
Advances in Computational Mathematics 12 (2000) 151–174 151

A fast matrix–vector multiplication method for solving the
radiosity equation

Kendall Atkinson a,∗ and David Da-Kwun Chien b

a Department of Computer Science and Department of Mathematics, University of Iowa, Iowa City,
IA 52242, USA

b Department of Mathematics, California State University – San Marcos, San Marcos, CA 92096, USA

Received September 1998; revised September 1999
Communicated by I. Sloan

A “fast matrix–vector multiplication method” is proposed for iteratively solving dis-
cretizations of the radiosity equation (I −K)u = E. The method is illustrated by applying
it to a discretization based on the centroid collocation method. A convergence analysis is
given for this discretization, yielding a discretized linear system (I − Kn)un = En. The
main contribution of the paper is the presentation of a fast method for evaluating multi-
plications Knv, avoiding the need to evaluate Kn explicitly and using fewer than O(n2)
operations. A detailed numerical example concludes the paper, and it illustrates that there
is a large speedup when compared to a direct approach to discretization and solution of the
radiosity equation. The paper is restricted to the surface S being unoccluded, a restriction
to be removed in a later paper.

Keywords: radiosity equation, integral equation, numerical analysis, collocation methods,
fast matrix–vector multiplication

AMS subject classification: 65R20

1. Introduction

The radiosity equation is a mathematical model for the brightness of a collection
of one or more surfaces when their reflectivity and emissivity are given. The equation
is

u(P)− ρ(P)
π

∫
S
u(Q)G(P ,Q)V (P ,Q) dSQ = E(P), P ∈ S, (1)

with u(P) the “brightness” or radiosity at P and E(P) the emissivity at P ∈ S. The
function ρ(P) gives the reflectivity at P ∈ S, with 0 6 ρ(P) < 1. In deriving this
equation, the reflectivity is assumed to be uniform in all directions; that is, the surface
is a Lambertian diffuse reflector.

∗ This researcher was supported in part by NSF grant DMS-9403589.

 J.C. Baltzer AG, Science Publishers

152 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

The function G is given by

G(P ,Q) =
cos θP cos θQ
|P −Q|2 =

[(Q− P)·nP][(P −Q) · nQ]
|P −Q|4 . (2)

In this, nP is the inner unit normal to S at P , θP is the angle between nP and
Q − P , and nQ and θQ are defined analogously. The function V (P ,Q) is a “line
of sight” function. More precisely, if the points P and Q can “see each other”
along a straight line segment which does not intersect S at any other point, then
V (P ,Q) = 1; and otherwise, V (P ,Q) = 0. An unoccluded surface is one for which
V ≡ 1 on S, and the numerical solution of this case by some collocation methods was
studied previously in [5]. Note that S need not be connected, and it is usually only
piecewise smooth. General introductions to the derivation, numerical solution, and
application of the radiosity equation (1) can be found in the books of Cohen and Wal-
lace [8] and Sillion and Puech [17]. In this paper, we consider only the unoccluded
case, with V ≡ 1. In a later paper, we will consider the more practical occluded
case; but the major aspects of the fast matrix–vector multiplication will remain the
same.

We often write (1) in the simpler form

u(P)−
∫
S
K(P ,Q)u(Q) dSQ = E(P), P ∈ S, (3)

or in operator form as

(I −K)u = E. (4)

In section 2, we review the properties of G and K, along with the solvability of (1).
When the boundary S is smooth, the operator K is a compact operator on various
function spaces associated with (3). However, for the more practical case that S
possesses edges and corners, the mapping properties of K are more subtle and are as
yet not as well-understood. A major contribution to the study of the properties of K
when S contains edges has recently been given by Rathsfeld [15], and related results
are given in [4] for the planar radiosity equation. We give some additional details in
later sections.

In this paper we propose a “fast method” for solving discretizations of (1). The
predominant form of discretization of (1) has been the Galerkin method with piece-
wise constant functions as the approximations. We believe collocation methods are
more efficient, in part because they involve simpler integrations. To illustrate our
fast solution method, we apply it to the very simple centroid method, the simplest of
collocation methods. It has the same rate of convergence as the Galerkin method that
is based on piecewise constant approximations. The stability and convergence of the
centroid method is discussed in section 3; and we also discuss an iteration method
for the solution of the linear system Au = E, A = I −K, associated with the cen-
troid method. The iteration method used is again very simple, being equivalent to the

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 153

standard Neumann series solution of (I −K)u = E. Improvements of this iteration
method are needed, and we are examining such methods.

The most important characteristic of this linear system Au = E is that typically it
has a very large order n, usually in the thousands. Consequently, the cost of calculating
A is quite large, the storage requirement for A is large, and the cost of the iterative
solution of Au = E is large. Herein we extend an idea developed for boundary integral
equations to the “fast solution” of this linear system. The method does not calculate K
explicitly, avoiding the calculation of most of the O(n2) integrals making up K. For
each given vector v, it produces the matrix–vector product Kv to within acceptable
accuracy in O(n log5 n) operations, which is an improvement on the O(n2) operations
of the standard methods for larger values of n. When combined with the iteration
method, we have a numerical method for solving (1) in O(n log5 n) operations, again
an improvement over standard procedures. This method is described in section 4; and
numerical examples are presented in section 5. At the conclusion of section 5, we
give a cost comparison with the direct setup and solution of Au = E; and there is a
very large speedup with our fast method.

Other “fast solution methods” have been studied for solving Au = E. These
include methods based on the fast multipole method, used previously for solving
boundary integral equations, and wavelet compression methods. As examples, see [8,
chapter 7; 10,12].

The centroid method has a very low order of convergence, but it is sufficient
for illustrating the fast matrix–vector multiplication method discussed in the paper.
Moreover, many of the methods discussed in the literature have the same order of
convergence as that presented here. We have also avoided considering higher order
methods, as they need much more attention to be given to the meshing of S. Again,
we note that this paper is restricted to S being unoccluded.

2. Properties of the radiosity equation

We quote some results from other sources, especially [5, section 2], and we
introduce some additional remarks on the properties of K in the case S is only piecewise
smooth. The properties of the integral operator K are not yet fully understood when
S is not a smooth surface, but they are similar to properties of the double layer
boundary integral operator on piecewise smooth surfaces, from the subject of potential
theory.

For S to be piecewise smooth, we mean the following. The surface S can be
decomposed into a finite union,

S = S1 ∪ · · · ∪ SJ (5)

with each Sj a smooth surface, i.e., there is a function

Fj :Rj
1−1−→
onto

Sj (6)

154 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

with Rj a closed simply-connected polygon in R2 and Fj a twice continuously differ-
entiable function on Rj . The closed subsurfaces Sj are allowed to intersect only along
common edges and corners. Note that it is quite possible that S is a disconnected set.
As notation, the expression

f ∈ C̃m(S)

will have the meaning

f ◦ Fj ∈ Cm(Rj), j = 1, . . . ,J ,

with no restrictions of continuity across edges of S. In particular, f ∈ C̃(S) will mean
only that f is continuous over each subsurface Sj .

