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SEMI-DISCRETE GALERKIN APPROXIMATIONS
FOR THE SINGLE-LAYER EQUATION
ON LIPSCHITZ CURVES

TAN H. SLOAN AND KENDALL E. ATKINSON

ABSTRACT. We study a semi-discrete Galerkin method for
solving the single-layer equation Vu = f with an approximat-
ing subspace of piecewise constant functions. Error bounds in
Sobolev norms || - ||s with —1 < s < 1/2 are proven and are
of the same order as for the original Galerkin method. The
distinctive features of the present work are that we handle ir-
regular meshes and do not rely on Fourier methods. The main
assumptions are that the quadrature rule used to approximate
the inner product is a composite rule and that the underly-
ing quadrature rule that is mapped to each subinterval has a
sufficiently small Peano constant.

1. Introduction. The single-layer equation
(1) Vu = f

is an important boundary integral equation. It arises, for example, in
the solution of the Laplace equation on interior or exterior domains. If
Q is a two-dimensional domain with Lipschitz boundary I, as we shall
assume in this paper, then the single-layer operator )V takes the form

2) Vu(t) ::—%/Flogﬁ—s\u(s) ds— f(t), teT,

where |t — s| denotes the Euclidean distance between ¢ and s, and ds
is the element of arc length. The curve I' could, for example, be a
polygon or ‘curved polygon,” without cusps.

In this paper we study a semi-discrete Galerkin method, or ‘qualo-
cation method,” with an approximating subspace of piecewise constant
functions. Let S; be the space of piecewise constant functions on a
partition

I' = Ul,
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with h = maxhg and hjp the length of I'y,. Then the Galerkin
approximation to u is: find uf € Sy, such that

(3) (Vug,Xh) = (fa Xh)a VXh € Sh;

with

(9, w) E/Fg(s)w(s)ds.

The Galerkin approximation has been well studied, for example, see
[8, 22], and it possesses excellent stability and convergence properties.
It is, however, difficult and expensive to implement exactly, because
of the two levels of integration involved in (3). Indeed, it is normally
impossible to implement it exactly, in that one is usually forced to
resort to approximate integration for at least the outer integral, i.e.,
the inner product integral, in (3).

The semi-discrete approximations to be studied in this paper have
the form: find u; € S where uy, satisfies

(4) (Vun, Xn)n = (f;Xn)ns Y Xn € Sh.

In this equation (-,-), is a quadrature approximation of the exact
integral (-,-), obtained by using an appropriately scaled version of
a basic quadrature rule, denoted by ¢, on each subinterval of the
mesh. In essence, we shall show that the method is stable for small
enough h and has satisfactory convergence properties, provided the
rule ¢ is sufficiently ‘rich,” where richness means, roughly, having
enough quadrature points. We shall make these ideas precise later.
A distinctive feature of the present work is that we allow the mesh to
be irregular (but it must be quasi-uniform).

An important special case of a qualocation approximation is the col-
location method, obtained by choosing ¢ to be the 1-point quadrature
rule based on evaluation at, for example, the midpoint. In this case it
is easy to see that (4) is equivalent to

Vup(me) = f(mr), k=1,...,Np,

where 74 is the midpoint in the kth subinterval I'y, and NN, is the
number of subintervals.



SEMI-DISCRETE GALERKIN APPROXIMATIONS 281

The challenge for the collocation method, as for all semi-discrete or
fully discrete Galerkin methods for the single-layer equation, is to prove
stability. For the piecewise constant collocation method on smooth
curves, there exists a very satisfactory theory, cf. [2, 17], if the mesh is
uniform (or is uniform with respect to smooth parametrization). This
theory, which is based on Fourier analysis, has been extended to the
collocation method on a torus by Costabel and McLean [9].

In a different direction, the Fourier-based theory has been extended
to qualocation methods with more sophisticated quadrature rules, cf.
[7, 18, 20]. In these methods the basic quadrature rule ¢ on each
element is taken to have two or more points, with the parameters in
the rule chosen to enhance the order of convergence in appropriate
negative norms. But always the Fourier nature of the analysis requires
that the mesh be uniform.

For nonuniform meshes the situation is much less satisfactory, al-
though Chandler [5, 6] has made some progress for piecewise constant
collocation on circles in the function space setting of functions whose
average value is zero. Still less is known about piecewise constant col-
location on surfaces.

It should be mentioned that, for smoothest splines of odd degree
(such as the continuous piecewise linear functions), a very satisfactory
stability and convergence theory of the break point collocation method
has been developed by Arnold and Wendland [1]. However, this theory
is not applicable for splines of even degree.

