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ABSTRACT

This thesis consists of two parts. For the first part, we formulate dynamic fric-

tionless contact problem with an elastic body, based on Signorini’s contact condition,

and consider how to solve this formulation. First, we set up a time-discretization of

this problem, which, for each time-step, is a variational inequality. We also derive the

minimization problem equivalent to the variational inequality for each-step. After the

energy functional for an elastic body is defined, it is shown that the energy functional

is increased or decreased, depending on our numerical scheme. Especially, employing

the implicit Euler method, the convergence for the time-discretization is investigated.

For that numerical method, we obtain an estimate of the magnitude of the normal

contact force in the Sobolev space H−1/2(∂Ω), depending on the time step size h. In-

deed, we need more investigation to determine the boundedness of the contact force

and finer regularity properties and conservation of energy, and then implement our

numerical scheme. These will be future works.

For the second part, we set up the dynamic frictionless Euler–Bernoulli equa-

tion with Signorini contact conditions along the length of a thin beam and consider

how to solve this equation. The existence of solutions is shown, based on a penalty

method. While existence of solutions is shown, there are no results on whether energy

is conserved in the limit. We formulate a time-discretization, using the implicit Euler

method for contact conditions and the midpoint rule for the elastic part of the equa-

tions. The energy functional is defined, and convergence for the time-discretization
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is investigated. Our time-discretization leads to energy dissipation. Using this time

discretization and the finite element method with B-spline basis functions, we com-

pute numerical solutions. In order to solve the linear complementarity problem that

arises in the numerical method, we use a smoothed guarded Newton method. The

numerical results are guaranteed to be dissipative. We also investigate numerically

the question of whether the numerical solutions converge strongly to their limit, and

if energy is conserved for the limit. Our numerical results give some evidence that

this is so.
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CHAPTER 1
INTRODUCTION

The contact problem has been an important issue in solid mechanics. After the

foundation of continuum mechanics, whose concepts provide a framework for studying

the behavior of solids was established early in the nineteenth century, contact prob-

lems in solid mechanics began appearing in the literature. See [44]. In fact, friction

problem had been studied before the continuum concept was developed. However,

the use of Coulomb’s law applied point-wise in contact problems with the theory of

elasticity has caused mathematical difficulties. See [46, 12, 18]. Furthermore, when

the frictional contact problem is considered together with dynamic effects, it leads to

extremely complicated physical mechanism and mathematical models.

According to these issues involved with friction, in this thesis we first consider

simpler problem, a dynamic contact problem without friction. However, the current

existence theory is not very satisfactory as it either deals with simplified problems with

special geometry [36, 51, 50] or gives no indication as to whether energy is conserved,

dissipated, or even produced in impact [33]. There has been considerable focus on

problems with Coulomb friction and viscoelastic bodies [9, 13, 12, 14, 30, 31, 32, 38],

although these too have often involved unrealistic assumptions in order to obtain

existence of solutions (e.g., penalty approximation for contact, non-local friction laws,

“viscous” contact laws). There has also been considerable work investigating static

and quasistatic approximations of contact problems [10, 11, 14, 27, 29, 28, 32].

The study of contact problems in elasticity had started in 1881 by Hertz [26].
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At that time he analyzed a static frictionless contact problem of two elastic bodies.

After around half a century, Signorini [52] in 1933 formulated unilaterally the equilib-

rium of an elastic body in contact with frictionless rigid foundation (obstacle), which

has been called Sognorini’s problem.

Signorini’s problem was first solved rigorously by Fichera. He considered a

question of existence and uniqueness of a variational inequality characterizing the

minimization of the total potential energy on convex subsets of Banach spaces. Since

his paper [22] was published, many important contact problems in mechanic and

physics have been formulated in terms of variational inequality. For more on varia-

tional inequalities and their applications, see, for example, [17, 5]. In fact, variational

inequalities have been recognized to play an important role to develop powerful nu-

merical scheme. It turns out that a number of advanced studies of contact problem

in solid mechanic resulted from development of theory of variational inequalities.

A number of papers have discussed the problem of various kinds of dynamic

elastic bodies making contact with rigid foundations. For the case of the wave equa-

tion with frictionless contact at a boundary, there are the results of Kim [33]. The

group of Cocu, Raous and Pratt and their students have carried out the analysis

of many dynamic and quasi-static problems involving viscoelastic bodies in contact

with a frictional rigid foundation (using a non-local frictional law) [10, 13, 14]. Others

working on quasi-static and dynamic contact problems include Han and Sofonea et

al. [25, 7], Jarušek and Eck [30, 31], for contact on a boundary although the boundary

conditions are not always Signorini boundary conditions. Dynamic contact problems
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with compliant foundations, where the normal contact force is modeled as being due

to a linear or nonlinear spring at each contact points, have been used since the work

of Oden and Martins [37, 38] and others. However, these models do not address the

question of how to handle truly rigid foundations, or the behavior of the solutions as

the stiffness of the foundation goes to infinity. The question of energy conservation,

or even of a complete accounting for energy, is not addressed in the above work.

In the first part of this thesis, the dynamic contact formulations that we con-

sider are based on Signorini’s formulation. The contact in our mathematical model

is unilaterally occurring between an elastic body and a frictionless rigid foundation.

Also, an elastic body does not penetrate a rigid foundation. Furthermore, if the

body and the foundation do not touch at a point, then there is no contact force at

that point. The actual contact surface on which the body touches the foundation is

unknown in advance.

In the second part of this thesis, we consider a one-dimensional system where

contact (modeled using Signorini conditions) can occur anywhere within the spatial

extent of the system, and not only at its boundaries. The closest system to this that

has been studied in the literature was analyzed by Schatzman [51] which considered

a string which moved according to the one-dimensional wave equation and could

make contact with a rigid concave obstacle. In that case, energy was shown to

be conserved; the analysis was based on the use of characteristics. Recent work

by Shillor et al. has addressed questions relating to contact problems with Euler–

Bernoulli beams. Andrews, Shillor and Wright [2] treats frictional contact with both



4

compliant and Signorini contact at an end point of the beam. In that paper they show

that for a Euler–Bernoulli beam with a model of Kelvin–Voigt viscoelasticity and

compliant contact, then existence and uniqueness hold (even if there is viscosity). In

the Signorini contact case, existence is shown, but uniqueness is not. In our thesis, we

consider contact that is distributed along the beam. Garćıa, Han, Shillor and Sofonea

[23] consider a quasi-static frictional contact problem with an Euler–Bernoulli beam,

but include the effect of wear due to the contact.

Finally, we mention that the emphasis on this thesis is on dynamic aspects of

contact without friction.

1.1 Notation and some basic concepts

Mathematically, physical quantities such as displacement, velocity, strain, and

stress which are used in continuum mechanics are represented by tensors. Then scalar

can be considered as zero-order tensor and vector can be considered as first-order

tensor.

Throughout this thesis, we employ some notations and conventions which are

standard in modern mathematics. The Signorini’s problem and dynamic contact

problems that we deal with are presented in symbolic (vector) notation. However,

sometimes we will express our system in terms of index (indical) notation, instead of

vector notation, since the index notation may give us more clear, concise and useful

expression. Vectors and tensors are generally designated by bold face characters such

as a, b, etc. In the index notation vector a is represented by single subscript, i.e.,
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[ai].

In three-dimensional Euclidean space such as ordinary physical space, vector

[ai] which is denoted by the index notation can be displayed by the form

[ai] = (a1, a2, a3) or [ai] =


a1

a2

a3

 . (1.1)

Then the first form in (1.1) is the transpose of a denoted by aT . Similarly, a second-

order tensor [Aij ] which is denoted by the index notation represents nine components

and is presented as

[Aij ] =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

The good example of a second-order tensor in continuum mechanics is strain and

stress tensor.

Under the rules of index notation, the summation convention is stated as

follows: when we have a repeated index, called dummy index, in given term, we sum

over all values of the index. Also the unrepeated index, called free index, must appear

in every term in an equation correctly.

We introduce an (inner) product of tensors and the differential vector operator

∇ with tensors. When we define product of two vectors, we use the single dot and

write

a · b = [ai] · [bi] =
d∑

i=1

ai · bi.
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Note that throughout this thesis, we use the Einstein summation convention, which

omits the summation signs (we sum over repeated indices):

a · b = ai · bi.

In this thesis, there is no distinction between a · b and aT · b. Similarly, when we

define product of two second-order tensors, we use the double dot and write

A : B = [Aij] : [Bij ] =
d∑

i,j=1

AijBij.

For a vector a and tensor A, divergence of those can be written as

∇ · a = ai,i =
∂ai

∂xi
and ∇ ·A = Aij,j =

∂Aij

∂xj
,

where ∇ = (∂/∂x1, ∂/∂x2, · · · , ∂/∂xd). Note that for scalar function φ, we define a

gradient of φ as

∇φ =

(
∂φ

∂x1
,
∂φ

∂x2
, · · · , ∂φ

∂xd

)
.

In order to simplify the algebraic expression in the analysis, we present some

special notations:

1. For defined functions f, g, we write f = O(g) as t→ t0, if there exists a constant

C such that |f(t)| ≤ C |g(t)|.

2. We write f(t) ∼ g(t) if

lim
t→∞

f(t)

g(t)
= 1.
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In general, we will consider certain spaces of functions defined on a bounded

open domain Ω in Rd(1 ≤ d ≤ 3 in application). We will mention function space in

Section 2.2. In application, we consider Ω as an open domain representing an interior

of a deformable elastic material in Rd and a connected domain with points on only

one side of a boundary ∂Ω.

Suppose that a Cartesian coordinate system is established in Rd and any vector

x in Rd is specified by x = (x1, x2, · · · , xd). We introduce a definition of Lipschitz

domain from which most of basic results will be obtained.

1. Let a boundary ∂Ω cover with a collection {U1,U2, · · ·UM} of open subsets of

Rd and ∂Ω ⊂ ⋃M
r=1 Ur such that

∂Ωr = Ur ∩ ∂Ω �= ∅, r = 1, 2, · · · ,M.

