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NUMERICAL EVALUATION OF LINE INTEGRALS*

K. ATKINSON?T AND E. VENTURINOY

Abstract. In this paper, some simple methods for the calculation of line integrals over smooth curves
are considered, where an explicitly differential parametrization for the curve is either not available or is
inconvenient to differentiate explicitly. The method consists in first replacing a parametrization of the curve
by a piecewise polynomial interpolant of it, and then using a Newton-Cotes formula for the integration of
the resulting integral. The surprising result is that the order of convergence of the resulting quadrature is
higher than would be expected on the basis of interpolation theory alone. Indeed, an interpolation polynomial
of order p (degree p — 1), reproduces the derivatives of the parametrization function, needed for line integrals,
only up to order p —1. But on using on each subinterval an interpolation formula of order p coupled with
a Newton-Cotes quadrature rule using p nodes, the resulting integration method has the same order as
would be obtained by applying only the Newton-Cotes formula with the original parametrization of the curve.
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1. Introduction. The numerical evaluation of line integrals is of interest because
many planar boundary value problems of mathematical physics can be reformulated
as boundary integral equations. Recently, in Chien (1991), boundary integral equations
were considered for three-dimensional boundary value problems, with the resulting
integral equation being formulated over a surface. This integral equation was discretized
via a triangulation of the surface, with both the surface and the unknown being
approximated by piecewise polynomial interpolation. The resulting numerical scheme
was found to possess a higher order of convergence than expected a priori. Here then,
we want to investigate whether results of a similar nature hold also for problems
formulated over curves in two dimensions.

One situation in which these results might be useful is for planar boundary integral
equations, when the boundary is known, but where there is not an explicitly differ-
entiable parametrization for it. Our results also could find application in computer
graphics. The only paper that we have located that is somewhat related to the method
presented here is Lyness (1968). But his problem, numerical method, and analysis of
it are different than what is done here.

We define the numerical method in § 2; in § 3 the general theorem is proved. We
give a simple numerical example in § 4.

2. The numerical scheme. Let r(t), a=<t=b, be a smooth parametrization of the
curve vy in R?, with r'(¢) # 0. The problem we want to address here is the evaluation
of the line integral

b
2.1) J S(r) ds=J fr)lr'(v)] dt,

where f represents a given smooth function, defined on v. It is usually assumed that
an explicitly differentiable parametrization r(t) is given. The above integral is calculated
by analytically evaluating r'(¢) and then discretizing the integral via a quadrature,
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yielding

(22) | sewirwla= 3wl

We will modify this by also approximating r(¢), and thus the curve 7.

In many problems of mathematical physics, f represents a differentiable function
that is defined in a domain ) containing the curve v in its interior. In other words, f
can be assumed to be defined in a neighborhood of vy, not only on v itself, so that it
can be evaluated at nearby points as well. The existence of such an extension of f to
an open neighborhood ), with preservation of differentiability, can be established
rigorously; but we omit it here. This remark is of fundamental importance for our later
derivations.

In what follows, we analyze a different procedure than (2.2), one based on
piecewise polynomial interpolation of the curve y. Let us consider a uniform partition
of the interval [a, b], given by the breakpoints ¢,j=0,...,n, with ;=a+jh, h=
(b—a)/n. On each subinterval [¢,_,, ], j=1,..., n, we approximate the parametriz-
ation r(t) by using polynomial interpolation of order p=2 (degree p—1) in each
component of r(t). We denote by r,(t) the resulting piecewise polynomial function of
order p. Next we replace r(t) by r,(t) in the above integral, and then a quadrature is
applied to the latter. This yields

b n q
(2.3) J fr(O)|r' (D] dt=Y k}: Wi f(r, (sig) (1)1,
a j=1 k=1
where the wy, represent the quadrature weights appropriate for the quadrature in use,
and s,; are the quadrature nodes in the subinterval [¢,_,, ¢;] of the partition.
For the nodes and weights on each subinterval [¢,_;, t;], we assume that they are
based on a Newton-Cotes formula

Jﬂﬂmzivwwo

0 k=1

with n, =(k—1)/(q—1),k=1,..., q. Define the nodes and weights in (2.3) by

(2.4) S =t tnh,  wy = ph, k=1,...,q, j=1,...,n
For the interpolation nodes, we use

i—1 . .
(2.5) x,j=tj_,+pTlh, i=1,...,p j=1,...,n

The results in Theorem 1 generalize to other composite quadrature schemes, but the
main application appears to be to the evenly spaced case, and thus our work is restricted
to that case.