Hsiao, Kopp and Wendland [12, 13] have studied a different kind of
approximation to the Galerkin method for the single-layer equation on
curves, the Galerkin-collocation approzimation. In this method the
principal convolutional part of the operator is treated exactly, and
quadrature is used only for the term that represents the departure
of the curve from a circle. Here the approach is quite different, in that
we do not treat the principle part exactly.

There exists one study of a fully discrete approximation to the
Galerkin method, namely a study by Penzel [15] for the three-
dimensional case in which the surface is the three-dimensional equiv-
alent of (2), on a square plate. In this work Penzel uses a uniform
mesh in both the x and y directions, and he exploits the convolution
structure of the kernel to obtain concrete expressions for the error in
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the Galerkin matrix elements with respect to the standard basis. Pen-
zel’s results for this special case have some of the flavor of ours, in that
he proves stability and convergence if the underlying quadrature rule
on each element (in his case a product Simpson’s rule) is sufficiently
refined. It also has some relation to the method of Hsiao, Kopp and
Wendland mentioned above, in that the diagonal elements are treated
in a special way.

In this paper we do not directly consider the effects of approximations
to the boundary I'. However, Nedelec [14] has considered the effects
of such approximations for the case of the Galerkin method, and his
results apply with equal force to the semi-discrete methods considered
here.

In Sections 2 and 3 we look more closely at the quadrature approx-
imation. In Section 4 we state the main stability and convergence
theorem, and we give its proof in Section 5. The paper concludes with
some additional remarks in Section 6.

2. Approximation scheme and quadrature errors. We shall
assume that the meshes I' = UIl'y are quasi-uniform, so that if the
length of I'y, is hg, then there exists p > 0, independent of h, such that

h

min h;

(5)

<p,

where h = max hy.

The approximate inner product (-, ) in (4) is then defined by

(’U, w)h = Z(va w)h7Fk7

k

where the quantity (v, w) r, is an approximation to

(6) (v, w)r, E/r v(s)w(s) ds,

obtained by applying a scaled version of a fixed quadrature rule ¢,

m 1
(7 o) = > wialay) ~ [ ae)da,
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with

Generally we will use the simpler notation gg = ¢(g). The quantity
(+,-)n is also often called a discrete inner product.

3. The Peano constant. The stability and convergence theorem in
the next section does not require that the quadrature rule ¢ integrate
exactly any polynomials other than the constant functions. It does,
however, require that the rule be ‘rich’ enough, in the sense of having
a small enough Peano constant. In the present context the required
Peano kernel theory is trivial and is included only for completeness.

If g and its derivative g’ belong to L2(0, 1), then we can conclude that

o(z) = 9(0) + / ") dy
(8) 1
=g(0) + /0 H(z —y)g' (y) dy,

where H is the Heaviside step function. Since the quadrature rule g is
exact for the first term, we can write the quadrature error as

1 1
(9) Eg:=qg— /0 g(y)dy = /0 K(y)g'(y) dy,
where
(10) K(y) == E.H(z — y),

and the notation F, means the error functional F is to be applied to
the function H(z — y) with respect to the variable z. This yields

(11) [Eg| < kllg'l| Lo0,1),

where

(12) R = ||K||L2(0,1)'
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Of course K is just the first Peano kernel, cf. [10]; and &, which is
called here the Peano constant, is just the Lo norm of the first Peano
kernel.

The Peano constant x can be made as small as desired by a suitable
choice of the rule q. For example, if ¢ is the composite m-point midpoint

rule
1 o~ [2k—-1
qg'_EZg< 2m >’

k=1

then it is easily seen that

k 2% — 1 2%k + 1
K(y) =~ —y, f
(v) — oy, for ——— <y < ——,

for k=1,2,...,m. Then it is straightforward to calculate

For the case of an m-point Gauss rule, shifted to the interval [0, 1],
Petras [16] has shown that

More generally, if ¢ is an m-point interpolatory rule with positive
weights (such as the Clenshaw-Curtis rule), then the bound

is an immediate consequence of a uniform bound on the first Peano
kernel given by Brass [4, Theorem 2].

