, p; = (sj,t5),(¢,7) is on the line segment from (0, 0) to (s, t), and ({j, n;) is on
the line segment from (0, 0) to (s;, ;). Notice that (¢,7n) and (;,7;) belong to o. For
(s,t) € o, we have

0 < cos (@) Spn—r < r(mg(s,t)) <46pn_r, fork=2,...,16

where 7(mg(s,t)) = |mk(s,t)| is the distance from the point mg(s,t) to (0,0).
We would like to examine one term in Hy g, which is associated with s3 and will
show the general behavior of Hy k.

oz Fmic(C,m) = (e mac(3,) - g1 (e (5, )| =

(4.6) =g1(mxk (¢, 77)) (T" (mk(s,1)))| o=
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(4.7 +3{ Zeonlmt,0) s (o5, | ’ B
t=n
(45) +3{ ganlmae 5L mes 0 |
o3 -

(4.9) +r (mx(C,n))@gl(mx(s,t))I::747-

The magnitudes of (4.6)-(4.9) vary from O(6¢,_,) to O(65;53,), and O(6¢,_p) is
the dominant term in (4.6)-(4.9). It follows that the coefficient of s3 in Hy g is of
O(6¢,,_1). Consequently,

IHf,K(s, t; C, 7I)| < O(égn-—L)

for any (s,t) € o.
Therefore,

6
[ 1@ds =3 wixiwu)
Ax v

(mi(s,t)) Zf(mx(/)a Nli(s,t)| dS

Z
<O, 1) / \Hyxe(s,8:C,m)| dS

<O(83F2 ).

<o, ) [ |1

Hence, (4.4) holds. 0
LEMMA 2. Under the assumptions in Lemma 1, let B =a + 2 + 9‘—52 Then

O(2-1m-18) ifa<3,
O(2—4n—(l/L)-—5l) z'fa >3

(4.10) l / flgdsS—- > ng,xf(va,x)

AgCB; j=4

forl=1,...,Ln—L-1.

Proof. There are two types of triangles in B;. Those triangles that are part of
symmetric pairs of triangles (cf. Fig. 3) are of the first type and the remaining triangles
are of the second type. By analysis of the La + u refinement in §2, the number of
triangles of the first type is O(V;), where N; is the number of triangles in B;. Then
N, is proportional to 4"—¢, where [ is decomposed as | =iL +i; for 0 <i; < L — 1.

Since f is smooth on By, then by Taylor’s error formula we have

[}

(4.11) Fmi(s,)) = Y flmx(p))li(s,t) = Hy ke (s,8) + Grx (5,8 ¢, )

Jj=1
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where

3
Hp(s,t)= 3 [(s% +t%) F(m(0,0))

6 3
=3 (sigs +tigy) Slme(o o>>lj(s,t>} ,

Jj=1

6 4
- (31% +tj%> f(mK(ijj))lj(s,t)} :
j=1

We examine (4.11) and we can find the following.

First, Hy k(s,t) is a polynomial of degree 3. Second, the coefficients of Hy k(s,t)
are combinations of (vg,x — v1,k) and (vs x — v1 k). For instance, the coefficient of s3
is
(4.12)

3
S H(m(0,0))

= - Z k(1)) (03,0 = 01.0)? + B2 (e (p1)) (5.0 = 01.2)2(08 — v1,)
= 31 | 523 K\pP1 3,z 1,z aany K\p1 3,z 1,z 3,y 1,y

03 93
+ a—magyf(mk(/)l))(vs,z —v1,0)(v3,y —v1y)? + o8 (mk (p1))(vs,y — vl,y)3] :

where vj x = (vjz,V5y) for j = 1,2,3. For every symmetric pair of triangles, say A;
and Ag, in By (see Fig. 3), let
mi1(s,t) = (v3 — v1)s + (v2 — v1)t + v,
ma(s,t) = (vs — v1)s + (va — v1)t + 1,
vj = (Vj,2, Vj,y)-

Then
vy — v = —(v1 — v4),

v1 —v3 = —(v1 — vs).
We now have for Hy; and Hy s that the coefficient of s3 in Hy; is
(4.13)
03 03

% [%f(ml(pl))(’v:},z —v1,5)3 + 3_8w28yf(m1(p1))(v3”’ —v12)2(vs,y — V1)

+3 G £ (o)) 1.2 = 02) (03 = 00+ G Flm o) 03y 1)

and the coefficient of s3 in Hy s is
(4.14)

L2 frma(o1)) (5.0 — 01,0 + 35 o F(ma(p1)) (50 — 01)2(u5 — 1)
31 | g3/ \"2\PL)\Us,z — V1w 5220y 2(p1))(vs,z — V1,2)%(vs,y — V1,9