It is well known that

(2.6) [r'=rpllo=O(h"™"),

and thus we would ordinarily expect the errors in (2.3) to also be O(h”™"). In fact,
we can do better than this.
THEOREM 1. Let p=2 and q=1 be integers as used in the above definitions of the
interpolation and quadrature rules. Define
. { D p even,
P p+1, podd
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and define § similarly. Assume the curve y has a parametrization re C” *[a, b] with
r'(t)#0. Forfe C(y), assume the compositionmap f o r € Cla, b]. Furthermore, without
loss of generality, assume f is the restriction to vy of a twice continuously differentiable
function of several variables, also called f, which is defined in an open neighborhood U
of v. Then for the error in (2.3), denoted by E,(f),

(2.7) E,(f)=O(n™m7h),

A proof based on asymptotic expansions could be provided, case by case, but its
length and difficulty led us rather to present a general proof in § 3 using a less direct
approach. Some numerical illustrations are given in § 4. As a remark, note that if we
use a composite g-point Newton-Cotes quadrature formula and if p =g with p odd,
then the convergence rate is O(h”""), which is much better than was expected on the
basis of (2.6). In addition, for the general case of g =p, (2.7) implies that the order
of convergence is the same as if the exact derivative r'(¢) had been used. Also, when
q = p, the quadrature nodes {s;} and interpolation nodes {x,;} are the same, and thus
the function values of f that are used for the quadrature will satisfy

S(r, (i) = f(r(x)).
Therefore, f is being evaluated at points only on the original curve 7.

3. Proof of Theorem 1. We prove Theorem 1 with a sequence of lemmas, given
below. The error is examined on a single prototype subinterval [0, h], which is to
correspond to a small section of the curve y; and this is then applied to each subinterval
[t-1, ;] to obtain the final result in (2.7). Consider the error

h q
(3.1) E;.EJ Sr()|r' (1) dt—th vif (ry () P ()]
0 =1
with
uk=nkh, k=1,...,q,
by analogy with (2.4). Decompose E, as

(3.2) E,=Eu + Ej2+ Eps,

h
(3.3) Ehl:J LA(r(0)) = f(r, (NP (2)] dt,

h
(3.4) Ehz=J S, (U (@) = |rp(0)]] dt,

h q
(3.5) Ey= L S ()|rp(6)| de—h kfzjl Vi f(ry ()| r ()]
In defining the interpolation function r,(¢), the interpolation nodes are
_il -1
U; —’p 1 s 1=1, > Dy

by analogy with (2.5). For the error in the interpolation function r,(t), use the Newton
divided difference form

(3.6) r(t)—r,(t)=(t—v,) - - - (t—v,)r[vy,..., v, t]
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We will later differentiate this formula to obtain the error in r,(¢). Also, note that

(3.7) Max |(1—v,) - - “(t—v,)| = O(h?).

O=t=h
LeEMMA 1. Assume fe C*(U), as in Theorem 1, and assume re C?"'[0, h]. Then

p+1, peven,

. E,.=O(h? h=
(338) m=0(h"), p {p”, > odd

Proof. Applying Taylor’s theorem to f and using (3.6)-(3.7),
Sr()) = f(r, (1)) =V (r(0)) - [r[1) = r, (£)]+ O(h?")
(3.9) =[Vf(r(0)+ta(t)]-{(t—v,) - - - (t=v)r[vy, ..., vy, t]}
+ O(h"*?).

a(t) is a continuous vector-valued function, obtained in the Taylor expansion of

Vf(r(t)) as a function of ¢ about ¢t =0. Also consider the expansions
(3.10) rlog, ..., o, t1=rl[vy, ..., 0, 0]+ tr[v), ..., 0,, 4 ¢, L€[0, h],
' (D) = [F'(0)|+ 1B(1)

with B(t) continuous on [0, t].
Using these expansions in (3.9), we obtain

E, = {J (t—v) - (t—v,) dt}Vf(r(O)) vy, ..., v, 0]|r'(0)|+ O(h"*?).