2. After an affine change of local coordinates such as translation and rotation,

assume that there are an α > 0 and β > 0 such that, locally, the smoothness of

the boundary ∂Ω can be described in terms of hypersurfaces defined by functions

fr on sets Sr, where

Sr = {yr = (yr1, yr2, · · · , yrd−1) | |yri| < α, i = 1, 2, · · · , d− 1},

∂Ωr = Ur ∩ ∂Ω = {(yr, fr(yr)) | yr ∈ Sr},

U+
r = Ur ∩ Ω = {yr | yr ∈ Sr, fr(yr) < yrd < fr(yr) + β},

U+
r = Ur − Ω = {yr | yr ∈ Sr, fr(yr)− β < yrd < fr(yr)}.
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3. Function fr is Lipschitz continuous, which satisfies the estimate

|fr(xr)− fr(yr)| ≤ C‖xr − yr‖ for xr,yr ∈ Sr,

where ‖ · ‖ denotes the Euclidean norm on Rd.

Then if the above conditions 1, 2, 3 are satisfied, Ω is said to be a Lipschitzian

domain. Under Lipschitzian domain, outward normal vector n(x) on ∂Ω exists almost

everywhere on ∂Ω. Note that each occurrence, C denotes a constant (a quantity that

depends only on the data of the problem), which may differ at each occurrence of this

thesis.

We denote by u a displacement vector field on an open domain Ω which

describes the deformation of the elastic body Ω (u : Ω → Rd) and denote by f

(f : Ω→ Rd) a body force which acts on Ω. Also we denote the magnitude of contact

force by N and so Nn is a contact force, which acts only on the boundary ∂Ω. The

gap function g is used to describe a measure of the “gap” between the elastic body

and rigid foundation. Since we assume that deformation is assumed small, we use the

linearized strain tensor given by

ε[u] = εij[u] =
1

2
(
∂ui

∂xj
+
∂uj

∂xi
) =

1

2
(ui,j + uj,i), (1.2)

where ui,j = ∂ui/∂xj . Note that φ,j = ∂φ/∂xj .

A elastic solid materials are characterized by constitutive equation which re-

lates the strain tensor and stress tensor on the specific form

σij [u] = Eijklεkl[u] = Eijkluk,l for 1 ≤ i, j, k, l ≤ d,
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where the above expression is known as the generalized Hooke’s law. Now we assume

that the fourth-order Hooke’s tensor Eijkl satisfies the following conditions:

1. Eijkl ∈ L∞(Ω), i.e., there is a constant number M such that

max
1≤i,j,k,l≤d

‖Eijkl‖ ≤M,

2. Eijkl has the symmetry properties:

Eijkl = Ejikl = Eijlk = Eklij almost everywhere in Ω,

3. There is a constant number m > 0 such that almost everywhere in Ω,

Eijklεijεkl ≥ mεijεij.

Note that εkl = εlk. Since Eijkl and εkl have these symmetry properties, the stress

tensor σij is symmetric.

1.2 The equations of elasticity

The equations of elasticity are given by

ρ
∂2u

∂t2
= ∇ · σ[u] + f in Ω,

where ρ is the density of the elastic body; u is a displacement; σ is a stress tensor; f

is the body force applied to the elastic body. The boundary conditions that are used

depend on the physical situation. If the boundary is fixed or clamped on ΓD ⊂ ∂Ω,

then

u(x) = k(x), x ∈ ΓD
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for some given function k on ΓD. If the boundary is not fixed in position, but has a

boundary traction t(x) applied to it over ΓF ⊂ ∂Ω, then

n · σ[u](x) = t(x), x ∈ ΓF .

Frictionless Signorini contact conditions for a piece of the boundary ΓC ⊂ ∂Ω can be

written as

0 ≤ u(x) · n + g(x) ⊥ N(x) ≥ 0 for almost all x ∈ ΓC ,

where

n(x) · σ[u](x) = N(x)n(x) for almost all x ∈ ΓC .

Note that the condition “0 ≤ a(x) ⊥ b(x) ≥ 0 for almost all x ∈ Γ” means that

a(x), b(x) ≥ 0 for almost all x ∈ ΓC and that
∫
ΓC
a(x) b(x) dx = 0. Note that

ΓC ∪ ΓF ∪ ΓD = ∂Ω.

1.3 The Euler–Bernoulli beam in contact

The Euler–Bernoulli beam equation is an approximate equation for long, slen-

der rods and beams under small deformation in a vertical plane. What is immediately

evident when you try to bend rod or beam is that they are generally much stronger

and stiffer along the rod or beam, while they bend much more easily in the transverse

direction. The Euler–Bernoulli beam equation ignores any deformation in the axial

direction (along the beam), and considers only transverse deformation, since this is

usually much larger. If we consider the forces acting on a cross-section of the beam,

then there are vertical transverse and axial forces. The axial forces arise to counter
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bending of the beam; since the beam is assumed slender, we can take a simple linear

approximation for the axial forces on the cross-section. Since the deformation in axial

direction is assumed negligible, the integral of the axial forces over the cross section

must be zero. Thus the axial forces have the functional form “function(x) · (y − y)”

where y is the transverse component of the centroid of the cross-section. Since the

axial deformation is negligible, the deformation generating the axial forces is bend-

ing. For small deformations (of any kind), the axial forces have the “function(x)”

above would be proportional to the radius of curvature, or ∂2u/∂x2 plus higher order

terms, where u(x, t) is the vertical displacement of the beam’s centroid. More refined

calculation give the elastic energy in such a beam to be well approximated by

1

2

∫ L

0

EI

(
∂2u

∂x2

)2

dx,

where E is the Young’s modulus of the material and

I =

∫
A
(y − y)2 dxdy

is the second moment of area for the cross-section A.

Applying standard variational techniques, we can obtain the equations for the

vertical displacement u of an Euler–Bernoulli beam with constant cross section:

ρA
∂2u

∂t2
= −EI ∂

4u

∂x4
+ f(x, t), 0 < x < L,

where A is the area of the cross section; f is the body force applied to the beam.

Note that this is a fourth order rather than a second order equation, as is usual in

elasticity. Initial and boundary conditions need to be included. There must be an
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Figure 1.1: Cross-section of a slender beam.

initial configuration, u(x, 0) = u0(x), and an initial velocity ∂u/∂t(x, 0) = v0(x). The

boundary conditions that we use are clamped boundary conditions at x = 0: u(0, t) =

0, ∂u/∂x(0, t) = 0, and free boundary conditions at x = L: ∂2u/∂x2(L, t) = 0 and

∂3u/∂x3(L, t) = 0. Note that the free boundary conditions are obtained from the

variational conditions.

If we consider contact that can occur along the beam (rather than just at the

end-points), we have the following version of Signorini’s contact conditions:

0 ≤ u(x, t) + g(x) ⊥ N(x, t) ≥ 0,

where N(x, t) is the (vertical) contact force, and the equations of motion need to be

modified to include it:

ρA
∂2u

∂t2
= −EI ∂

4u

∂x4
+ f(x, t) +N(x, t), 0 < x < L.

This problem is easier to study both theoretically and numerically as it is a

spatially one-dimensional problem. If we considered only axial deformations and used
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a linear elastic model, we would arrive at the wave equation:

ρA
∂2u

∂t2
= −EA∂

2u

∂x2
+ f(x, t), 0 < x < L.

The corresponding contact problem:

ρA
∂2u

∂t2
= −EA∂

2u

∂x2
+ f(x, t) +N(x, t), 0 < x < L

0 ≤ u(x, t) + g(x) ⊥ N(x, t) ≥ 0

has been studied by Schatzman [51], and complete results were obtained (including

conservation of energy). However, the methods used in [51] relied on studying char-

acteristics for the wave equation. The Euler–Bernoulli equation on the other hand

does not have characteristics as it is second order in time and fourth order in space;

waves can travel arbitrarily rapidly. Also, it should be noted that Schatzman [51]

did not consider time-discretization or efficient numerical methods for the solution

of the wave equation with unilateral contact. Andrews, Shillor and Wright [2] only

occurred at one end, not along the length of the beam. The best known of these

are Timoshenko’s beam equations [57, 58]. The Timoshenko equations are a system

of two second order equations which have characteristics, just as the wave equation

has characteristics. The main difference is that there are two characteristic speeds,

which would complicate the analysis in [51]. These equations are a topic for later

investigation.

1.4 Outline

The structure of this thesis is as follows. In Chapter 2, we provide some

preliminaries which are applied throughout this thesis. In Section 2.1, we introduce
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basic concepts of functional analysis and convex analysis. In Section 2.2, we present

the useful notions of space which are relevant to partial differential equations. In

Section 2.3, we review a few theorems. In Section 2.4, we discuss penalty method and

linear complementarity problem.

In Chapter 3, we establish a continuous formulation of dynamic frictionless

contact condition with an elastic body, based on Signorini’s contact condition. From

Section 3.1 to Section 3.2 we see how to derive the dynamic frictionless contact prob-

lem. Employing time discretization, we set up three numerical formulations for the

equations of motion and contact conditions in Section 3.3 and Section 3.4. In Sec-

tion 3.5, we obtain a variational inequality equivalent to our contact problem and also

derive minimization problem equivalent to a variational inequality. This plays an im-

portant role in finding numerical solutions at each time step. Total energy functional

for elastic bodies is defined in Section 3.7.

In Chapter 4, we discuss the convergence of our time discretization. In Sec-

tion 4.1, it is shown that the continuous linear interpolants of velocity and displace-

ment are bounded in appropriate spaces. In Section 4.2, we derive an estimate of

magnitude of contact force at one time step, depending our numerical schemes.

In Chapter 5, we begin considering the Euler–Bernoulli beam equation with

Signorini contact conditions. In Section 5.1, imposing Signorini contact condition

along the Euler–Bernoulli beam, we formulate Euler–Bernoulli beam equation with

Signorini contact conditions. In Section 5.2, the existence of a solution is shown,

based on penalty method.
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In Chapter 6, we set up a time discretization, using the midpoint rule for

the elastic part and the implicit Euler method for contact conditions and investigate

the convergence of time discretization. In Section 6.2, it is shown that our time

discretization leads to energy dissipation. This gives us a crucial step for analyzing the

convergence theory. In Section 6.3, we show that the continuous linear interpolants

of u converge to a solution.

In Chapter 7, we consider how to implement our numerical scheme. In Sec-

tion 7.1, we discuss the Finite Element Method for the Euler–Bernoulli beam equation

with B-spline basis functions. In Section 7.2, we show that energy is dissipated in

fully discrete case. In Section 7.3, we solve the linear complementarity problem that

arises in the numerical method, using smoothed guarded Newton method. Also the

relevant theory of semi-smooth functions is discussed. In Section 7.4, numerical ev-

idence for strong convergence is presented. In Section 7.6, while numerical results

(simulation) are presented, we discuss our numerical experience and the numerical

results.