3 92
+ 3 g £malp)) 05— 0.2} (05 = 01+ o Fmap2) 05y 1)1
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Adding (4.13) and (4.14) gives us zero, and an analogous argument holds for the
remaining coefficients. This means that cancellation happens on any symmetric pair
of triangles. It follows that

2 6
/A uA f@)dS =Y ) wif(vik)

K=1j=4

2
30(6,2)Z/le,K(s,t;C,n)ldet
K=1Y7

where 6, is the diameter of A and A. This argument is based on Chien [6].
We now bound Gy,k(s,t;¢,n) on Ag C By for K = 1,2. Since 1 > r(mg(s, t)) >
71 > 0 for (s,t) € 0, and 1, = O(2~(L+1)i), we have for a < 4,

6
IGr.x(s,:¢,m)] < O(6)) {O(T(mK(C»ﬂ))"““) + ZO(T(mK(Cj,ﬂj))"“‘)}

j=1
<0(6Ho(ry™)
< 0(6;1)0(2(4—0)(L+1)i)'

The first inequality arises from bounding the individual terms of (94f)/(8«s0%t),a +
b = 4, based on the kind of expansion done in (4.12). Otherwise, for o > 4,

G,k (s,8:¢,m)| < O(6}).

So,

- [ O(5)0@E-E) ifa <4,
= 1 O(88) otherwise.

] ,
/Alqu flg)ds - J.{Z_;""J}Kf(vj,K)

The error contributed by triangles of the first type is as follows. If a < 4,

6
>, (/A flq)dS - ij,Kf(Uj,K))

A of first type j=4
(4.15) < O(N)O(88)0(2(4~)(L+1)i)
o1 )

< O<22"""z 26n+6l) O(2(4-2)(L+1)i)

< O(2—4n-18),
For a > 4,

6
' ’D Fa)dS = 3" wixc f (w3 x)

(4]_6) A of first type Ak j=4

< O(N)O(&7)
< O(2-4n—(21/L)~6l),

For the remaining triangles in B;, which are those of the second type, the er-
ror contributed by a triangle Ag is Hy k(s,t;¢,n) by (4.5). By the fact that r; <



980 YAJUN YANG AND KENDALL E. ATKINSON

r(mk(s,t)) <1 for Ag C By, and the fact that their numbers is O(v/N;), then the
error is bounded by

a—3 .
|Hy ik (s, t¢,n)| < {ggggg (") fa<s,

otherwise,
and
6
3 f(@)dS =" wjk f(vs,x)
(4.17) Ak of second type Ak j=4
O(2-4n-18) if o < 3,
O(2—4n=(1/L)=5l)  otherwise.
The total error over B; is given by (4.10). o
LEMMA 3. Under the assumptions in Lemma 1,
(4.18) / flg)ds— > Zwﬂ{f v; k) <0(N2)
AgCBg j=4

Proof. The function f is smooth on By, and By is uniformly divided by triangular
elements. By the results in [6], (4.18) follows. o

Combining the above lemmas, we get the following result, which gives the total
error of integrating over S.

THEOREM 1. Let f be of the form (1.1). Then

/f(q)ds §Nj 26 wik Fwjx)| < {0(‘"2) if pL=2,

- j K LK) < )

o K=1j=4 ’ ’ O( p) otherwise ,

where N is the total number of triangles in the triangulation p1 = —(0‘+2)2(L+1) and

p = min{p1,2}.
Proof. We first add all errors contributed by each Ax C B1U---UBpp—1—1. For

a<3,ifp1 #2 (e, 8#0),

Ln—L 1 Ln—L-1
/ a5 — Y Swafr|s S 0@-ni)
Ak CB,; j=4 1=1
2-6 — 9—-B(Ln—-L)
— —4n
o(z i )
< O(2-2wm)
1
~o(h).
while
Ln—L-1

2 DdS = 3 Z%Kf(% < (2%)50<1;‘\,—2’) for 8= 0.

=1 AgCB; j=4
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When a > 3,5 is nonzero. By a similar argument,

Ln—L 1

6
/ f@ds— 3 Y wikfwix)| <

0O (ﬁ;) for a > 3.
AgCB; j=4

Combining the above with Lemmas 1 and 3, we have

/f )dS — ZZwJKfv],K)

K=1j=4

<

6
/B f@ds— Y S wkfok)

AgCBrn-r j=4

/ f@das- 3 ng,xf o3k

AgCB; j=4

Ln—-L

+Z

| f@ds- > ij,xf(vj,x)

AgCBp j=4

so(Nlp )+o< )+0<A}2)

<O( ) for B # 0.