If p is odd, then the above integral is zero. Considering separately the cases of p even
or odd, the above formula yields directly a proof of (3.8). O
LEMMA 2. Assume re CP*?[0, h], p=2; and assume r'(t)#0, 0=t =<h. Assume
feC?*(U), as in Theorem 1. Then
. . |pt1l, peven,
3.11 E,,=0O(h* =
( ) h2 ( ), p {p+2, p Odd

Proof. We begin by examining the error in |r)(¢)|. Write

=lr'(t)l2—|r;,(t)l2
HOIEIAGIN

From (3.6), it is straightforward to show that

(3.13) [ = rpllo=O(RP™).

(3.12) [r'(O)]=]ry(1)]

From this, we obtain the expansion
1 _ 1 1
[r(nl+Irp ol 2lr ]+ o)~ 2Ir' ()]
_ 1 r'(zh) - r"(zh)
C2rGml 2rGhP

+O0O(h"™")
(3.14)

(t—3h)+O(h*), p=3.

For the case p =2, we will later use

1 1

(3.15) P ([ +Irh(0]~ 2]r'Ch)]

+ O(h).
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By the assumption that r'(¢) # 0 on [0, h], we nave that the denominator on the right
side of (3.12) is bounded away from zero.
For the numerator in (3.12),

(3.16) PR =[ry (0] = F(£) - P (1) = rp(1) - ry(0).
Write (3.6) as

(3.17) r,(t)=r(t)—w(t)rlvy, ..., v, 1]
with

w(t)=(t—v,) - (t—v,).
Differentiate (3.17) to obtain
(3.18) rp()=r'(t) =o' ()r (1) —w(t)rs(1)
with
r(t)y=rlv,..., 0, t], ) =rlv,..., 0, 4 t]
Substituting into (3.16), we obtain
(3.19) [P (OP=1r(0) =20 (1)r' (1) - 1(1)+20(1)r (1) - (1) + O(h*" 7).
The type of expansions used in the proof of Lemma 1 are also used here.
Sf(r (1)) =f(r(1))+O(h")
=f(r(3h))+(t —3h)fi(r(3h)) + O(h?),
where f,(r(t))=(d/dt)f(r(1)). Also, expand r(t), r,(t) and ro(t) about t =3h:
r(t)=r(zh)+(t=3h)r'(zh)+ O(h?),
(3.21) ri(1) = r(5h) + (1 —3h)ri(3h) + O(h?),
ry(t) = ’2(%h)+ O(h).

For the cases with p=3, combine (3.12), (3.14), and (3.19)-(3.21), and substitute into
(3.4), obtaining

(3.20)

h
Ey,= J {f(rGh))+(t—3h)fi(r(3h)) + O(h*)}
1 (t=3h)r'Gh) - r'"(zh) 2
R E < el )}
- 20" (O[F'(5h) + (1 =3h)r"Gh)+ O(h*)] - [ri(3h) + (1 =3h)ri(zh) + O(h?)]
+20(0)[rF'Gh)+ O(h)] - [rGh)+O(h)]+ O(h*7 %)} dt.
When simplified to show the dominant terms, we have

f(rGm)r'Gh) - rGGh) {J’" f(rGm)r'Gh) - ra(Gh) U"
|r'Gh) |r'(3h)]

+{J (t—3h)w'(t) dt}
F(rGR)r"Gh) - r,Gh)+r'Gh) - ri(Gh)]
(3.22) { ]
_f(rGh))r'Gh) - r"(h)
[r'Gh)P
+O(h"*?).