The radiosity equation will be considered within the framework of the function
space L∞(S) with the uniform norm ‖ · ‖∞. For work in later sections, it is important
to note that L∞(S) is a space of cosets of functions. When we say x ∈ L∞(S), we
often treat x as a function, whereas, in fact, x = [x0] with x0 a measurable function
on S and

[x0] =
{
y | y measurable on S, y(t) = x0(t) almost everywhere on S

}
.

When considering the values of Ku(t), we can dispense with all t in some set of
measure zero; and for our surfaces S, the collection of edges and corners form such a
set of measure zero.

At all points P ,Q ∈ S at which S is a smooth surface, the kernel function
G(P ,Q) is continuous for P 6= Q; and for P ∈ S a point at which S is smooth, it can
be shown that ∣∣G(P ,Q)

∣∣ 6 c
for all points Q ∈ S that are sufficiently close to P . It is not true, however, that this
bound is uniform as P ,Q vary over S, with P 6= Q (e.g., see the below example (15)).
In the kernel

K(P ,Q) =
1
π
ρ(P)G(P ,Q)V (P ,Q)

we assume the reflectivity ρ ∈ C̃(S) and

‖ρ‖∞ < 1. (7)

With these assumptions on S and ρ, the function K(P ,Q) is defined except on a set
of measure zero and it is a measurable function on S × S. In addition, it is relatively
straightforward to show that K maps L∞(S) to L∞(S).

From the surface being unoccluded, we obtain easily that

K(P ,Q) > 0, P ,Q ∈ S,

at all points at which K(P ,Q) is defined. The following results are basic to the
solvability theory for (3).

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 155

Lemma 1. Assume S is the boundary of a convex bounded open set Ω, and assume S
is a surface to which the Divergence Theorem can be applied. Let P ∈ S, and let S
be smooth in an open neighborhood of P . Then G(P ,Q) > 0 for Q ∈ S and not on
an edge of S, and ∫

S
G(P ,Q) dSQ = π. (8)

Proof. See [5, section 2]. �

Lemma 2. Assume S is a piecewise smooth surface in R3 satisfying (5)–(6); and
further assume S ⊂ Ŝ, with Ŝ a surface to which the Divergence Theorem applies.
Then for almost all P ∈ S,∫

S
K(P ,Q) dSQ 6 ‖ρ‖∞ < 1. (9)

Consequently, K :L∞(S)→ L∞(S) is bounded and

‖K‖ 6 ‖ρ‖∞ < 1. (10)

Proof. This is a consequence of lemma 1. �

Theorem 3. Let S satisfy the assumptions of lemma 2. Then I − K :L∞(S)
1−1−→
onto

L∞(S) has a bounded inverse, and∥∥(I −K)−1
∥∥ 6 1

1− ‖K‖ 6
1

1− ‖ρ‖∞
. (11)

Moreover, for each E ∈ L∞(S), the equation (I − K)u = E has a unique solution
u ∈ L∞(S), and it satisfies

‖u‖∞ 6
‖E‖∞

1− ‖ρ‖∞
.

Proof. This is immediate from the preceding results and the Geometric Series Theo-
rem. In fact, the Geometric Series Theorem allows us to write

u = E +KE +K2E + · · · (12)

and to know this is convergent in L∞(S). �

2.1. Regularity results

When solving (1) numerically, it is important to know the differentiability prop-
erties of the solution u, as that affects the rate of convergence of the numerical ap-
proximants to u. When S is smooth, those properties are discussed in [5, section 2].

156 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

In brief, if S is the boundary of a convex bounded region and is (m+ 2)-times differ-
entiable, and if E is m-times differentiable on S, then u is also m-times differentiable
on S. The more practical situation is that S is only piecewise smooth, and we give a
brief example of that case, to give some intuition of what to expect. For polyhedral
regions with edges and with a piecewise constant reflectivity function ρ, Rathsfeld [15]
gives the behavior of the radiosity solution in the vicinity of the edges. He shows that

u(P) ≈ c0 + c1r
γ , c0, c1 constants, (13)

with P near to an edge of S and r equal to the distance of P from that edge. The
exponent γ ∈ (0, 1), and it depends on both ρ and the angle at which the two subsur-
faces meet to form the edge. This is also examined in some detail in [4] for the planar
radiosity equation.

Let S be a polyhedral surface and consider the values of Ku(P) as P approaches
a point P0 belonging to an edge of S. For definiteness, we assume the edges meet at
a right angle; and we comment on the use of a general angle later, preceding (17). It
suffices to consider the simple surface

S = Sxz ∪ Sxy, (14)

Sxz =
{

(x, 0, z) | 0 6 x, z 6 1
}

, Sxy =
{

(x, y, 0) | 0 6 x, y 6 1
}

,

which are unit squares in the xz and xy-planes in R3, respectively. Let P = (x, y, z)
and Q = (ξ, η, ζ) belong to S. Then

G(P ,Q) =


yζ

[(x− ξ)2 + y2 + ζ2]2 , P ∈ Sxy, Q ∈ Sxz,
zη

[(x− ξ)2 + η2 + z2]2 , P ∈ Sxz, Q ∈ Sxy,

0, otherwise.

(15)

Note that G(P ,Q) has an unbounded discontinuity as P ,Q approach a common edge
point P0 from different sections of S.

Lemma 4. Assume u ∈ C̃(S). For the surface S of (14), let P0 = (x0, 0, 0) with
0 < x0 < 1, and assume the limits

lim
Q→P0
Q∈Sxy

u(Q) ≡ uxy(P0), lim
Q→P0
Q∈Sxz

ρ(Q) ≡ ρxz(P0)

exist. Then

lim
P→P0
P∈Sxz

Ku(P) =
1
2
uxy(P0)ρxz(P0). (16)

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 157

This shows K acts like convolution with a Dirac delta function at edge points of S.
Moreover, Ku(P) is continuous on S at P = P0 if and only if

uxy(P0)ρxz(P0) = uxz(P0)ρxy(P0)

with the obvious meaning for uxz(P0) and ρxy(P0).

Proof. Using (15), write

Ku(P) =
ρ(P)
π

∫ 1

0

∫ 1

0

zηu(ξ, η, 0) dξ dη
[(x− ξ)2 + η2 + z2]2 , 0 < ξ, η 6 1, P = (x, 0, z) ∈ Sxz.