Finally we list conclusions and future works in Chapter 8. We discuss the

issues related to elastic bodies in and the Euler–Bernoulli beam in dynamic frictionless

contact. This thesis is concluded with discussion of future works in Section 8.3.
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CHAPTER 2
PRELIMINARIES

2.1 Linear operators and weak concepts

Let X and Y be real Banach spaces.

Definition 2.1. We say that X is compactly imbedded in Y if

1. X is continuously imbedded in Y , i.e., X ⊂ Y and there is a constant C

with ‖x‖Y ≤ C‖x‖X for every x ∈ X,

2. Any bounded sequence in X is precompact, i.e., every bounded sequence

in X has a subsequence that converges in Y .

Also we define a bounded linear operator.

Definition 2.2. A linear operator A : X → Y is bounded if there exists a constant

C such that

‖Ax‖Y ≤ C‖x‖X for every x ∈ X.

If no such C exists, the operator is unbounded. Then we call the smallest such

C the norm of A.

Definition 2.3. We denote the set of all bounded linear operators from X to Y by

L(X, Y ). We also use the notation L(X) for L(X,X).

Thus if A ∈ L(X, Y ), we define the norm of a linear bounded operator A as

‖A‖ := sup
‖x‖x �=0

‖Ax‖Y
‖x‖X = sup

‖x‖≤1

‖Ax‖Y .



17

Definition 2.4. A bounded linear operator f ∈ L(X,R) is called a bounded linear

functional on X. The space of all bounded linear functionals on X is called the dual

space and denoted by X∗.

For spaceX and the dual spaceX∗ we introduce the notation: If x ∈ X and f ∈

X∗, we write 〈f, x〉 to denote f(x). So the the symbol 〈·, ·〉 denote the duality paring

on X∗ and X.

Let H be a Hilbert space with inner product (·, ·).

Definition 2.5. If A ∈ L(H) satisfies (Au, v) = (u,A∗v) for all u, v ∈ H , A∗ is called

its adjoint. Furthermore A is said to be self-adjoint if A∗ = A.

Indeed for a bounded linear operator A from one Hilbert space H1 to another

H2, its adjoint and self-adjoint can be defined. See [41] for the detailed discussion.

As usual, when we solve partial differential equation we involves a sequences of

function which approach to solution. But it not easy to show that they converges in

Banach space. For such difficulty, weak convergence is extremely useful. We introduce

the following definition.

Definition 2.6. A sequence xn inX is said to converge weakly to x if f(xn) converges

to f(x) for every f ∈ X∗. A sequence fn in X∗ is said to converges weakly* to f if

fn(x) converges to f(x) for every x ∈ X.

In order to distinguish notations, we write xn → x for strong convergence in

norm, xn ⇀ x for weak convergence, and fn ⇀
∗ f for weak* convergence.
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Let K be a subset of X. Then K is said to be convex if (1 − λ)x + λy ∈ K

for x, y ∈ K and 0 < λ < 1. Let F be a functional from K to (−∞,∞]. Then F is

said to be convex if

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y), for x, y ∈ K and 0 < λ < 1.

Now, we introduce weak semicontinuity and semicontinuity. Let K be a

nonempty closed convex subset of X.

Definition 2.7. A functional F is said to be weakly lower semicontinuous on K if

for any sequence xn in K with the property that xn ⇀ x in K, we have

lim inf
n→∞

F (xn) ≥ F (x). (2.1)

F is weakly upper semicontinuous on X if lim supn→∞ F (xn) ≤ F (x). Also F

is said to be lower semicontinuous if for every sequence xn → x in X and (2.1) holds.

Upper semicontinuous is defined in an analogous way. The detailed arguments can

found in [48, 32].

Finally, we mention the Mazur’s Lemma which is applicable to solving par-

tial differential equations. Mazur’s Lemma asserts that a closed convex subset K is

weakly closed and if F is convex lower semicontinuous, it is weakly sequentially lower

semicontinuous. See [3, 20]. More generalized Mazur’s Lemma can be found in [35].

2.2 Function spaces

In this section, we introduce some definitions and results related to function

space for later references.
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2.2.1 Multi-index notation

Generally, the notation of multi-index is very convenient to denote partial

derivatives of function u(x) defined on x ∈ Ω ⊂ Rd. A multi-index is a vector of the

form

α = (α1, α2, · · · , αd),

where each component αi is a nonnegative integer. For any multi-index α, we define

the multi-index order as

|α| = α1 + α2 + · · ·+ αd.

For any vector x = (x1, x2, · · · , xd), w set

x� = xα1
1 x

α2
2 · · ·xαd

d .

From now on, we denote the multi-index α instead of α. Given a multi-index α, we

define the α partial derivative as

Dαu(x) =
∂|α|u(x)

∂xα1
1 ∂x

α2
2 · · ·∂xαd

d

.

If k is a nonnegative integer, we define

Dku(x) = {Dαu(x) | |α| = k},

the set of all partial derivatives of order k.

For vector-valued function u(x) = (u1(x), u2(x), · · · , um(x)), we define

Dαu(x) = (Dαu1(x), Dαu2(x), · · · , Dαum(x)).
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Then we have

Dku(x) = {Dαu(x) | |α| = k}.

Throughout this thesis, we will use del operator ∇ for the special case k = 1.

2.2.2 Well-known function spaces

For a normed vector space X, we denote its norm by ‖ · ‖X . If X is a Hilbert

space, its inner product and associated norm are denoted by (·, ·)X and ‖ ·‖X , respec-

tively. First given u ∈ C(Ω), we define its support as a closed set

supp(u) = {x ∈ Ω | u(x) �= 0}

Let U be an open subset of Rd. Then we write U ⊂⊂ Ω if U ⊂ U ⊂ Ω and U is

compact set.

We make an introduction of the well-known (scalar) function spaces used very

often in partial differential equation.

1. Ck(Ω) is the space of functions u with continuous derivatives Dαu on Ω for all

multi-index α, |α| ≤ k.

2. C∞(Ω) = ∩∞k=0C
k(Ω).

3. Ck
0 (Ω) is the space of functions in Ck(Ω) with compact support.

4. D(Ω) = C∞
0 (Ω) is the space of test functions defined on Ω.

5. D′(Ω) is the space of distributions, i.e., the topological dual space of D(Ω).



21

6. Lp(Ω) is the space of Lebesgue measurable functions u for which the norm

‖u‖Lp(Ω) :=

[∫
Ω

|u(x)|p dx
]1/p

<∞,

where 1 ≤ p <∞ and dx = dx1 dx2 · · ·dxd.

7. L∞(Ω) is the space of Lebesgue measurable function u for which norm

‖u‖L∞(Ω) := ess supx∈Ω|u(x)| <∞.

We extend those space to some Banach spaces consisting of mappings

u : [0, T ]→ X,

where X is a real Banach space, with the norm ‖ · ‖X . See [20]. Now we list some of

those space.

1. Lp(0, T ;X) is the space of all measurable functions u : [0, T ] → X with the

norm

‖u‖LP (0,T ;X) :=

(∫ T

0

‖u(t)‖pX dt
)1/p

<∞ for 1 ≤ p <∞

and L∞(0, T ;X) is the space of measurable u : [0, T ]→ X with the norm

‖u‖L∞(0,T ;X) := ess sup0≤t≤T‖u(t)‖X .

2. C(0, T ;X) is the continuous functions u : [0, T ]→ X with the norm

‖u‖C([0,T ];X) := max
0≤t≤T

‖u(t)‖X <∞.
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Similarly we will present the Sobolev spaces W 1,p(0, T ;X) in the next Subsection.

A function f defined on Ω is called a test function if f ∈ C∞(Ω) and there

exists a compact set K ⊂ Ω such that the support of f lies in K. A distribution

is a linear mapping φ �→ (f, φ) from D(Ω) → R such that if φn → φ in D(Ω), then

(f, φn)→ (f, φ) as n→∞.

2.2.3 Hölder spaces

It turns out to be useful to consider Hölder continuous functions. We present

the definition of Hölder continuous function. Let U be a subset of Rd. Let X be a

Banach space.

Definition 2.8. Let 0 < p ≤ 1. u : U → R is said to be Hölder continuous function

with exponent p if there is a constant C such that

|u(x)− u(y)| ≤ C|x− y|p for x, y ∈ U.

We also define Hölder space Cp(0, T ;X) which consists of all functions with

the norm

‖u‖Cp(0,T ;X) = ‖u‖C(0,T ;X) + sup
t1 �=t2

‖u(t2)− u(t1)‖X
|t2 − t1|p .

In fact, we can use other norms instead of ‖ · ‖C(0,T ;X). Note that the Hölder space

Cp(0, T ;X) is a Banach space.

2.2.4 Sobolev spaces

Sobolev spaces provide an elegant and systematic mathematical framework

such as regularity. Partial differential equations are analyzed naturally not only in
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terms of properties of the function spaces, but also of their derivatives. These deriva-

tives are defined in the weak sense (in the sense of distributions). Thus after we define

the weak derivative, we will define the Sobolev spaces W k,p(Ω). In this section, Ω will

be a open and locally measurable set on Rd.

Definition 2.9. Let 1 ≤ p <∞. We say u ∈ Lp
loc(Ω), i.e., u is locally p-integrable, if

for x ∈ Ω there is an open neighborhood U of x such that U ⊂⊂ Ω with u ∈ Lp(U).

Under the assumption, we can define the weak derivative.

Definition 2.10. Suppose that u, w ∈ L1
loc(Ω) locally and α is a multi-index. Then

we say that w is the αth-weak partial derivative of u, denoted by Dαu = w, provided

∫
Ω

u(x)Dαφ(x) dx = (−1)|α|
∫

Ω

w(x)φ(x) dx for all φ ∈ D(Ω).

Let 1 ≤ p ≤ ∞ and k be a nonnegative integer.

Definition 2.11. The Sobolev space W k,p(Ω) consists of all functions u ∈ L1
loc(Ω)

such that for each multi-index α with |α| ≤ k, Dαu exists and Dαu ∈ Lp(Ω).

If u ∈W k,p(Ω), its norm is defined as

‖u‖W k,p(Ω) =


(∑

|α|≤k

∫
Ω
|Dαu|p dx

)1/p

, if 1 ≤ p <∞,

max|α|≤k ‖Dαu‖L∞(Ω), if p =∞.