4. The main result. The following theorem, which is the main
result of this paper, expresses the fact that the semi-discrete Galerkin
method is stable, provided the Peano constant « is sufficiently small;
and, moreover, the method has the same order of convergence as the
Galerkin method in all Sobolev norms down to the | - || -1 norm.
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The Sobolev spaces H® = H?®(T") for |s| < 1 are as defined with
respect to the arc length parameterization of T'; see [8]. For —1 < s < 0,
the norms are defined by duality:

[[v]ls = sup

Note that H° = L, and that H' is the subspace of H® of absolutely
continuous functions whose first tangential derivatives are in L.

The assumption in the theorem that )V is one-to-one is satisfied
provided the transfinite diameter of I is not equal to 1, see, for example,
[8, 21, 23]. It is also known, cf. [21], that

(13) V:H® l;t% H*
and
y—1.H! =L H° are bounded

onto

for arbitrary Lipschitz curves. Thus the assumption f € H! in the
theorem ensures that equation (1) has a solution u € HY The
convergence result allows for the possibility that u is actually more
regular than this, as can happen, for example, if I' has additional
smoothness.

Theorem 1. Assume that) is one-to-one and that f € H'. Assume
also that the meshes for the piecewise constant approximating space Sy,
are quasi-uniform. Let hg > 0 be such that uf exists and is unique
and stable for h < hg. Then there exists kg > 0 such that if the Peano
constant k < kg and if h < hg, then uy, ezists and is unique. If u € H?®
with 0 <t < 1, then for s satisfying

(14) —1<s<t and s<1/2,
there exists C such that

(15) lu = unlls < CR=ulls-
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The theorem is proven in the next section. Note that the ‘best’
convergence result given in the theorem is

(16) lu —up||—1 < CA|ull;, 0<t<1.

As is well known, the convergence result for the Galerkin method is
better if I" is sufficiently smooth, in that it allows s in (14) to go down
to —2; and in that norm, one obtains one more power of A than in
the error bound (16). We expect that the convergence theorem for
the semi-discrete method can only be extended in this way for special
choices of the rule q. (The reader might think it is interesting that so
far we have assumed of ¢ only that it integrates constants exactly and
has a small enough Peano constant.)

5. Proof of the theorem. For convenience we first collect some
properties of the Galerkin method. It is well known, see, for example,
[8], that the single layer operator is strongly elliptic. In consequence,

there is hg > 0 such that for A < hg, the solution uf of the Galerkin

equation (4) exists and is unique; and this solution uf is optimal in the

sense that
(17) lufy = ull -1z < C inf llon —ull-1/2 < CR2|Julo.
We also note that the Galerkin method can be expressed as: find
u§’ € Sy, such that
(18) PuVuf} = Prf,
where P}, is the Ly-orthogonal projection onto Sp, defined by
(19) Prg € Sh, (Prg, Xn) = (9:Xn), VXn € Sh-
Let Vy, : S;, — S be the self-adjoint operator defined by
(20) Vi = PrV|s,

Then for h < hg we know already that V} is bijective, so that the
Galerkin equation and its solution can be written as

(21) Vius = Pyf, u§ =V, 'Pyf.
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We need two simple consequences of these results for the Galerkin
method.

Lemma 2. There exists v > 0 and hg > 0 such that for v € H' and
h < ho,

(22) Vs Paovllo < vl

Proof. We note first that US := 1Z% 1P, v is the Galerkin solution of
(1) if f = v, so that the exact solution is U := V~'v. Let Uy € Sj, be
an optimal approximation to U in both the H° and H~1/2 norms, so
that, in particular,

IU = Onllo < CllUNlo,  NIU = Unll-172 < CR2||U] 0.

(The existence of such simultaneous approximations is well known; for
example, see [3, p. 95].) Then by use of the triangle inequality and a
standard inverse estimate for members of Sj, (which follows from the
quasi-uniformity assumption),

1T o < NUS — Onllo + 1Ux = Ullo + [Ullo
< Ch YU — Unll=1j2 + ClIU o
< ChV2(|UF = Ull_1y2+ |Un = Ull_1/2) + C|U|l0
<Ulo-

Lemma 3. Let vy and hg be as in Lemma 2. For h < hg and wy, € Sh,

(23) [wnll-1 < AI[PrVwhlo-

Proof. For v € H', we have

(wn,v) = (wh, Ppo)
= (Vh_lvh’wh, th)
= (Vawn, V;, ' Ppo).
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Then, from Lemma 2,
|(wr, v)| < [VawnllolVy  Prollo
<A WVawallollvll1,

from which (23) follows immediately. O

Now we turn to the semi-discrete Galerkin approximation defined by
(4). We see that this approximation can be written in terms of the
discrete orthogonal projection By, : H' — S}, defined by

(24) Brg € Sk, (Brhgs Xn)h = (9, Xn)hs YV Xn € Sh.