For simplicity, we ignore the term ρ(P), since it is easily dealt with. Let δ > 0 be a
parameter satisfying δ < min{x0, 1−x0}; and then decompose the above integral into
two integrals, one over a δ-neighborhood of P0 and one over the remaining portion of
Sxy. Let

Sδ =
{

(ξ, η, 0) | 0 6 η 6 δ, x0 − 1
2δ 6 ξ 6 x0 + 1

2δ
}

and write

I1 =
1
π

∫∫
Sδ

zηu(ξ, η, 0) dξ dη
[(x− ξ)2 + η2 + z2]2

and I2 as the integral over Sxy\Sδ. For each fixed δ > 0, it is trivial that

lim
P→P0
P∈Sxz

I2 = 0.

Write I1 = I1,1 + u(x0, 0, 0)I1,2 with

I1,1 =
1
π

∫∫
Sδ

zη[u(ξ, η, 0) − u(x0, 0, 0)] dξ dη
[(x− ξ)2 + η2 + z2]2 ,

I1,2 =
1
π

∫∫
Sδ

zη dξ dη
[(x− ξ)2 + η2 + z2]2 .

It is straightforward that

|I1,1| 6 c max
Q∈Sδ

∣∣u(Q)− u(P0)
∣∣, c =

1
2

(
2 +

1√
2

)
.

Pick δ such that

|I1,1| 6 ε
for a given ε > 0, and then fix δ. Directly,

I1,2 =
1

2π

{
π − arctan

(
z

x− x0 + ε/2

)
− arctan

(
z

x0 + ε/2 − x

)}
− z

2π
√
ε2 + z2

{
arctan

(
x− x0 + ε/2√

ε2 + z2

)
+ arctan

(
x0 + ε/2− x√

ε2 + z2

)}

158 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

and

lim
P→P0
P∈Sxz

I1,2 =
1
2
.

Combining these results,

lim sup
P→P0
P∈Sxz

∣∣∣∣ 1π
∫ 1

0

∫ 1

0

zηu(ξ, η, 0) dξ dη
[(x− ξ)2 + η2 + z2]2 −

1
2
uxy(P0)

∣∣∣∣ 6 ε.
Since ε was arbitrary, this proves (16). The continuity of Ku(P) at P = P0 follows
by combining (16) with the analogous result for P0 ∈ Sxy. �

The analogous result for planes meeting at other than a right angle can be proven
similarly, although the intermediate formulas are a bit more complicated. Let

S = Sϕ ∪ Sxy
with Sϕ a unit square meeting Sxy at an angle of ϕ, 0 < ϕ < π. Then

lim
P→P0
P∈Sϕ

Ku(P) = (1 + cosϕ)
1
2
uxy(P0)ρϕ(P0). (17)

3. The centroid method

To describe and illustrate the fast matrix–vector multiplication method, we use
the simplest of collocation methods, the centroid method. In it, we subdivide the
surface S into closed elements {∆j} and we approximate u by an unknown constant
over each element. We then determine the constants by forcing the approximating
piecewise constant function to satisfy the integral equation (1) exactly at the centroids
of the elements. In this section, we review the convergence theory for the method,
and we discuss and illustrate the iterative solution of the associated linear system.

We use the framework for collocation methods that is described in [1, chapters 5
and 9], and only the most pertinent points are summarized here. An implementation
of the numerical methods of this paper makes use of the boundary element package
described in [3], to which the reader is referred for more detail. It includes examples
of the centroid method applied to the radiosity equation.

We assume there is a sequence of triangulations of S, Tn = {∆n,k | 1 6 k 6 n},
with some increasing sequence of integer values n converging to infinity. In our codes,
the values of n increase by a factor of 4. For example, if S is an ellipsoid, then we
often subdivide S into a sequence of triangulations {Tn | n = 8, 32, 128, . . .}. There
are standard assumptions made on the triangulations. We describe the triangulation
process briefly, and the details are left to [1, chapter 5]. More is said about the
refinement process in section 4 below.

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 159

Associated with most surfaces are parameterizations of the surface, as in (5)–(6).
Consider only one such parameterization function, say

Fj :Rj
1−1−→
onto

Sj

with Rj a polygonal region in the plane and some 1 6 j 6 J . Triangulate Rj , say as{
∆̂jn,k | k = 1, . . . ,nj

}
. (18)

This need not be a “conforming” triangulation, in contrast to the situation with fi-
nite element methods for solving partial differential equations. Next, triangulate the
corresponding subsurface Sj using

∆jn,k = Fj
(
∆̂ j
n,k

)
, k = 1, . . . ,nj. (19)

For S as a whole, define

Tn =
J⋃
j=1

{
∆jn,k | k = 1, . . . ,nj

}
.

Often we will dispense with the subscript n, although it is to be understood implicitly.
The mesh size of this triangulation is defined by

h ≡ hn = max
16j6J

max
16k6nj

diameter
(
∆̂ j
n,k

)
.

As noted earlier, the elements of Tn are denoted collectively by Tn = {∆n,k | 1 6 k
6 n}.

For purposes of numerical integration and interpolation over the triangular ele-
ments in Tn, we need a parameterization of each such triangular element with respect
to a standard reference triangle in the plane. Let ∆n,k ∈ Tn, and assume ∆n,k is asso-
ciated with a planar triangle ∆̂n,k and a mapping function Fj , so that ∆n,k = Fj(∆̂n,k).
Our reference triangle is the unit simplex,

σ =
{

(s, t) | 0 6 s, t, s+ t 6 1
}
.

Let the vertices of ∆̂n,k be denoted by {v1, v2, v3}, and define a parameterization

function mk :σ
1−1−→
onto

∆n,k by

mk(s, t) = Fj(uv3 + tv2 + sv1), (s, t) ∈ σ, (20)

with u = 1− s− t. Using this, we can write∫
∆k
f (Q) dSQ =

∫
σ
f
(
mk(s, t)

)∣∣(Dsmk ×Dtmk)(s, t)
∣∣dσ (21)

and this can be used to numerically evaluate the left-hand integral by using numerical
integration formulas developed for the region σ. The centroid of ∆n,k is defined as

Pk = mk

(
1
3 , 1

3

)
= Fj

(
1
3 (v3 + v2 + v1)

)
. (22)

160 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

Define the operator Pn by

(Pnf)(P) = f (Pk), P ∈ ∆k, k = 1, . . . ,n, (23)

for f ∈ C̃(S). We are not concerned with the values of Pnf on the boundaries of the
elements ∆k, since Pnf is to be regarded as an element of L∞(S) and need only be
defined almost everywhere. We want to extend the above definition to all elements of
L∞(S), and to do so we call on the mathematical construction of point functionals as
defined and analyzed in [7].

Let C(S) denote the closed subspace of L∞(S) consisting of all cosets based on
continuous functions:

C(S) =
{

[f] | f ∈ C(S)
}
.