The fact is well-known that W k,p(Ω) is Banach space. We also mention about the

seminorm of the Sobolev space W k,p(Ω), which is defined as

|u|W k,p =


(∑

|α|=k

∫
Ω
|Dαu| dx

)1/p

, if 1 ≤ p <∞

max|α|=k ‖Dαu‖L∞(Ω), if p =∞.
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Since the function space C∞
0 (Ω) is not dense in W k,p(Ω) in general, we denote by

W k,p
0 (Ω) the closure of C∞

0 (Ω) in W k,p. We interpret W k,p
0 (Ω) as the space of function

u ∈W k,p(Ω) such that Dαu = 0 on ∂Ω for all |α| ≤ k − 1.

For the special case p = 2, we usually write Hk(Ω) ≡ W k,2(Ω) and Hk
0 (Ω) ≡

W k,2
0 (Ω). Note that H1

0 (Ω) is a subspace H1(Ω) and is defined in terms of trace zero

function, i.e.,

H1
0 (Ω) = {u ∈ H1(Ω) | u = 0 on ∂Ω}.

Then Hk(Ω) is Hilbert space equipped with inner product

(u, w)Hk(Ω) =
∑
|α|≤k

∫
Ω

Dαu(x)Dαw(x) dx for u, w ∈ Hk(Ω).

For negative integer, we define the Sobolev space which is dual space of order k. We

denote by H−k(Ω) the dual space of Hk
0 (Ω). However since the dual space of Hk(Ω)

is subspace of the dual space of Hk
0 (Ω), it is frequently useful to denote H−k(Ω) as

the dual space of Hk(Ω). For order k = 1, assume that f ∈ H−1(Ω). Then we define

its norm as

‖f‖H−1(Ω) = sup
w∈H1(Ω)

| 〈f, w〉 |
‖w‖H1(Ω)

.

This norm can equivalently be expressed by

‖f‖H−1(Ω) = sup{〈f, w〉 | w ∈ H1(Ω), ‖w‖H1(Ω) ≤ 1}.

On the Banach space L1(0, T ;X), we give the definition of a weak derivative

in the following way.
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Definition 2.12. Let u ∈ L1(0, T ;X). The function w ∈ L1(0, T ;X) is said to be

the weak derivative of u, if

∫ T

0

φ′(t)u(t) dt = −
∫ T

0

φ(t)w(t) dt for φ ∈ C∞
0 (0, T ).

Then we write w = ut.

The integrals which is used in Definition 2.12 are called Bochner integrals.

See the details in [59]. Then Sobolev space W 1,p(0, T ;X) is space of all measurable

u ∈ Lp(0, T ;X) such that ut exists in the weak sense and ut ∈ Lp(0, T ;X), equipped

with norm

‖u‖W 1,p(0,T ;X) =


(∫ T

0
(‖ut(t)‖pX + ‖u(t)‖pX) dt

)1/p

for 1 ≤ p <∞

ess sup0≤t≤T (‖ut(t)‖X + ‖u(t)‖X) for p =∞.

We also consider the function space of vector function. If for vector valued

function u, each component ui is in the Sobolev space Hk(Ω) we write u ∈ Hk(Ω) =(
Hk(Ω)
)d

; its inner product has the form

(u,w)Hk(Ω) =

d∑
i=1

∫
Ω

∑
|α|≤k

DαuiD
αwidx

and the associated norm is

‖u‖Hk(Ω) =

 d∑
i=1

∫
Ω

∑
|α|≤k

|Dαui|2dx
1/2

,

where
(
Hk(Ω)
)d

= {(u1, u2, · · · , ud) | ui ∈ Hk(Ω), 1 ≤ i ≤ d}. In the case of Hilbert

space of the vector-valued function that we will mainly deal with, we will use the
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notation

H1(Ω) =
(
H1(Ω)
)d
,

H1/2(∂Ω) =
(
H1/2(∂Ω)

)d
,

H−1/2(∂Ω) =
(
H−1/2(∂Ω)

)d
,

L2(Ω) =
(
L2(Ω)
)d
.

Note that L2(Ω) = H0(Ω). Similarly the inner product of L2(Ω) is defined as

(u,w)L2(Ω) =
d∑

i=1

∫
Ω

uividx

and the associate norm is

‖u‖L2(Ω) =

(
d∑

i=1

∫
Ω

|ui|2dx
)1/2

.

2.2.5 Sobolev spaces on Rd and Fourier transform

Before we present the definition of Sobolev space Hs(Rd) for all s ∈ R, we need

to talk about the tempered distribution. In particular case Ω = Rd, the requirement

of test function with compact support is naturally replaced by rapidly decreasing

function at infinity. So this assertion makes us to consider the following definition.

See the detail in [47].

Let S(Rd) be the space of all functions on Rd which are smooth and such

that |x|k|Dαφ(x)| is bounded for every k ∈ N and every muti index α. A tempered

distribution on Rd is a linear mapping φ �−→ (f, φ) from S(Rd) to R such that

(f, φn)→ (f, φ) if φn → φ in S(Rd). The set of all tempered distribution is denoted

by S ′(Rd).
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Now we introduce the Fourier transform which provides extremely powerful

tool for converting certain linear PDE into algebraic equations.

Definition 2.13. For every u ∈ L1(Rd), the Fourier transform of g is defined by

F [u](ξ) :=
1

(2π)d/2

∫
Rd

e−i�·xu(x)dx.

The inverse Fourier transform of u is defined by

F−1[u](x) :=
1

(2π)d/2

∫
Rd

ei�·xu(ξ)dξ.

Using the tempered distribution and Fourier transform, we can produce a

definition of Sobolev space Hs(Rd) for all s ∈ R. Refer to the book [56].

Definition 2.14. For any s ∈ R, we define

Hs(Rd) = {u ∈ S ′(Rd) | 〈ξ〉sF [u] ∈ L2(Rd)},

where 〈ξ〉 = (1 + |ξ|2)1/2 and |ξ|2 = |ξ1|2 + |ξ2
2 |+ · · ·+ |ξd|2.

2.2.6 Sobolev spaces on manifolds

If ∂Ω is smooth, it is useful to define Sobolev space on manifold. Let X, Y be

subsets of Rd. A smooth map f : X → Y is called diffeomorphism if f is bijective and

the inverse map f−1 : Y → X is also smooth. X an Y are called diffeomorphic if such

a map exists. Then X is a d−dimensional manifold if x ∈ X has open neighborhood

V in X which is diffeomorphic to open set U ⊂ Rd. See the details in [24]. So

diffeomorphisms provide a tool to make local changes of coordinates, i.e., ∂Ω can be

transformed to a coordinate surface by diffeomorphisms. This local considerations

are achieved by partition of unity which is the useful device to prove PDEs.
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Definition 2.15. Let S be a closed subset in Rdand let collection {Uj} be a covering

of S such that Uj are open subsets in Rd (not in S). A partition of unity subordinate

to covering {Uj} is a set of test function φj ∈ D(Rd) such that

1. 0 ≤ φj ≤ 1,

2. supp φj ⊂ Uj ,

3.
∑

j φj = 1 in a open neighborhood.

2.3 Review of some theorems

In this section, we present important theorems which are applied throughout

this paper.

First, Plancherel’s Theorem and some properties related to Fourier transform

are presented in the next two theorem. The details argument can found in [20].

Theorem 2.1. (Plancherel’s Theorem) Assume that u ∈ L1(Rd)
⋂
L2(Rd). Then

F [u], F−1[u] ∈ L2(Rd) and

‖F [u]‖L2(Rd) = ‖F−1[u]‖L2(Rd) = ‖u‖L2(Rd).

Theorem 2.2. Assume that F [u], F−1[v] ∈ L2(Rd), Then

1. F [D�u](x) = (ix)�F [u] for multi-index α and x ∈ Rd,

2. F [u ∗ v] = (2π)d/2F [u]F [v], where ∗ is the convolution of two functions,

3. F [u] = v if and only if u = F−1[v].

The Riesz representation theorem enables us to see how a measure is associated

to a functional on C0(X). When we consider the Riesz representation theorem, it is
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natural to deal with functions in C0(X) on a locally compact space. In fact, we note

that this theorem is expressed in several different versions.

Theorem 2.3. (Riesz representation theorem) Let X be a locally compact Haus-

dorff space. Then to each positive bounded linear functional f on C0(X), there exists

a Borel measure ν determined by f such that

f(u) =

∫
X

u dν for u ∈ C0(X).

From the Riesz representation theorem, we can also see that the dual space of

C0(X) is identified to (isometrically isomorphic to) the space of all Borel measures

on X with the norm defined by ‖ν‖ = |ν|(X). See [35, 49] for the details.

The Banach fixed theorem is one of the most important method for analyzing

the solvability for nonlinear operator equations. See the details in [3]. Let X be a

Banach space with norm ‖ · ‖X and K ⊆ X.

Definition 2.16. An operator T : K → X is said to be a contraction with contrac-

tivity constant α ∈ [0, 1) if

‖Tx− Ty‖X ≤ α‖x− y‖X for all x, y ∈ K.

Based on contraction maps, then the Banach fixed theorem is introduced.

Theorem 2.4. (Banach fixed theorem) Assume that K is a nonempty closed

subset of X and an operator T : K → K is a contraction mapping with 0 ≤ α < 1.

Then there exists a unique x ∈ K such that

x = T (x).
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The Arzela–Ascoli theorem and Alaoglu’s theorem are useful to show the ex-

istence of solutions. To state the Arzela-Ascoli theorem, we need the following defi-

nition.

Definition 2.17. Let (fn) be a sequence of real-valued functions defined in D ⊂ Rd

and x ∈ D. The sequence (fn) is said to be equicontinuous at x if for every ε > 0

there exists a δ > 0, independent of n, such that

|fn(y)− fn(x)| < ε for y ∈ D with |y − x| < δ.

Theorem 2.5. (Arzela–Ascoli theorem) Let (fn) be a sequence of real-valued

functions defined on a compact set S ⊂ Rd. Assume that there is a constant C

such that |fn(x)| < C for every n ∈ N and every x ∈ S and (fn) is equicontinuous

at every x ∈ S. Then there exists a subsequence which converges uniformly on S.

Next we introduce Alaoglu’s theorem, recalling the definition of weak-* con-

vergence.

Theorem 2.6. (Alaoglu’s theorem) Let X be a separable Banach space and (fn)

be a bounded sequence in X∗. Then the sequence (fn) has a weakly* convergent sub-

sequence.

The trace theorem is presented below. The detailed arguments can founded

in [32].