And it is O(In N/N2) for 8 = 0. The quantity p; is defined in Lemma 1, and p =
min{p1, 2}. 0

COROLLARY. Let L be any positive integer greater than 544;5 - 1. .Then the error
for evaluating the integral over S is O(1/N2). In particular, a 1la +u refinement gives
an error of O(1/N2) for any a > 0.

THEOREM 2. Let f be of the form (1.2). Then

'/Sf( )dS - ZZwJ,Kfv,,K) <o(lnN) o(Nl-z-)

K=1 j=4
where N is the total number of triangles in the triangulation and pi = L?:L?l%éi}l‘
Proof. The proof is analogous to that of Theorem 1. .0
COROLLARY. Let L be any positive integer gredater than Ti'i ~ 1. Then the error
for evaluating the integral over S is O(1/N2). For o > 0, a la + u refinement still
gwes an error of O(1/N2).

5. Numerical examples. We give numerical examples using the method an-
alyzed in §4. The method was implemented with a package of programs written by
Atkinson, which is described in [1] and [4]. All examples were computed on a Hewlett
Packard workstation in double precision arithmetic.

Ezample 1. Let S = {(z,y) e R2J0<r<1,0<0<L 2},

- (5.1) f@y)=r*  a>-2
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TABLE 1
Evaluation with L = 1.
a=.1 a=.5

n N Error Order Error Order

1 4 —2.36E-4 —9.47E-4

2 28 —9.00E-6 1.68 2.90E-6 3.10

3 124 3.97E-7 2.10 3.22E-6 -.23

4 508 7.13E-8 1.22 2.91E-7 1.71

5 | 2044 6.95E-9 1.67 2.10E-8 1.89

6 | 8188 5.70E-10 1.81 1.40E-9 1.95

TABLE 2
Evaluation with a = —1.
L=1 L=3

n N Error Order N Error Order
1 4 | 1.49E-1 4 | 1.49E-1
2 28 | 4.01E-2 0.68 52 | 9.51E-3 1.08
3 124 | 1.07E-2 0.93 244 | 5.61E-4 1.83
4 508 | 2.53E-3 0.98 | 1012 | 3.35E-5 1.98
5 | 2044 | 6.32E-4 1.00 4084 | 2.00E-6 2.02
6 | 8188 | 1.58E-4 1.00

The results are given in Table 1 for a = 0.1,0.5 with L = 1. The column labeled Order
gives the value
o = In|E,/Ept1]
" ln(N n+1 / N, 'n)

where E,, is the error at level n. Since the theoretical result shows that the error is
O(1/N2), we expect that p, will converge to 2.

Table 2 gives the results for = —1 with L = 1 and L = 3. The empirical orders
of convergence p, approach 1 and 2, respectively, as expected.

6. Generalization. We have presented results for only the planar wedge, while
using polynomial interpolation of degree 2 to approximate the integrand and the inte-
gration region. Any other degree of interpolation could also have been used. In such
cases, the definition of the nodes will change appropriately, but the definition of the
triangulation will remain the same, and we will use the La + u refinement.

In addition to using quadratic interpolation, we have also examined the use of lin-
ear, cubic, and quartic interpolation. For linear and cubic interpolation, the function
value at the origin is needed in the numerical integration. We simply let f(0,0) = 0.
The results are consistent with the kind of results we have obtained for the quadratic
case, and they are as follows.

Suppose that we use interpolation of degree d to approximate both the integrand
and the wedge S. Let {qi,...,qv} be the node points in the unit simplex and let
{l1,...,l} be the basis functions in the Lagrange form, where v = Ldj-_lM. The
points {g1, . ..g»} will be equally spaced over o and of the form (£,%),0< i+ <d.
Define the interpolating operation

Pwh(s, ) =Y h(g;)ls(s,1)-
J=1
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The numerical integration we use is based on integrating this interpolation polynomial;
ie.,

/h(s,t) dsdtz/PNh(s,t)dsdt
= > w"h(g).
Jj=1

Assume that the integrand is of the form (1.1). Then with the La + u refinement,
we have

AL o) itp =dr,
ds — W' f(v; < N

/Sf(q) Kzzl; ]’Kf( )| < O(N%,:) otherwise,
where N, is the number of triangular elements in the triangulation. The order p =
min{p1,d*},p1 = M’L—l) ,d* = %22 when d is an even number, and d* = 41 when
d is an odd number. The proof is completely analogous to that given earher for the
quadratic case. In addition, we need the results for smooth integrands as stated in [6].
The results can be generalized to other integration regions S, for example, a wedge
with the central angle larger than 7, triangles, squares, regions containing the origin
as an interior point, etc. We also can generalize this to curved surfaces in R3, with the
integrand having a point singularity of the type given in (1.1). We omit statements of

these results because they are straightforward. '
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