For a point P ∈ S, define a linear functional on C(S) by

`P
(
[f]
)

= f (P), f ∈ C(S).

It is bounded with ‖`P ‖ = 1. Then using the Hahn–Banach theorem, the functional
`P can be extended (in more than one way) to a linear functional on all of L∞(S),
with preservation of norm. We continue with the same notation for the extension;
and properties of the extension are studied in [7], to which we refer the reader. The
following is an important property, however, of all such extensions. Let [f] ∈ L∞(S)
and suppose that f is continuous at the point P . Then

lim
Q→P

`Q
(
[f]
)

= `P
(
[f]
)

= f (P).

Thus the value of `P ([f]) possesses the expected value, without requiring that f ∈
C(S).

The operator Pn can now be extended to L∞(S):(
Pn[f]

)
(P) = `Pk

(
[f]
)
, P ∈ ∆k, k = 1, . . . ,n, [f] ∈ L∞(S). (24)

The operator Pn is a projection on L∞(S), with

‖Pn‖ = 1, n > 1. (25)

The range of Pn is the set of all cosets of functions that are piecewise constant over
the triangulation Tn. Rather than continuing with the somewhat convoluted notation
of (24), we will use the less precise notation of (23) as a shorthand for the more precise
version of (24).

3.1. Stability and convergence

The collocation method for solving (I −K)u = E is given in its abstract formu-
lation by

(I −PnK)un = PnE (26)

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 161

with Pn an interpolatory projection operator, generally on L∞(S) or C̃(S). The cen-
troid method uses the particular choice (24).

For stability of the centroid method, combine (10) and (25) to obtain

‖PnK‖ 6 ‖K‖ < 1,∥∥(I −PnK)−1
∥∥ 6 1

1− ‖K‖ , n > 1.

For convergence, combine the above with the identity

u− un = (I −PnK)−1(u−Pnu)

to obtain

‖u− un‖∞ 6
‖u−Pnu‖∞

1− ‖K‖ , n > 1. (27)

Theorem 5. Assume the equation (1) has a solution u ∈ C̃ 1(S). Further, assume
Fj ∈ C2(Rj), 1 6 j 6 J , for the parameterization functions of (6). Then

‖u− un‖∞ = O(h). (28)

If instead the function u has a power singularity of the form given in (13), then

‖u− un‖∞ = O
(
hγ
)
. (29)

Proof. The proof of (28) follows from the straightforward interpolation error bound

‖u−Pnu‖∞ = O(h)

for a function u ∈ C̃ 1(S). The result (29) follows similarly. �

The result (29) can be improved to O(h) by using a mesh that is suitably graded
towards the edges of S, and that idea is explored in [4]. Neither of the results (28)
or (29) is a rapid rate of convergence, but methods with such a rate of convergence
are widely used. In part this follows from the nature of the additional approximations
which are made in connection with setting up and solving the linear system associated
with (26). It is also due to the difficulties of properly using higher order approxima-
tions. This includes the need to define the mesh so as to respect discontinuities in u
and its derivatives. Less well-known, it also requires using a mesh that is properly
graded near edges of S and near lines of discontinuity of derivatives of u. This has
been explored previously in the literature on the numerical solution of boundary inte-
gral equations, and we refer the reader to Elschner [9] and Rathsfeld [14], for Galerkin
and collocation methods, respectively. For a general discussion of graded meshes in
one variable, see [1, p. 125].

162 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

Superconvergence results can also be proven in some cases. These are obtained
by applying the bound

max
16k6n

∣∣u(Pk)− un(Pk)
∣∣ 6 c max

16k6n

∣∣(K(I −Pn)u
)
(Pk)

∣∣ (30)

(see [1, pp. 449–450] for the general idea used in proving this bound). Using this
bound, it is shown in [5] that if u ∈ C2(S) and if S is a C3 surface, then

max
16k6n

∣∣u(Pk)− un(Pk)
∣∣ 6 O

(
h2).

In the case of one-variable problems, it is known that this rate extends to piecewise
smooth boundaries when the mesh is suitably graded near corner points of the integra-
tion region (e.g., see [4]). We expect that this result will extend to solving problems
over piecewise smooth surfaces.

Example. Let S be the surface of the unit cube

Ω = [0, 1] × [0, 1]× [0, 1]. (31)

The reflectivity is allowed to vary over S, being equal to 0.5 in the two sides parallel
to the xz-plane, 0.4 in the two sides parallel to the xy-plane, and 0.3 in the two sides
parallel to the yz-plane. We generate our example with the known true solution

u(x, y, z) = x2 + y2 + z2.

The emissivity E(x, y, z) is generated by means of a highly accurate numerical inte-
gration of E = u − Ku, and then the equation (1) is solved by the centroid method.
Some numerical results are given in table 1. In the table,

‖u− un‖∞ ≡ max
16k6n

∣∣u(Pk)− un(Pk)
∣∣.

Note that the rate of convergence is fairly consistent with a rate of convergence of
O(h), which would be predicted from the C1 behavior of the solution u over each
smooth section of the surface.

Table 1
Errors in centroid method example.

n ‖u− un‖∞ Ratio

12 7.61E−2
48 2.58E−2 2.95

192 1.37E−2 1.88
768 7.28E−3 1.88

3072 3.77E−3 1.93
12288 1.92E−3 1.96

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 163

In general, one would expect a slower rate of convergence, probably O(hγ) with
γ
.
= 0.763, based on the results given in [15] and [4, table 1]. The value of γ varies

with the reflectivity around the edge and it varies with the angle formed at the edge by
the two adjoining subsurfaces. It is not yet known how the behavior at the corners will
affect the rate of convergence, and the latter estimate of γ assumes the edge effects
are more important than the corner effects.

3.2. The linear system

Equation (26) has the equivalent formulation

Pn(I −K)un = PnE.

From this, we obtain the equivalent linear system

(I −Kn)un = En, (32)

(un)i = un(Pi), (En)i = E(Pi), i = 1, . . . ,n,

(Kn)i,j =

∫
∆j
K(Pi,Q) dSQ, i, j = 1, . . . ,n. (33)

To set up the linear system requires the evaluation of these integrals. These must
usually be evaluated by numerical integration, taking advantage of the formulation (21).
For polyhedral surfaces S, these integrations can be made somewhat simpler, resulting
in a large speedup in our codes. Note also that (Kn)i,i = 0 since G(Pi,Q) ≡ 0 over ∆i;
and thus the system (32) contains no singular integrals, although some are likely to be
nearly singular. For codes evaluating these integrals numerically, see [3].

If the surface is curved, then we generally approximate S by a simpler boundary.
Because of the low rate of convergence in (28), it suffices to use a piecewise planar
approximation of the boundary, based on using the vertices of the triangulation Tn. This
leads to a further error of size O(h), but that is again adequate when considering (28).
For simplicity, all of our examples will be for polyhedral surfaces S; and this seems
to be the main case of interest in applications.