Theorem 2.7. (Trace theorem) Let Ω be a Lipschitzian domain and let tr be the

operator defined by

tr(w) = w|∂Ω for w ∈ C∞(Ω).
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Then tr can be extended to a bounded linear surjective operator, also denoted tr, from

H1(Ω) onto H1/2(∂Ω).

The operator tr is called the trace operator. The important property of oper-

ator tr is that tr is surjective map from H1(Ω) onto H1/2(∂Ω). Thus the operator tr

has bounded right inverse. See the details in [47].

Korn’s inequalities are crucial in the investigation of the existence of solutions

to variational problems. One of Korn’s inequalities is introduced below. See [32] for

the details.

Theorem 2.8. Let Ω be a bounded Lipschitzian domain in Rd. Then there is a

positive constant, independent of w, such that

∫
Ω

|wi,jwi,j|p/2dx ≤ C

(∫
Ω

|εij[w]εij[w]|p/2dx+

∫
Ω

|wiwi|p/2dx

)

for every w ∈W1,p(Ω) and 1 < p <∞.

The implicit function theorem provides many important results on local con-

vergence theory of optimization techniques. We present a brief outline based on the

discussion in Lang [34].

Theorem 2.9. (Implicit Function Theorem) Assume that F : Rn ×Rm → Rn

a function such that

1. F(x0, 0) = 0 for x0 ∈ Rn,

2. The function F(·, ·) is a Lipschitz continuously differentiable in some neigh-

borhood of (x0, 0),
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3. ∇xF(x,y) is non-singular at (x,y) = (x0, 0).

Then the function x : Rm → Rn defined implicitly by F(x(y),y) = 0 is well

defined and Lipschitz continuous for y ∈ Rm in some neighborhood of the origin.

2.4 Some methods and definitions

2.4.1 Penalty methods

Penalty methods provide an alternative approach to constrained problems.

These remove the constraint of the original problem and leads to an unconstrained

problem. It also avoids the necessity of introducing additional unknowns in the form

of Lagrange multipliers. See [32] for the detailed arguments.

Let V be a Banach space and K be a closed convex subset of V . Then penalty

functional P : V → R satisfies the following conditions

1. P : V → R is weakly lower semicontinuous,

2. P (v) ≥ 0 and P (v) = 0 if and only if v ∈ K.

Condition 2 implies that if solution v violate constraint, P (v) > 0. Otherwise, P (v) =

0. Now we introduce the notation which is used in penalty formulation:

s+ = max(s, 0) in L2(Ω), i.e.,

s+(x) =


s(x) if s(x) ≥ 0,

0 if s(x) < 0.

The penalty method plays a crucial role in showing existence of solutions to

the Euler–Bernoulli beam equation, as we shall see later on.
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2.4.2 Linear complementarity problems

Definition 2.18. Given a vector q ∈ Rn and a matrix M ∈ Rn×n, the linear com-

plementarity problems (LCP) is to find a vector z ∈ Rn such that

z ≥ 0,

q + Mz ≥ 0,

zT · (q + Mz) = 0

or to show that no such vector z exists.

We mention a notation related to linear complementarity problem: in general,

for vectors a and b, 0 ≤ a ⊥ b ≥ 0 means that a, b ≥ 0 component-wise and

aT · b = 0. In special case that a, b are scalar, a ⊥ b means that both are non-

negative and either a or b is zero.

This problem is the subject of a number of books, including the encyclopedic

reference [16]. Indeed, LCP has been applied to many fields in applied sciences and

technology since it was proposed in the mid 1960’s. We shall see how our contact

problem leads to LCPs.

2.4.3 Semi-smooth functions

We introduce the definition of semi-smooth function. The detailed argument

can found in [21].

Definition 2.19. Let G : Ω ⊆ Rn → Rm be a locally Lipschitz continuous function

on Ω, where Ω is open. Then G is said to be semi-smooth at a point x if G is
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directional differentiable near x and there exist a neighborhood Ω′ ⊆ Ω of x and

function f : (0,∞) → [0,∞) with limt↓0 f(t) = 0, such that for any x ∈ Ω′ different

from x, we have

‖G′(x;x− x)−G′(x;x− x)‖
‖x− x‖ ≤ f(‖x− x‖).
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CHAPTER 3
ELASTIC BODIES : CONTINUOUS FORMULATION OF DYNAMIC

FRICTIONLESS CONTACT

3.1 Contact conditions

In this Section, we will derive contact conditions for our formulation, based on

Signorini’s contact condition. Let n(x) = (n1, n2, n3) be the outward normal vector

at x to the material surface ∂Ω. Note that we consider three dimension case, i.e.,

Ω ⊂ R3.

Since we want to focus on dynamic frictionless contact, for our dynamic contact

problem we set ΓF = ΓD = ∅. Thus Γc becomes the whole boundary ∂Ω. Note that

there may occur a contact force on some parts of ∂Ω, or not on other parts.

For a stress tensor σ, we denote by σn and σT the normal and tangential

components of σ, respectively, and define

σn = σijninj and (σT )i = σijnj − σnni.

Since the kinematic contact condition must be compatible with stress on ∂Ω, we can

have the following contact condition: if a contact force Nn is applied on surface ∂Ω,

the stress vector must satisfy

σijnj = Nni on ∂Ω.

Then due to Newton’s third law (action and reaction), the contact force is a opposite

to the direction that a elastic body moves downward. So in the physical situation,

we regard the downward direction as negative.
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For other contact conditions, Signorini’s problem has a contact constraint

which will induce a convex closed subset in a Banach space X in terms of the math-

ematical framework:

u · n + g ≥ 0.

From the physical point of view, Signorini contact conditions can be inter-

preted as the following way: when the elastic body does not reach to the rigid foun-

dation, i.e., u ·n+g > 0, the contact force Nn must be equal to zero, since no contact

occurs and when there is a contact force, i.e., N > 0, the elastic body touches to the

rigid foundation, i.e., u ·n+ g = 0. Thus Signorini contact conditions result in linear

complementary boundary conditions

0 ≤ u · n + g ⊥ N ≥ 0 on ∂Ω.

In order to see frictionless contact condition, from the contact condtion σijnj =

Nni on ∂Ω we have

(σT )i = σijnj − σnni

= Nni − σijninjni = Nni − (Nnjnj)ni = 0.

Thus the tangential components σT of stress tensor σ must be equal to zero. This

implies that we arrive at frictionless contact condtions.

3.2 Dynamic frictionless contact problem

The dynamic contact problem comes from the following physical situation. See

the Figure 3.1 for the illustration.
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RIGID FOUNDATION

ELASTIC BODY

CONTACT FORCE

BODY FORCE

Figure 3.1: Dynamic frictionless contact problem with elastic body.

In order to derive the dynamic contact continuous formulation, we need to

consider a equation of motion inside a elastic body Ω. From the physical point of

view, this equation is obtained, by applying linear momentum principles based on

Newton’s second law and Newton’s third law. This equation of motion is expressed

by

ρ
∂2u

∂t2
= ∇ · σ[u] + f in Ω.

The above expression has the form of a hyperbolic second order equation.

Indeed, a hyperbolic equation is naturally a generalized expression of a wave equation.

Therefore it may sometimes be helpful to interpret this dynamic contact formulation

in comparison with wave equation.

Before we present the dynamic contact continuous formulation, we introduce
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the notations: we write u(x, t) as u and f(x) as f and N(x, t) as N , and g(x) as g,

for the purpose of a simplified notation.

Finally we formulate the dynamic contact continuous formulation for time

interval [0, T ]:

ρ
∂2u

∂t2
= ∇ · σ[u] + f in Ω× (0, T ], (3.1)

σ[u] · n = N · n on ∂Ω × (0, T ], (3.2)

0 ≤ u · n + g ⊥ N ≥ 0 on ∂Ω × (0, T ], (3.3)

u(x, 0) = u0 in Ω, (3.4)

u̇(x, 0) = v0 in Ω, (3.5)

where u̇(x, 0) = ∂u/∂t(x, 0) = v(x, 0). We denote the velocity v(x, t) by v. Equa-

tions (3.5) and (3.5) are called the initial values for the displacement and velocity,

respectively. We also assume that u0 ∈ H1(Ω), v0 ∈ L2(Ω). Throughout this thesis,

we assume that f and g do not depend on time t and that f ∈ L2(Ω), g ∈ C∞(∂Ω).

In the next chapter, we will discuss how we approach the continuous dynamic

contact formulation. Variational inequalities and time discretizations will play an

important role in solving the dynamic contact problem.

3.3 Time discretization

For a dynamical problem, time discretization is one of the most useful numer-

ical methods. First, we partition time [0, T ]:

0 = t0 < t1 < t2 < · · · < tl < tl+1 < · · · < T,



39

where T is the end of time. Then we partition time space so that we establish

numerical formulations for dynamic continuous contact problem.

We denote by ul approximate displacement u(x, tl) and by vl approximate

velocity v(x, tl) at each instant time tl, respectively. Also N(x, tl) is denoted by N l.

Then we have the same time step size h = tl+1 − tl for l ≥ 0 and so l = T/h.

The dynamic contact continuous problem will be replaced with the following

approximation formulas:

• Acceleration relation

∂2u

∂t2
=

1

h
(vl+1 − vl) (3.6)

• Velocity relation

1

h
(ul+1 − ul) =

1

2
(vl+1 + vl). (3.7)

3.4 Numerical formulas

Using the different numerical methods, we set up numerical formulations for

motion equation. Thus

1. If we use the midpoint rule,

ρ

h
(vl+1 − vl) = ∇ · σ[

1

2
(ul+1 + ul)] + f l in Ω, (3.8)

2. If we use the implicit Euler method,

ρ

h
(vl+1 − vl) = ∇ · σ[ul+1] + f l in Ω, (3.9)
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3. If we use the explicit Euler method,

ρ

h
(vl+1 − vl) = ∇ · σ[ul] + f l in Ω. (3.10)

For contact conditions, we consider implicit Euler method

σ[ul+1] = N ln on ∂Ω, (3.11)

0 ≤ N l ⊥ ul+1 · n + g ≥ 0 on ∂Ω (3.12)

or explicit Euler method

σ[ul] = N l+1n on ∂Ω, (3.13)

0 ≤ N l+1 ⊥ ul · n + g ≥ 0 on ∂Ω. (3.14)

From (3.7), we have

vl+1 =
2

h
(ul+1 − ul)− vl. (3.15)

Using (3.15), we can better express the numerical formulation of the equations of

motion.