E,,= w'(t) dt} + w(t) dt}

0 0

[r'(%h) . rl(%h)]_‘_fl(r(%h))r'(%h) . rl(%h)}

r'GGh)|
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For the first term, using w(h)=w(0) =0, we have

Jh o'(t)dt=w(h)—w(0)=0.

0

For the second term,

h O(h™*"), p even
t) dt = ’ ’
Jo «(?) {0, p odd.

For the third term, using integration by parts,

h h O(h"™"), p even
_lh 2 d — d — ) )
L (t—3h)w'(1) dt L w(t) dt {0’ » odd.

Combining these results proves (3.11). For the case p=2, proceed similarly,
using (3.15). 0
LemMA 3. Assume re CP"'[a, b]. Then for 0O<k=p-—1,

(3.23) Max Sup [ri®(1)|<co.
. 1=j=n '1~l<'<'/
Note also that for k=p, r'’®)(t)=0 because r,(t) is a polynomial of degree less than p
on each subinterval.
Proof. For te(t_,,t), write r,(t) using the Newton divided difference
formulation:

(3-24) "p(t) = r(xlj)+(t_xlj)r[xlja xzj]"" ' '+(t_xlj) e (t_xp~1’j)r[xlj, ey xpj]'
Differentiate this expression, to find r\*’ on (,_,, t;). The result will be a combination

of the divided differences of r used in (3.24), and they will be multiplied by various
products and sums of (f—x,;),...,(t—x,). Since re C”[a, b], these divided differ-
ences are all equal to derivatives of r at intermediate points in (¢,_,, t;), and thus these
divided differences are bounded. The coefficients are also bounded, since they are
multiples of powers of h. 0

LEMMA 4. Assume q=1, and fo re C[0, h], where

,_{q, q even,
q+1, qodd

let p=2, and let r,(t) be the polynomial interpolating r(t) at the nodes v, = (k—1/p—1)h,
k=1,...,p; and assume re C” '[0, h]. Then

(3.25) E,;=O(h%"").

Proof. Using the standard error formula for Newton-Cotes integration,
(3.26) Ews=ch™'g'?(0), (e[, ],
with

g(t)=f(r,()|rp(1)].

The function [r;,(t)| is bounded away from zero for all sufficiently small h, using (3.13)
and the assumption r'(t) #0 for all t. From Lemma 3, it follows that ge C7[0, h].
Combined with (3.26), we have (3.25). 0

Proof of Theorem 1. Apply Lemmas 1, 2, and 4 to the integration error on each
subinterval [#;_,, ¢, ]. Note that the hypotheses of these lemmas will be valid, uniformly
in h. Adding up the results over these n subintervals leads to the order of convergence
given in (2.7). 0
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TABLE
Empirical orders of convergence for various cases (q, p).

n (1,2) (2,3) (3,3) (4,4) (5,9)
4 1.70 2.62 3.45 4.29 7.44

8 1.92 2.14 3.94 4.03 6.02
16 1.98 2.02 3.98 4.01 6.05
32 2.00 2.00 4.00 4.00 6.01
64 2.00 2.00 4.00 4.00 5.98
128 2.00 2.00 4.00 4.00 —

4. Numerical examples and discussion. To illustrate our theoretical findings, in
this section we present some numerical evidence in support of our claims. The table
contains numerical evidence for the following cases: (q, p) = (1, 2), (2, 3), (3, 3), (4, 4),
(5, 5). The empirical orders of convergence were obtained using

I n I n
Order =log, l:“_’—_—(ll/Z)_ I o ;‘,
n (1/2)n

where I, denotes the integral evaluated using n subintervals. All the computations
have been performed on a 80386-based machine, with double precision accuracy. The
final entry in the last column was affected by rounding error, and it is omitted.

The integral has been chosen as follows. The curve is a section of an ellipse, given
by the parametrization r(t) = (3 cos (t), 2 sin (t)), t €[0, 1]. For the integrand function,
f(x,y)=exp (x+y), and the true integral is

J f(r) ds=73.458567502872.
y
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