3.3. The iterative solution of the linear system

The iterative solution of (32) is based on fixed point iteration. Define

u(k+1)
n = En +Knu(k)

n , k = 0, 1, . . . , (34)

for some given initial guess u(0)
n . Easily,

un − u(k+1)
n = Kn

[
un − u(k)

n

]
(35)

164 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

and the method converges if ‖Kn‖ < 1. In this case, the matrix norm being used is
the row norm, compatible with the uniform norm on L∞(S). Examining the elements
of Kn, the elements are all nonnegative; and for the sum of the ith row, we have

n∑
j=1

(Kn)i,j =

∫
S
K(Pi,Q) dSQ.

Thus

‖Kn‖ 6 ‖K‖,
which, by (10), is bounded away from 1. This proves the convergence of (34), with a
rate that is independent of the size of n.

Example 2. Solve the linear systems of example 1 by using the iteration of (34). Then
after a few iterations, the ratios

‖un − u(k+1)
n ‖∞

‖un − u(k)
n ‖∞

, k = 0, 1, 2, . . . , (36)

approach a constant value of approximately 0.40, independent of n.

4. A fast matrix–vector multiplication method

There are two main practical problems in dealing with the linear system

(I −Kn)un = En (37)

when n is large. First the setup time for the matrix Kn is proportional to n2, with
a large constant of proportionality. Second, the cost of the iteration method is also
proportional to n2, even though only a few iterations are needed with the centroid
collocation method, because the error in the latter is not all that small. The setup
time seems the greater expense in practice, as some of our timings, given later, will
suggest. We propose a method to reduce the cost of both the matrix setup and the
iteration procedure, to something of theoretical order n log5 n. The method is based
on the work of Hackbusch and Nowak [11], who developed such a method for solving
boundary integral equations. In the following we describe their work and adapt it to the
radiosity equation. We consider the collocation method with only piecewise constant
functions, but their ideas are suitable for piecewise polynomial approximations of any
fixed degree. To simplify our presentation and the construction of the programs, we
assume the surface S is polyhedral throughout this and the following section. We
further assume, as stated earlier, that the surface S is unoccluded. These assumptions
will be relaxed in a future paper and our results extended, but the most important ideas
are presented more easily and intuitively with these assumptions.

We do not compute Kn explicitly. Rather, for a given vector u, we compute an
approximation to Knu. The cost will be much less than the setup cost for computing

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 165

Kn, followed by the cost of the matrix–vector multiplication Knu. This approximation
process is under the control of two parameters M and η to control the approximation
error, and the user supplies these parameters. The parameter M is a positive integer,
and the parameter η ∈ (0, 1); they are introduced below.

Recall

(Knu)i =
n∑
j=1

uj

∫
∆j
K(Pi,Q) dSQ, i = 1, . . . ,n. (38)

For each Pi, we separate out those elements ∆j of the triangulation Tn that are near
to Pi, and collectively these are called the “near field”. The remaining elements are
said to make up the “far field”. This separation is associated with the parameter η.
For elements ∆j in the near field, the corresponding integrals in (38) are computed
by standard methods; and we try to minimize the number of such integrations. For Q
belonging to an element in the far field, we approximate K(Pi,Q) based on a Taylor
polynomial of degree M , and then we carry out all integrations exactly.

We have a sequence of triangulations Tn, n = n0,n1, . . . ,nc, with Tnc the most
current subdivision of S. For simplicity, we assume n` = 4`n0, ` > 0. Let

Tn` =
{

∆`k: k = 1, . . . ,n`
}

, ` = 0, 1, . . . , c. (39)

We refer to this triangulation as being at “level `”. For every triangular element ∆ ∈ Tn
for some n, let the center of a circumscribing circle be denoted by A(∆) and let the
radius of this circle be denoted by R(∆). The collection

U = Tn0 ∪ · · · ∪ Tnc (40)

is a tree structure of clusters of the elements from the finest subdivision Tnc of S, from
the various levels of the refinement process.

Given a collocation point Pi, we say a cluster τ ∈ U is admissible if

R(τ) 6 η
∣∣Pi −A(τ)

∣∣. (41)

(The present meaning of η is that of η in (3.6) of [11].) If an element ∆ ∈ Tnc is not
admissible, we say it is in the near field of Pi; and the far field is in the closure of the
complement in S of the near field. As η decreases, the size of the near field increases,
and this generally increases the cost of computing Knu.

An admissible covering of S with respect to Pi is a collection

C = {τ1, . . . , τm} ⊂ U , S =
m⋃
1

τi,

with each τ ∈ C satisfying

τ ∈ Tnc or τ admissible.

It is shown in [11, proposition 3.9] that for each Pi, there is a unique minimal admis-
sible covering, unique in the sense of containing a minimum number of clusters τ .

166 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

To evaluate (Knu)i, begin by writing the unique minimal admissible covering
of S with respect to Pi by

S =
[
∆ci1 ∪ · · · ∪ ∆ciq

]
∪ [τ1 ∪ · · · ∪ τp] (42)

with each τi an admissible cluster and each ∆cij a non-admissible element of the current
triangulation Tnc . Then

(Knu)i =

q∑
j=1

uij

∫
∆cij

K(Pi,Q) dSQ +

p∑
j=1

∫
τj

un(Q)K(Pi,Q) dSQ. (43)

The function un(Q) is the piecewise constant function over Tnc with values determined
from u. The first integrals are evaluated by traditional means, by numerical integration,
which is discussed later in this section. The remaining integrals are evaluated as
follows. For the integral over τj , we use Taylor polynomial approximations involving
K(Pi,Q) and then perform the remaining integration exactly. How to do this efficiently
is explained below.

4.1. The far field integration

Let τ ∈ U . Using a Taylor approximation in Q of degree M about A(τ), write

[(Q− P)·nP]
|P −Q|4 ≈

∑
α∈IM

aα(P)
(
Q−A(τ)

)α
, Q ∈ τ , (44)

with A(τ) the center of the circumscribing circle for τ , as introduced earlier. The set
IM consists of all multi-integers α = (α1,α2,α3) with

α1,α2,α3 > 0, α1 + α2 + α3 6M.

As customary, if Q = (ξ, η, ζ), then Qα = ξα1ηα2ζα3 . From (44), we can obtain an
analogous approximation of K(P ,Q):

[(Q− P)·nP][(P −Q) · nQ]
|P −Q|4 ≈

∑
α∈IM

bα(P)
(
Q−A(τ)

)α
. (45)

Note that nQ is constant over any τ ∈ U . More important in obtaining (45) from (44),
the quantity (P −Q) ·nQ is constant over an element τ . To see this, decompose P −Q
into components perpendicular and parallel to τ . All variation in P − Q takes place
parallel to τ , and the part perpendicular to τ remains constant.