1. For the midpoint rule

ul+1 =
h2

4ρ
(∇ · σ[ul+1] + σ[ul]) + ul + hvl +

h2

2ρ
f in Ω. (3.16)

2. For the implicit Euler method

ul+1 =
h2

2ρ
∇ · σ[ul+1] + ul + hvl +

h2

2ρ
f in Ω. (3.17)

3. For the explicit Euler method

ul+1 =
h2

2ρ
∇ · σ[ul] + ul + hvl +

h2

2ρ
f in Ω. (3.18)
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3.5 Existence of a solution for one time step

Employing the implicit Euler method for equation of motion and contact con-

dition, we show existence of solution for the time stepping problem in this Section.

Now we impose a constraint condition on the next step solution so that the variational

inequality equivalent to the numerical formulas (3.17), (3.11), and (3.12) is derived.

Suppose that w · n|∂Ω is well defined for w ∈ (H1(Ω))3. We define the set of

admissible displacements as K = {w ∈ (H1(Ω))3 | w · n + g ≥ 0 a.e. on ∂Ω}. Indeed,

if w ∈ (H1(Ω))d, w · n = tr(wi) · ni a.e. on ∂Ω, where tr is a trace operator from

H1(Ω) onto H1/2(∂Ω).

Lemma 3.1. Let Φl = h2

2ρ
f l + h

2
vl + ul. The next step solution ul+1 satisfies (3.17),

(3.11), and (3.12) if and only if ul+1 is a sufficiently smooth solution of the variational

inequality: find ul+1 ∈ K such that∫
Ω

(
ul+1 · (w− ul+1) +

h2

2ρ
σ[ul+1] : ∇(w− ul+1)

)
dx ≥
∫

Φl · (w − ul+1) dx ∀w ∈ K.

(3.19)

Proof. Suppose that the next step solution ul+1 ∈ K of (3.17), (3.11), and (3.12) is a

sufficiently smooth. From (3.17),

ul+1 − h2

2ρ
∇ · σ[ul+1] = Φl. (3.20)

Choose w ∈ K. Multiplying both sides of (3.20) by w− ul+1 gives∫
Ω

ul+1 · (w− ul+1) dx− h2

2ρ

∫
Ω

∇ · σ[ul+1] · (w − ul+1) dx =

∫
Ω

Φl · (w − ul+1) dx.

Using integration by parts, we obtain∫
Ω

ul+1 · (w − ul+1) dx+
h2

2ρ

∫
Ω

σ[ul+1] : ∇(w − ul+1) dx
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=

∫
Ω

Φl · (w − ul+1) dx+
h2

2ρ

∫
∂Ω

nT · σ[ul+1] · (w − ul+1) ds.

By the boundary condition (3.11) and symmetry of stress tensor σ[ul+1],

∫
Ω

ul+1 · (w − ul+1) dx+
h2

2ρ

∫
Ω

σ[ul+1] : ∇(w − ul+1) dx

=

∫
Ω

Φl · (w − ul+1) dx+
h2

2ρ

∫
∂Ω

Nln · (w − ul+1) ds.

On the boundary ∂Ω, we have

N ln · (w− ul+1) = N l(w · n + g)−N l(ul+1 · n + g).

Thus by the linear complementary boundary conditions (3.12),

∫
Ω

ul+1 · (w − ul+1) dx+
h2

2ρ

∫
Ω

σ[ul+1] : ∇(w − ul+1) dx

=

∫
Ω

Φl · (w − ul+1) dx+
h2

2ρ

∫
∂Ω

Nl(w · n + g) ds.

Since N l ≥ 0 and w · n + g ≥ 0, ul+1 is a solution which satisfies the variational

inequality (3.19).

Suppose that ul+1 ∈ K satisfies variational inequality (3.19). First, we claim

that ul+1 satisfies (3.17). Notice that (H1
0 (Ω))3 ⊂ K, since that gap function g ≥ 0.

We choose w = ul+1 ± z with arbitrary z ∈ (H1
0 (Ω))3. From variational inequality

(3.19),

±
(∫

Ω

ul+1 · z dx+
h2

2ρ

∫
Ω

σ[ul+1] : ∇ · z dx−
∫

Ω

Φl · z dx
)
≥ 0.

So we have

∫
Ω

ul+1 · z dx+
h2

2ρ

∫
Ω

σ[ul+1] : ∇ · z dx−
∫

Ω

Φl · z dx = 0.
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Using integration by parts,

∫
Ω

ul+1 · z dx+
h2

2ρ

∫
∂Ω

nT · σ[ul+1] · z ds− h2

2ρ

∫
Ω

(∇ · σ[ul+1]
) · z dx− ∫

Ω

Φl · z dx = 0.

Since z|∂Ω = 0,

∫
Ω

(ul+1 − h2

2ρ
∇ · σ[ul+1]−Φl) · z dx = 0 ∀z ∈ (H1

0 (Ω))3.

Therefore, we obtain the numerical formulation (3.17). Next, we claim that the

boundary conditions (3.11–3.12) are satisfied. We first want to show that σ[ul+1]·n =

N ln and N l ≥ 0 on ∂Ω. Let K1 be a subset of K such that

K1 = {z ∈ (H1(Ω))3 | z · n ≥ 0 on ∂Ω}.

In the variational inequality (3.19), we choose w = ul+1 + z with arbitrary z ∈ K1

and obtain

∫
Ω

ul+1 · z dx+
h2

2ρ

∫
Ω

σ[ul+1] : ∇ · z dx−
∫

Ω

Φl · z dx ≥ 0.

Using integration by parts,

∫
Ω

ul+1 · z dx+
h2

2ρ

∫
∂Ω

nT · σ[ul+1] · z ds−
∫

Ω

(
h2

2ρ
∇ · σ[ul+1] + Φl) · z dx ≥ 0.

By (3.17), we have

∫
∂Ω

nT · σ[ul+1] · z ds ≥ 0. (3.21)

Now, we claim that nT ·σ[ul+1] ·n ≥ 0 on ∂Ω . Assume that nT ·σ[ul+1] ·n < 0. Let

z = αn with α > 0. Then

∫
∂Ω

nT · σ[ul+1] · z ds < 0.
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This contradicts (3.21). So we have

nT · σ[ul+1] · n ≥ 0 on ∂Ω. (3.22)

Applying (3.22), we want to show that σ[ul+1] · n = N ln and N l ≥ 0. Pick any

tangent vector y on ∂Ω. Then y · n = 0. So the set K1 can contain any tangent

vector on ∂Ω. Let z = αy with α �= 0. From (3.21),

∫
∂Ω

nT · σ[ul+1] · z ds =

∫
∂Ω

αnT · σ[ul+1] · y ds ≥ 0.

Assume that nT · σ[ul+1] · y > 0 on ∂Ω. For α < 0,

∫
∂Ω

αnT · σ[ul+1] · y ds < 0.

This contradicts (3.21). Assume that nT · σ[ul+1] · y < 0. For α > 0,

∫
∂Ω

αnT · σ[ul+1] · y ds < 0.

This contradicts (3.21). So nT · σ[ul+1] · y = 0 on ∂Ω, which means that σ[ul+1] · n

must be represented as Nn with some scalar function N . However, from (3.22)

nT · σ[ul+1] · n = N ln · n = N l ≥ 0 on ∂Ω.

Secondly, we want to show that N l(ul+1 · n + g) = 0 on ∂Ω. Pick any z ∈ K1

so that z = (ul+1 · n + g)n on ∂Ω. We choose w = ul+1 − z. So w = ul+1 − (ul+1 ·

n+ g)n on ∂Ω. Then w ·n+ g = ul+1 ·n− (ul+1 ·n+ g)+ g = 0 on ∂Ω. This implies

that w ∈ K. Therefore using integration by parts, from (3.19) we have

0 ≤
∫

Ω

(
ul+1 · (w − ul+1) +

h2

2ρ
σ[ul+1] : ∇ · (w − ul+1)

)
dx−
∫

Ω

Φl · (w − ul+1) dx

=

∫
∂Ω

nT · σ[ul+1] · (w − ul+1) ds+

∫
Ω

(
u+1 − h2

2ρ
∇ · σ[ul+1]−Φl

)
· (w− ul+1) dx
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=

∫
∂Ω

N l(w · n + g − ul+1 · n− g) ds

= −
∫

∂Ω

N l(ul+1 + g) ds.

Therefore

∫
∂Ω

N l(ul+1 · n + g) ds ≤ 0. (3.23)

Suppose that N l > 0. Then ul+1 · n + g = 0, since if ul+1 · n + g > 0 it contradicts

(3.23). Similarly, if ul+1 · n + g > 0, then N l = 0. Thus we have

N l(ul+1 · n + g) = 0 on ∂Ω,

as required.

In order to see that there is a unique solution ul+1 to the variational inequality

(3.19), we generalize it to abstract setting.

Definition 3.1. Define the functional

F (w) =

∫
Ω

(
1

2
|w|2 +

h2

2ρ
σ[w] : ε[w]

)
dx−
∫

Ω

Φl ·w dx for w ∈ K.

In this case

a(w,w) =

∫
Ω

|w|2 +
h2

ρ
σ[w] : ε[w] dx

and

f(w) =

∫
Ω

Φl ·w dx.
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Note that this functional is different from total energy functional. We can

easily see that a(·, ·) is symmetric and V-elliptic and bounded using the properties of

Hooke’s tensor Eijkl. As we shall see in the next Section, the total energy functional

is decreased, if we use the implicit Euler method. Thus the initial conditions and

f ∈ L2(Ω) imply that ul ∈ H1(Ω) and vl ∈ L2(Ω) for all l ≥ 1 and h > 0. So f(w)

is bounded linear functional. From definition 3.1 we set (3.19) into the generalized

variational inequality:

Find u ∈ K : a(u,w − u) ≥ f(w− u) ∀w ∈ K. (3.24)

It has been known that (3.24) is equivalent to minimization problem:

Find u ∈ K : F (u) ≤ F (w) ∀w ∈ K.

Also these are uniquely solvable. See [32] for the details. Therefore we can conclude

that there exists the next step solution ul+1 of (3.19) uniquely.