The operator By, is well-defined, since the matrix of the system (24)
with respect to the standard basis functions {¢;} (for which support
(¢;) =T;) is the diagonal matrix

(61, &)n] = (¢4, ¢5)];

in which all diagonal elements are nonzero.

In terms of this operator By, the semi-discrete Galerkin method (4)
becomes: find up, € S) such that

(25) BrVup, = B f.
The key to the analysis is the following estimate involving the Peano
constant k.
Proposition 4. There exists C > 0 such that, for v € HY,
(26) I1Br Vv — PrVvllo < Ckhlv]o,
where C is independent of v, h and the rule q.

Proof. Because B,Vv — Pp)Vv is constant on each element I'j, of the
boundary,

1BV — PVl =3 / (BaVo — PyVv)’ ds

(27) kT

= th((Bth - ,PhV’U)‘[‘k)2.
k



SEMI-DISCRETE GALERKIN APPROXIMATIONS 289

Now in this piecewise constant setting,

1
Prw)lr, = — [ w(s)ds = / W(3) d,
hi Jr, 0

where in the last step the map s +— § is the translation and magnifi-
cation map that carries the arc length parameter on I'y, onto the unit
interval, and @(§) = w(s). In a similar way,

(Bhw)|r, = qu.

Thus
(Bhw - Phw)|[‘k = va

and hence, from (11),
(B~ Prodle, < W2 By = b [ () s
Finally, (27) gives
|1BhVv — PuVo||2 < k2h? Z/F (Vo) |2ds = &2h2]| (V)| |3.
.

With the aid of (13),

1B Vv — PuVollo < kh|(Vo)[lo < Crhllvlle. O

Corollary 5. If the meshes are quasi-uniform, then there exists
Co > 0 such that

||Bthh — PthhHO < Colﬁ:HwhH,l, Y wp € Sh,

where Cy is independent of wy, h and the rule q.

Proof. Let v = wy, in (26) of Proposition 4. Then apply the inverse
assumption on Sy,
lwallo < ch ™ flwnl| -1,
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to complete the proof. ]

Corollary 6. Assume the meshes are quasi-uniform. Lety and hg be
as in Lemma 2, and let Cy be as in Corollary 5. Then, for k < (Coy)~!
and h < hg,

|lwall—1 < (1/7 = Cor)™"||BuVwallo

(28)
Y wp € Sh.

Proof. From the triangle inequality,

HBthhHo Z ||Pthh||0 — ||Bthh - Pthh||0
= (1/)wall-1 = Corllwall-1,

where we used Lemma 3 and Corollary 5. O

Now we return to the proof of Theorem 1. If the conditions of
Corollary 6 are satisfied, then the operator ;) is a one-to-one operator
on the finite dimensional space Sj,. From this it follows that a solution
up, € Sp of (25) exists and is unique. Moreover, from (28), (25) and
Proposition 4, we have, with

1 1
71 = <_ - CO""") )
Y

lun = ug |-1 < A'[1BpV (un — i) o
=[1BuV(u — ug)llo
= (Br = Pr)V(u—ui) o
< ' Crhllu—ug o
< Ch'Y|ully for 0 <t < 1.
In the last step, standard results for the convergence of the Galerkin

method are used.

From the inverse inequality we now find, for s satisfying (14), that

lun, = ui|ls < Ch™' = lun — ui [ -1 < Ch'=*ulle,
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so that with the aid of the triangle inequality,
lun = ulls < llun = uflls + [luf —ulls < OB lulls.

This proves the theorem. ]

6. Conclusion. The main theorem of this paper asserts that the
semi-discrete piecewise constant Galerkin method, for the single layer
equation on Lipschitz curves, is stable and has conventional orders
of convergence, provided that the Peano constant of the underlying
quadrature rule is small enough. The theorem does not say exactly how
small the Peano constant needs to be. Therefore we are unable to say
whether any particular version of the method, for example, collocation
at the midpoints, is stable. In this respect, the situation is similar
in principle to familiar statements such as that the Galerkin method
is stable if h is sufficiently small. The imprecision arises from the
same source, namely, the difficulty in practice of keeping track of the
constants.

For practitioners, our advice arising from this analysis is: if the
method is unstable with a given quadrature rule q, and if reducing h
does not help, then replace q by a quadrature rule with a smaller Peano
constant and try again.
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