Next, expand and rearrange the terms in (45) into the form

K(P ,Q) ≈
∑
α∈IM

κα
(
P ,A(τ)

)
Qα, Q ∈ τ. (46)

Return to (43), to the approximation of∫
τj

un(Q)K(Pi,Q) dSQ.

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 167

Then use (46) to write∫
τj

un(Q)K(Pi,Q) dSQ ≈
∑
α∈IM

κα
(
P ,A(τ)

) ∫
τj

un(Q)Qα dSQ (47)

The integrals ∫
τ
un(Q)Qα dSQ, τ ∈ U , α ∈ IM ,

can be evaluated explicitly, and they can be obtained in a preprocessing step before
beginning the iterative solution of (37). As they are independent of the field point P
and the center of expansion A(τ), they can be obtained in O(n) steps.

In greater detail, let τ ∈ U . Then we can write

τ = ∆ci1 ∪ · · · ∪ ∆cik
for some elements ∆cij ∈ Tnc . Then

∫
τ
un(Q)Qα dSQ =

k∑
j=1

un(Q)
∫

∆cij

Qα dSQ (48)

since un(Q) is constant over each element in Tnc . Produce the integrals over the
elements of Tnc , and then extend those to the remaining clusters τ ∈ U using (48).
Since we are working with S a polyhedral surface, the integrals on the right hand side
of (48) can be evaluated explicitly.

In Hackbusch and Nowak [11], it is shown that with appropriate choices of
η = η(n) and M = M (n), the quantity Knun can be approximated, say by K̃nun, at
a cost of O(n log5 n) operations with∥∥Knun − K̃nun

∥∥
∞ = O(h)‖un‖∞. (49)

This assumes the near field integrals in (43) are evaluated exactly, or that they are
evaluated with an error consistent with (49). This is an excellent theoretical result;
and in practice, our results seem even better.

4.2. The near field integration

Consider the evaluation of the near field integrals∫
∆
K(Pi,Q) dSQ

of (43). Let σ denote the unit simplex in the st-plane, and let

m :σ
1−1−→
onto

∆

168 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

be an affine mapping that parameterizes ∆. Then∫
∆
K(Pi,Q) dSQ = 2Area(∆)

∫
σ
K
(
Pi,m(s, t)

)
dσ. (50)

We divide the evaluation into two cases.
Case (a). Let Pi ∈ ∆. Then the integrand in (50) is zero because nQ is orthogonal

to P −Q in this case, thus making K(P ,Q) = 0 as Q varies over ∆.
Case (b). Let Pi /∈ ∆. Then the integrals (50) are nonsingular. However, they

vary from being almost singular when Pi is very near ∆, to having very well-behaved
integrands when Pi is distant from ∆.

An efficient quadrature method with an exponential rate of convergence is defined
and analyzed in Schwab [16]. We have used the following somewhat simpler schema
of [3], and it is reasonably efficient in most cases. Introduce a parameter µ to indicate
the number of levels of subdivision of ∆ for a composite quadrature scheme. For the
basic quadrature scheme, we use the 7-point rule T2:5-1, of degree of precision 5,
from Stroud [18].

1. If 0 < dist(Pi, ∆) 6 h, use µ levels of subdivision of ∆ and apply the basic
quadrature scheme to each of the resulting 4µ subelements.

2. If h < dist(Pi, ∆) 6 2h, use µ − 1 levels of subdivision of ∆ and apply the basic
quadrature scheme to each of the resulting 4µ−1 subelements.

3. Continue this until no subdivision of ∆ takes place, so that the basic quadrature
scheme is applied directly to ∆.

As n increases to 4n to 16n, it seems best empirically to increase µ to µ+ 1, although
this is not always necessary. Typically, we have used µ = 0, 1, 2, 3, with µ = 3
reserved for only the largest values of n, say n = 45n0. With k > 0 levels of
subdivision, the number of integrand evaluations in the composite quadrature scheme
over ∆ is 7 · 4k. Thus we want to keep µ as small as possible, whereas it needs to
be large enough to ensure accurate evaluation of the integrals in (50). For additional
discussion in the case of solving boundary integral equations, see [2].

At present, we are also exploring methods for the exact evaluation of the near
field integrals, and we hope to present those results in a future paper.

4.3. Practicalities

The approximation of Knun requires a knowledge of µ, η, and M . For the
most part, knowing how to choose these parameters is mostly a matter of developing
intuition through experimentation. Of particular use in developing this intuition is the
identity ∫

S
K(P ,Q) dSQ = 1

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 169

for surfaces S that are the boundary of a bounded simply connected convex region
in R3 (i.e., the surface is unoccluded). The identity is for all points P ∈ S other than
edge and corner points. For additional test cases, we chose radiosity functions u(Q)
and then defined the emissivity function E(P) accordingly from (1), evaluating it by
high accuracy numerical integration. Some examples of the results are given in the
following section.

There is an additional problem with storing the large number of quantities pro-
duced in the preprocessing stage of the computation. To do this, we created a large
buffer in the main memory, dumping it as needed to disk. Then for each iteration,
it was read into the core buffer and used in generating the approximation to Knun.
Examples of the needed size of disk storage are also given in the following section.

5. Numerical examples

We illustrate the use of our fast matrix–vector multiplication process by solving
(I − Kn)un = En by the iterative method of (34). All of the results are for the
example given following (31). We vary the parameters µ of section 4.2, η of (41), and
M of (44). We give the resulting error

‖u− un‖∞ ≡ max
16k6n

∣∣u(Pk)− un(Pk)
∣∣, (51)

some associated times, and disk storage costs. The errors should be compared with
those of table 1. These results were computed on an IBM RS-6000/360 workstation.
The machine has a 50 MHz processor and a main memory of 64 megabytes.