3.6 Discussion of the implementation

We consider numerical methods to obtain the approximated solution. Accord-

ing to numerical analysis, the solution of the implicit Euler method is stable. So

this is another reason that the implicit Euler method is employed to implement a

numerical results. In order to obtain the next solution ul+1, we use minimization

problem:

F (ul+1) ≤ F (w) ∀w ∈ K.
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From the minimization problem, we would obtain solution ul+1, by using Finite El-

ement Method and Karush-Kuhn-Tucker condition, called KKT condition. See the

details in [3] and [43]. The actual and detailed implementation of the elastic body

with frictionless dynamic contact condition will be a future work. It is expected

that the procedure to implement numerical results would be very complicated. How-

ever, we intrinsically need the boundedness of the contact force and finer regularity

properties, before we start computing numerical solutions.

3.7 Total energy functional

We define the total energy functional of dynamic contact continuous prob-

lem, which plays a fundamental role in showing the boundedness of the approximate

solutions.

Definition 3.2. For u,v total energy functional is defined by

E(u,v) =
1

2

∫
Ω

(
ρ|v|2 + σ[u] : ε[u]

)
dx−
∫

Ω

f · u dx.

In Definition 3.2, the first term is the kinetic energy, the second term is the

elastic energy, and the last term is the potential energy.

Lemma 3.2. Suppose that f does not depend on time t and contact does not occur.

If the midpoint rule is applied to equations of motion, we have

E(ul+1,vl+1) = E(ul,vl) for any l ≥ 0.

Proof. Using (3.8) and (3.15),

ρ

2h

∫
Ω

(vl+1 − vl) · (vl+1 + vl) dx =
1

h

∫
Ω

(∇ · σ[
1

2
(ul+1 + ul)] + f) · (ul+1 − ul) dx.
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Applying integration by parts,

ρ

2h

∫
Ω

(|vl+1|2 − |vl|2) dx =
1

2h

∫
∂Ω

nT · (σ[ul+1] + σ[ul]
) · (ul+1 − ul

)
ds

− 1

2h

∫
Ω

(
σ[ul+1] + σ[ul]

)
: ∇ · (ul+1 − ul

)
dx

+
1

h

∫
Ω

f · (ul+1 − ul) dx.

Since σ[ul+1] : ∇ · [ul] = σ[ul] : ∇ · [ul+1] and contact force is zero,

1

2

∫
Ω

(
ρ|vl+1|2 + σ[ul+1] : ∇ · ul+1

)
dx−
∫

Ω

f · ul+1 dx

−
[
1

2

∫
Ω

(
ρ|vl|2 + σ[ul] : ∇ · ul

)
dx−
∫

Ω

f · ul dx

]
= 0.

Note that σ[u] : ∇ · [u] = σ[u] : ε[u]. By Definition 3.2,

E(ul+1,vl+1) = E(ul,vl) for any l ≥ 0.

From Lemma 3.2, using the midpoint rule for motion equation enables the

numerical formulation to satisfy the conservation law when contact force does not

apply to elastic body.

Lemma 3.3. Suppose that f does not depend on time t and implicit Euler method is

used in equation of motion and on boundary condition. Then

E(ul+1,vl+1) ≤ E(ul,vl) for l ≥ 0.

Proof. Using (3.9) and by the same argument as Lemma 3.2,

ρ

2h

∫
Ω

(vl+1 − vl) · (vl+1 + vl) dx =
1

h

∫
Ω

(∇ · σ[ul+1] + f
) · (ul+1 − ul

)
dx.
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So we have

ρ

2h

∫
Ω

(|vl+1|2 − |vl|2) dx =
1

h

∫
Ω

∇ · σ[ul+1] · (ul+1 − ul) + f · (ul+1 − ul) dx

=
1

h

∫
∂Ω

nT · σ[ul+1] · (ul+1 − ul) ds−
1

h

∫
Ω

σ[ul+1] : ∇ · (ul+1 − ul) dx+
1

h

∫
Ω

f · (ul+1 − ul) dx.

Since σ[ul+1] · n = N ln on ∂Ω,

ρ

2

∫
Ω

(|vl+1|2 − |vl|2) dx =

∫
∂Ω

N ln · (ul+1 − ul) ds−
∫

∂Ω

σ[ul+1] : ∇ · (ul+1 − ul) dx

+

∫
Ω

f · (ul+1 − ul) dx

=

∫
∂Ω

[N ln · (ul+1 − ul) +N l(g − g)] ds+

∫
Ω

f · (ul+1 − ul) dx

− 1

2

∫
Ω

σ[ul+1 + ul] : ∇ · (ul+1 − ul) dx

− 1

2

∫
Ω

σ[ul+1 − ul] : ∇ · (ul+1 − ul) dx

=

∫
∂Ω

N l(ul+1 · n + g) ds−
∫

∂Ω

N l(ul · n + g) ds

− 1

2

∫
Ω

σ[ul+1 + ul] : ∇ · (ul+1 − ul) dx

− 1

2

∫
Ω

σ[ul+1 − ul] : ∇ · (ul+1 − ul) dx

+

∫
Ω

f · (ul+1 − ul) dx.

Since 0 ≤ ul+1 · n + g ⊥ N l ≥ 0 on ∂Ω,

ρ

2

∫
Ω

(|vl+1|2 − |vl|2) dx ≤ −1

2

∫
Ω

σ[ul+1 + ul] : ∇ · (ul+1 − ul) dx−
1

2

∫
Ω

σ[ul+1 − ul] : ∇ · (ul+1 − ul) dx+

∫
Ω

f · (ul+1 − ul) dx.

From the condition of Hooke’s tensor Eijkl,

ρ

2

∫
Ω

(|vl+1|2 − |vl|2) dx ≤ −1

2

∫
Ω

σ[ul+1 + ul] : ∇ · [ul+1 − ul] dx+

∫
Ω

f · (ul+1 − ul) dx
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= −1

2

∫
Ω

(
σ[ul+1] : ∇ · [ul+1]− σ[ul] : ∇ · [ul]

)
dx

+

∫
Ω

f · (ul+1 − ul) dx.

Therefore we obtain

1

2

∫
Ω

(
ρ|vl+1|2 + σ[ul+1] : ε[ul+1]

)
dx−
∫

Ω

f · ul+1 dx

−
[
1

2

∫
Ω

(
ρ|vl|2 + σ[ul] : ε[ul]

)
dx−
∫

Ω

f · uldx

]
≤ 0.

By Definition 3.2,

E(ul+1,vl+1) ≤ E(ul,vl) for any l ≥ 0.

If we employ the implicit Euler method for the equations of motion and the

contact conditions, energy is dissipated. From the initial conditions, the initial energy

is finite. This enables us to show the boundedness of ul, vl at each time tl for any

l ≥ 1.

Lemma 3.4. Suppose that f does not depend on time t and the explicit Euler method

is used in equation of motion and on boundary condition. Then

E(ul+1,vl+1) ≥ E(ul,vl) for any l ≥ 0.

Proof. By (3.10) and the same argument as Lemma 3.3,

ρ

2h

∫
Ω

(vl+1 − vl) · (vl+1 + vl) dx =
1

h

∫
Ω

(∇ · σ[ul] + f
) · (ul+1 − ul

)
dx.
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Since σ[ul] · n = N l+1n on ∂Ω,

ρ

2

∫
Ω

(|vl+1|2 − |vl|2) dx =

∫
∂Ω

N l+1n · (ul+1 − ul) ds−
∫

∂Ω

σ[ul] : ∇ · (ul+1 − ul) dx

+

∫
Ω

f · (ul+1 − ul) dx

=

∫
∂Ω

[N l+1n · (ul+1 − ul) +N l+1(g − g)] ds

− 1

2

∫
Ω

σ[ul+1 + ul] : ∇ · (ul+1 − ul) dx

− 1

2

∫
Ω

σ[ul+1 − ul] : ∇ · (ul+1 − ul) dx

+

∫
Ω

f · (ul+1 − ul) dx

=

∫
∂Ω

N l+1(ul+1 · n + g) ds−
∫

∂Ω

N l+1(ul · n + g) ds

− 1

2

∫
Ω

σ[ul+1 + ul] : ∇ · (ul+1 − ul) dx

− 1

2

∫
Ω

σ[ul+1 − ul] : ∇ · (ul+1 − ul) dx

+

∫
Ω

f · (ul+1 − ul) dx.

Since 0 ≤ ul · n + g ⊥ N l+1 ≥ 0 on ∂Ω, we have

ρ

2

∫
Ω

(|vl+1|2 − |vl|2) dx ≥ −1

2

∫
Ω

σ[ul+1 + ul] : ∇ · (ul+1 − ul) dx

+
1

2

∫
Ω

σ[ul+1 − ul] : ∇ · (ul+1 − ul) dx

+

∫
Ω

f · (ul+1 − ul) dx.

By the properties of Hooke’s tensor Eijkl,

ρ

2

∫
Ω

| (vl+1|2 − |vl|2) dx ≥ −1

2

∫
Ω

σ[ul+1 + ul] : ∇ · (ul+1 − ul) dx

+

∫
Ω

f · (ul+1 − ul) dx

= −1

2

∫
Ω

(
σ[ul+1] : ∇ · ul+1 − σ[ul] : ∇ · ul

)
dx

+

∫
Ω

f · (ul+1 − ul) dx.
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Therefore we have

1

2

∫
Ω

(
ρ|vl+1|2 + σ[ul+1] : ε[ul+1]

)
dx−
∫

Ω

f · ul+1 dx

−
[
1

2

∫
Ω

(
ρ|vl|2 + σ[ul] : ε[ul]

)
dx−
∫

Ω

f · ul dx

]
≥ 0.

By Definition 3.2,

E(ul+1,vl+1) ≥ E(ul,vl) for any l ≥ 0.

Compared to the result of Lemma 3.3, the explicit Euler method is not suitable

to obtain boundedness and would not be reasonable in terms of a physical point of

view. Due to these reasons, we will avoid considering the explicit Euler method in

this thesis.
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CHAPTER 4
ELASTIC BODIES : COVERGENCE

4.1 Standard results for frictionless contact

We recall that if we use the implicit Euler method in equation of motion and

on boundary condition, total energy is dissipated, i.e.,

E(ul+1,vl+1) ≤ E(ul,vl).

In this Section, we require the numerical formulation of motion equation and bound-

ary (contact) condition made by the implicit Euler method. Since the total initial

energy functional is finite,

E(ul,vl) ≤ E(u0,v0) <∞ for any l ≥ 1.

According to bound of total energy for discrete time tl, we will see that the numerical

solutions ul,vl are bounded in some spaces, independent of the time step size h. In

order to show this result, we begin with a discrete nonlinear version of the Grownall

Lemma. See the detail in [53].