In table 2, we fix the degree M = 1 and vary both µ and η. For each cell in the
table, the top figure is the error ‖u− un‖∞ resulting when solving the linear system
using iteration and the fast matrix–vector multiplication method. This is the error in
the answer obtained after 20 iterations, although far fewer than 20 were needed. The

Table 2
Fast matrix–vector multiplication: degree M = 1.

n (η,µ)

(0.2, 1) (0.2, 2) (0.2, 3) (0.1, 1) (0.1, 2) (0.1, 3)

768 7.48E−3 7.06E−3 7.05E−3 8.56E−3 6.65E−3 6.67E−3
4.72E+1 1.49E+2 5.52E+2 2.53E+2 9.09E+2 3.53E+3

7.49 7.49 7.49 1.55E+1 1.55E+1 1.55E+1

3072 7.45E−3 7.49E−3 7.49E−3 5.24E−3 3.26E−3 3.29E−3
1.74E+2 3.96E+2 1.28E+3 7.61E+2 2.40E+3 8.95E+3
3.91E+1 3.91E+1 3.91E+1 1.46E+2 1.46E+2 1.46E+2

12288 7.74E−3 7.76E−3 7.76E−3 3.54E−3 1.87E−3 1.87E−3
1.22E+3 1.68E+3 3.54E+3 2.80E+3 6.40E+3 2.08E+4
1.93E+2 1.93E+2 1.93E+2 6.46E+2 6.46E+2 6.46E+2

79 79 79 290 290 290

170 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

Table 3
Fast matrix–vector multiplication: degree M = 2.

n (η,µ)

(0.2, 1) (0.2, 2) (0.2, 3) (0.1, 1) (0.1, 2) (0.1, 3)

768 9.20E−3 7.29E−3 7.31E−3 9.17E−3 7.26E−3 7.28E−3
4.72E+1 1.48E+2 5.50E+2 2.57E+2 9.06E+2 3.52E+3

9.51 9.51 9.51 1.81E+1 1.81E+1 1.81E+1

3072 5.76E−3 3.78E−3 3.80E−3 5.72E−3 3.75E−3 3.77E−3
1.73E+2 3.95E+2 1.28E+3 7.59E+2 2.39E+3 8.91E+3
5.03E+1 5.03E+1 5.03E+1 1.79E+2 1.79E+2 1.79E+2

12288 3.95E−3 1.93E−3 1.96E−3 3.91E−3 1.90E−3 1.92E−3
1.21E+3 1.68E+3 3.53E+3 2.80E+3 6.38E+3 2.07E+4
2.45E+2 2.45E+2 2.45E+2 8.36E+2 8.36E+2 8.36E+2

79 79 79 290 290 290

Table 4
Fast matrix–vector multiplication: degree M = 3.

n (η,µ)

(0.2, 1) (0.2, 2) (0.2, 3) (0.1, 1) (0.1, 2) (0.1, 3)

768 9.22E−3 7.30E−3 7.32E−3 9.17E−3 7.26E−3 7.28E−3
4.73E+1 1.48E+2 5.52E+3 2.53E+2 9.09E+2 3.53E+3
1.43E+1 1.43E+1 1.43E+1 2.43E+1 2.43E+1 2.42E+1

3072 5.77E−3 3.79E−3 3.82E−3 5.73E−5 3.75E−3 3.77E−3
1.74E+2 3.91E+2 1.28E+3 7.62E+2 2.40E+3 8.93E+3
7.73E+1 7.93E+1 7.74E+1 2.53E+2 2.60E+2 2.53E+2

12288 3.96E−3 1.95E−3 1.97E−3 3.91E−3 1.90E−3 1.92E−3
1.22E+3 1.72E+3 3.54E+3 2.80E+3 6.39E+3 2.08E+4
3.80E+2 3.80E+2 3.81E+2 1.25E+3 1.25E+3 1.26E+3

79 79 79 290 290 290

second figure is the time (in seconds) for the setup, the third figure is the average cost
of the 20 iterations (including disk access). The final figure, at the bottom of each
column, is the fixed disk storage in megabytes (given only for the most expensive case
of n = 12288). Tables 3 and 4 contain the corresponding results for degrees M = 2, 3.

A more detailed examination of the timings for different parts of the program
yields additional information. In a typical iteration for larger values of n (say n > 768),
the cost of computing the near field integrals is at most 2–3% of the total time; and for
n = 12288, it was at most 1%. For the setup costs, the near field integrals are usually
the major cost, depending on the value of µ, η, and n; see table 5. Thus efficient
near-field integration is still important, just as for the case in which the matrix Kn is
calculated explicitly.

From these various tables, it appears that the choice of parameters (η,µ,M) =
(0.2, 2, 2) is sufficient for the values of n considered here. Of course, the needed

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 171

Table 5
Setup costs: proportion due to near field integrals.

n (η,µ)

(0.2, 1) (0.2, 2) (0.2, 3) (0.1, 1) (0.1, 2) (0.1, 3)

768 0.76 0.92 0.98 0.93 0.98 0.99
3072 0.46 0.76 0.93 0.76 0.93 0.98

12288 0.14 0.38 0.70 0.46 0.75 0.92

parameter values will be problem dependent, but this gives some indication of the
values needed in practice. One need not go to large values of µ and M or to small
values of η in order to obtain satisfactory accuracy. Of course, as the accuracy of
the underlying solution un of the original collocation method increases, we also need
to change the parameters (η,µ,M) so as to maintain that accuracy in the further
approximations implicit in the fast matrix–vector multiplication method. Again, it will
be necessary to do some experimentation to obtain some sense of the needed size for
these parameters.

5.1. Comparison with direct setup and solution

To give a comparison with the direct setup and solution of the linear system,
we give comparative timings for (η,µ,M) = (0.2, 2, 2) and n = 3072. These timings
were done after those given above, on a Hewlett-Packard C200 workstation with a
200 MHz PA-8200 CPU, 768 MB RAM, and a 4 GB hard disk for local swapping.
This is much faster than the machine used for the earlier calculations, and therefore
the timings given below are much smaller than those given earlier for the comparable
case. For the comparison, we did not do the case n = 12288 since our machine does
not have sufficient main memory (RAM) for setting up the complete system; it would
require 1.21 GB RAM to store the coefficients of this linear system.

At the request of a referee, we have changed the integration rule used in the
computation of the near field integrals in section 4.2. We have replaced the 7-point
rule T2:5-1 of Stroud [18] with a lower order rule, namely the 3-point rule∫

σ
f (x, y) dσ ≈ 1

6

[
f
(
0, 1

2

)
+ f

(
1
2 , 0
)

+ f
(

1
2 , 1

2

)]
,

which has degree of precision 2. Since the centroid collocation method has only
degree of precision 0, the above 3-point integration rule should not change the order
of convergence of the overall method when used properly. We also use this same rule,
together with the scheme described in case (b) of section 4.2, to evaluate the integrals
in the direct setup and solution of the linear system. In fact, the value of µ = 2 is not
sufficient for reproducing the accuracy of the collocation method, and µ = 3 is now
necessary. Nevertheless, we did the comparisons for µ = 2.

• Complete setup and direct solution of linear system. This uses the setup of the
linear system as described earlier, using the numerical integration scheme described

172 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

in section 4.2 with µ = 2. All the collocation integrals of (33) are calculated
numerically. Our program took special note that the surface was polyhedral, thereby
simplifying the calculation of surface differentials and normals. The program used
is given in the package [3], with the substitution of the 3-point integration rule, as
noted above.

– The matrix setup cost was approximately 214 seconds. For n = 12288, the setup
costs would have been roughly

42 · 214 ≈ 3400 seconds. (52)

– The linear system was solved directly using the LINPACK routine DGESL, and
the runtime was approximately 1180 seconds. Note that if the system for n =
12288 was set up and solved by this same method, the cost of solving the linear
system would have been approximately

43 · 1180 ≈ 75000 seconds. (53)

Compare this with the figures given below for our “fast” solution of this problem.

– When iteration was used to solve the linear system, as in formula (34) and with
the matrix Kn already computed, the cost per iteration was approximately 6.33
seconds. Starting from an initial guess of u(0)

n = 0, approximately k = 13
iterations were needed to reach an accuracy such that u − u(k)

n
.
= 3.74 × 10−3,

which is the best possible for the given values of µ = 2 and n = 3072. The
geometric rate of convergence, as defined in (36), converged very quickly to
0.397. It is clearly better, when n = 3072, to use iteration rather than a direct
method of solving the linear system; and this is even more true for n = 12288
when we expect the cost of each iteration to be approximately

42 · 6.33 ≈ 101 seconds.

• The fast matrix–vector multiplication method. The near field integrals were calcu-
lated with the scheme described in section 4.2, and the results were stored on the
local hard disk for later retrieval in the iteration method. Then the fast matrix–vector
multiplication was used in performing the iteration scheme of (34). The timings
include the costs of the disk usage, both in the setup of the near field integrals and
the matrix–vector multiplications for each iteration.

– The cost of refining the triangulations and of calculating the needed clustering
of the triangulations into near and far fields for n = 3072 (which includes the
earlier triangulations beginning with n = 12) was approximately 23 seconds.
There was an additional 187 seconds to go to the case of n = 12288.

– The cost of calculating the near field integrals n = 3072 was approximately 14
seconds, and it was approximately 29 seconds for n = 12288. This is done only
once, stored in RAM or on disk, and then retrieved as needed during the iteration
process. We also produce information regarding clustering of the triangulation

K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method 173

and basic integrals over these clusters, storing this information on disk for later
retrieval.

– For n = 3072, each iteration cost approximately 15 seconds, with again 13
iterations needed to reach the best possible accuracy with respect to u. For the
case of n = 12288, the cost per iteration of the fast matrix–vector multiplication
was approximately 68 seconds.

– The total solution cost for n = 3072, including 13 iterations, was approximately
230 seconds. Compare this to the more than 1400 seconds for the direct setup
and solution of the collocation linear system; or compare to the approximately
300 seconds for the direct setup and the iterative solution. For n = 12288,
including 15 iterations, it was approximately 1260 seconds with our fast method.
For comparison, the direct setup and solution costs would be vastly greater, as
indicated in (52)–(53); and the direct setup and iterative solution is estimated to
be around 4900 seconds.

Note that our fast matrix–vector multiplication algorithm has larger costs per iteration
for n = 3072. Our implementation of the direct method did not make use of disk
storage, whereas our fast matrix–vector method does make use of disk storage for
intermediate quantities (with several megabyte-sized buffers being used). Had the
direct method used such disk storage, its timing costs per iteration would have been
increased somewhat; and such disk storage will be needed with larger values of n such
as 12288. Nonetheless, the increased iteration cost of our fast method is more than
compensated for by the significant decrease in the total solution cost. With the direct
method, the setup costs are O(n2) and the cost of solving the linear system is O(n3).
These increase much more rapidly with n than does our fast method. The cost of
solving directly the linear system becomes excessive as n becomes large, and iteration
must be used, even if sufficient memory is available for a direct solution. The setup
cost of the complete matrix and the subsequent cost of an interative solution is more
manageable; but our method is still superior for such larger values of n.

Clearly, these comparisons will vary with the speed of convergence of the iteration
method and with the nature of the solution being sought. But our example demonstrates
that significant decreases in computing costs are possible with our method.

References

[1] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge Uni-
versity Press, 1997).

[2] K. Atkinson, The numerical solution of boundary integral equations, in: The State of the Art in
Numerical Analysis, eds. I. Duff and G. Watson (Clarendon Press, Oxford, 1997) pp. 223–259.

[3] K. Atkinson, User’s guide to a boundary element package for solving integral equations on piecewise
smooth surfaces (Release #2), Reports on Computational Mathematics, No. 103, Department of
Mathematics, University of Iowa, Iowa City (1998). The programs and guide are available via the
URL http://www.math.uiowa.edu/∼atkinson/bie.html.

174 K. Atkinson, D.D. Chien / A fast matrix–vector multiplication method

[4] K. Atkinson, The planar radiosity equation and its numerical solution, IMA J. Numer. Anal., to
appear. Also available as Reports on Computational Mathematics, No. 109, Department of Mathe-
matics, University of Iowa (1998).

[5] K. Atkinson and G. Chandler, The collocation method for solving the radiosity equation for unoc-
cluded surfaces, J. Integral Equations Appl. 10 (1998) 253–290.

[6] K. Atkinson and D. Chien, Piecewise polynomial collocation for boundary integral equations, SIAM
J. Sci. Comput. 16 (1995) 651–681.

[7] K. Atkinson, I. Graham and I. Sloan, Piecewise continuous collocation for integral equations, SIAM
J. Number. Anal. 20 (1983) 172–186.

[8] M. Cohen and J. Wallace, Radiosity and Realistic Image Synthesis (Academic Press, New York,
1993).

[9] J. Elschner, The double layer potential operator over polyhedral domains II: Spline Galerkin meth-
ods, Math. Methods Appl. Sci. 15 (1992) 23–37.

[10] S. Gortler, P. Schröder, M. Cohen and P. Hanrahan, Wavelet radiosity, in: Computer Graphics
Proceedings, Annual Conference Series (1993) pp. 221–230.

[11] W. Hackbusch and Z. Nowak, On the fast matrix multiplication in the boundary element method
by panel clustering, Numer. Math. 54 (1989) 463–491.

[12] P. Hanrahan, D. Salzman and L. Aupperlie, A rapid hierarchical radiosity algorithm, Computer
Graphics 25(4) (1991) 197–206.

[13] R. Lewis, Solving the classic radiosity equation using multigrid techniques, Preprint, University of
British Columbia (1992).

[14] A. Rathsfeld, The invertibility of the double layer potential operator in the space of continuous
functions defined on a polyhedron: The panel method, Appl. Anal. 45 (1992) 135–177.

[15] A. Rathsfeld, Edge asymptotics for the radiosity equation over polyhedral boundaries, Preprint 369,
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin (1997).

[16] C. Schwab, Variable order composite quadrature of singular and nearly singular integrals, Comput.
53 (1994) 173–194.

[17] F. Sillion and C. Puech, Radiosity and Global Illumination (Morgan Kaufmann, San Francisco, CA,
1994).

[18] A. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, Englewood Cliffs, NJ,
1971).