In this Section, instead of notations ul, vl, we write those as ul;h,vl;h to show

the dependence of h more explicitly. We recall the partition of time [0, T ] used in

Section 3.3. Then 0 ≤ l ≤ T/h and tl = lh for tl ∈ [0, T ]. Also we note that as h ↓ 0,

lh→ t ∈ [0, T ].

Lemma 4.1. Suppose that y0:h = y0 ≥ 0 for all h > 0 and

yn+1:h ≤ yn:h + hG(yn:h, h), n = 0, 1, 2, · · · , (4.1)
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where G(y, h) is nonnegative, locally Lipschitz continuous and monotone increasing in

y with Lipschitz constant independent of h and G(·, h)→ g(·) uniformly on compact

sets as h→ 0. Suppose also that the initial value problem

dk(t)

dt
= g(k), k(0) = y0

has a unique solution. Then

lim sup
h↓0

yl:h ≤ k(t) for all t ≥ 0 and some l ≥ 1,

where k(t) < +∞ and t = lh.

Applying Lemma 4.1, we will derive the bound of virtual work by external

forces, not depending on h.

Lemma 4.2. Assume that f does not depend on time and neither E(u0,v0) nor∫
Ω
f · ul;h dx is not zero for any l ≥ 0. Then as h → 0, we have a function k(t)

such that

lim sup
h↓0,lh→t

∫
Ω

f · ul;h dx ≤ k(t) for t ∈ [0, T ].

Proof. For any l ≥ 1 we put

yl:h =

∣∣∣∣∫
Ω

f · ul;h dx

∣∣∣∣ . (4.2)

Obviously, yl:h ≥ 0 for 0 ≤ l ≤ T/h. Now we need this form

yl+1:h ≤ yl:h + hG(yl:h, h).
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From (4.2), for h > 0 we have

yl+1:h − yl:h ≤
∣∣∣∣∫

Ω

f · (ul+1 − ul) dx

∣∣∣∣
=

h

2

∣∣∣∣∫
Ω

f · (vl+1 + vl)dx

∣∣∣∣ . (4.3)

From the total energy functional and the property of Hooke’s tensor Eijkl,

E(ul;h,vl;h) =
1

2

∫
Ω

(
ρ|vl;h|2 + σ[ul;h] : ε[ul;h]

)
dx−
∫

Ω

f · ul;h dx

≥ 1

2
ρ‖vl;h‖2L2(Ω) −

∫
Ω

f · ul;h dx.

Thus

‖vl;h‖L2(Ω) ≤
√

2

ρ

(
E(ul;h,vl;h) +

∫
Ω

f · ul;h dx

)

≤
√

2

ρ

√
E(u0,v0) +

∫
Ω

f · ul;h dx.

Simply, we put E(u0,v0) = E0. Then we have

‖vl;h‖L2(Ω) ≤
√

2

ρ

√
E0 + yl:h,

‖vl+1;h‖L2(Ω) ≤
√

2

ρ

√
E0 + yl+1:h.

Thus by (4.3),

yl+1:h − yl:h ≤ h

2
‖f‖L2(Ω)

(‖vl+1;h‖L2(Ω) + ‖vl;h‖L2(Ω)

)
≤ h√

2ρ
‖f‖L2(Ω)

(√
E0 + yl+1:h +

√
E0 + yl:h

)
.

So we obtain

yl+1:h − h√
2ρ
‖f‖L2(Ω)

√
E0 + yl+1:h ≤ yl:h +

h√
2ρ
‖f‖L2(Ω)

√
E0 + yl:h.
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Let

ϕ(yl+1:h, h) = yl+1:h − h√
2ρ
‖f‖(L2(Ω))d

√
E0 + yl+1:h (4.4)

and

ψ(yl:h, h) = yl:h +
h√
2ρ
‖f‖L2(Ω)

√
E0 + yl:h. (4.5)

Thus

ϕ(yl+1:h, h) ≤ ψ(yl:h, h). (4.6)

Consider continuous function in terms of only y. Then

ϕ(y, h) = y − h√
2ρ
‖f‖L2(Ω)

√
E0 + y for any y ≥ 0.

Putting h > 0 be sufficiently small, we have

∂ϕ(y, h)

∂y
= 1− h

2
√

2
‖f‖L2(Ω)

(
E0 + y

)−1/2
.

Then ϕ(·, h) is strictly increasing for the fixed h > 0. So inverse function ϕ−1(·, h)

exists and is strictly increasing. Now taking inverse function ϕ−1 on both side in

(4.6), we have yl+1:h ≤ ϕ−1(ψ(yl:h, h), h). Let ϕ−1(ψ(yl:h, h), h) = yl;h + hG(yl;h, h).

Then,

G(yl;h, h) =
ϕ−1(ψ(yl:h, h), h)− yl;h

h
. (4.7)

First, we claim that G(y, h) ≥ 0 and is monotonically increasing in y. In order

to show that G(yl;h, h) is monotonically increasing in y, it is sufficient to show that

∂G/∂y ≥ 0. Now take a derivative with respect to only y. Then we have

∂G(y, h)

∂y
=

1

h

(
∂ϕ−1(ψ(y, h), h)

∂y
− 1

)
. (4.8)
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By implicit function theorem, we can simplify ϕ−1(ψ(y, h), h) into ϕ−1(y∗, h), where

y∗ = ψ(y, 0) for some y∗ ≥ 0 and y∗ = ψ(y, h) is well defined in some neighborhood

of h = 0. Thus from (4.8)

∂G(y, h)

∂y
=

1

h

(
∂ϕ−1(y∗, h)

∂y
− 1

)
.

Since ∂ϕ−1(y, h)/∂y = [∂ϕ(y, h)/∂y]−1, for sufficiently small h > 0 we obtain

∂ϕ−1(y∗, h)
∂y

=

[
1− h

2
√

2ρ
‖f‖L2(Ω)(E

0 + y∗)−1/2

]−1

=

[
1− h

2
√

2ρ
‖f‖L2(Ω)(E

0 + ψ(y, h))−1/2

]−1

.

Therefore

∂G(y, h)

∂y
=

1

h

([
1− h

2
√

2ρ
‖f‖L2(Ω)(E

0 + ψ(y, h))−1/2

]−1

− 1

)

=
‖f‖L2(Ω)/

√
8ρ(E0 + ψ(y, h))

1− h‖f‖L2(Ω)/
√

8ρ(E0 + ψ(y, h))
> 0. (4.9)

Next , we want to show that G(0, h) ≥ 0. From (4.7) we obtain

G(0, h) =
ϕ−1(h‖f‖L2(Ω)

√
E0/
√

2ρ, h)

h
.

Since ϕ−1(0, h) ≥ 0 and ϕ−1 is strictly increasing, G(0, h) ≥ 0.

From(4.9), ∂G(y, h)/∂y is bounded for y < ∞. Since ϕ(y, h) and ψ(y, h) are

continuous in y ≥ 0, G(y, h) is locally Lipschitz continuous.

We want to find g(y) such that G(y, h) → g(y) uniformly on compact set as

h→ 0. By implicit function theorem,

lim
h→0

G(y, h) = lim
h→0

ϕ−1(y∗, h)− y
h

.
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Since ϕ(y, 0) = y and ϕ−1(y, 0) = y,

lim
h→0

G(y, h) = lim
h→0

ϕ−1(y∗, h)− ϕ−1(y, 0)

h
. (4.10)

Notice that ψ(y∗, 0) = y∗ from (4.5) and recall that we put ψ(y, 0) = y∗. Note that

for any h > 0

∂ψ(y, h)

∂y
= 1 +

h

2
√

2
‖f‖L2(Ω)

(
E0 + y

)−1/2
> 0.

Since ψ(y, h) is bijective in y, y∗ = y(0) by implicit function theorem. Therefore from

(4.10),

lim
h→0

G(y, h) = lim
h→0

ϕ−1(y∗, h)− ϕ−1(y∗, 0)

h

=
∂ϕ−1

∂h
(y∗, 0).

Since ϕ−1(ϕ(y, h), h),= y, taking ϕ(y, h) = z,

0 =
∂ϕ−1(z, h)

∂h

=
∂ϕ−1(z, h)

∂z

∂z

∂h
+
∂ϕ−1(z, h)

∂h
.

Then putting h = 0,

0 =
∂ϕ−1(y, 0)

∂y

∂ϕ(y, 0)

∂h
+
∂ϕ−1(y, 0)

∂h

=
∂ϕ(y, 0)

∂h
+
∂ϕ−1(y, 0)

∂h
. (4.11)

Therefore using (4.11),

lim
h→0

G(y, h) =
∂ϕ−1(y∗, 0)

∂h

= −∂ϕ(y∗, 0)

∂h

=
1√
2ρ
‖f‖L2(Ω)

√
E0 + y∗
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=
1√
2ρ
‖f‖L2(Ω)

√
E0 + ψ(y, 0)

=
1√
2ρ
‖f‖L2(Ω)

√
E0 + y.

So we have

g(y) =
1√
2ρ
‖f‖(L2(Ω))d

√
E0 + y as h→ 0.

We claim that the initial value problem

dk

dt
= g(k) =

1√
2ρ
‖f‖L2(Ω)

√
E0 + k, k(0) = y0

has unique solution. This ordinary differential equation has unique solution

k(t) =
1

4

(
t√
2ρ
‖f‖L2(Ω) + 2(E0 + y0)1/2

)2

− E0.

Therefore by Lemma 4.1, the result follows.

Before we verify the next Lemma 4.3, we mention a continuous linear interpolant,

denoted by uh(x, t). The value uh(x, t) is the continuous linear interpolant of ul;h =

uh(x, lh) and ul+1;h = uh(x, (l + 1)h) for t ∈ [lh, (l + 1)h]. Similarly let vh(x, t) be

a continuous linear interpolant of vl;h = vh(x, lh) and vl+1;h = vh(x, (l + 1)h) for

t ∈ [lh, (l + 1)h].

Lemma 4.3. Suppose that

lim sup
h↓0,lh→t

∫
Ω

f · ul;h(x, t) dx ≤ k(t), ∀t ∈ [0, T ].

Then vh are uniformly bounded in L∞(0, T ;L2(Ω)) and uh are uniformly bounded in

W 1,∞(0, T ;L2(Ω)) and L∞(0, T ;H1(Ω)), as h→ 0, lh→ t.
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Proof. Since E(ul,vl) ≤ E(u0,v0) for any l ≥ 1,

1

2

∫
Ω

(
ρ|vl;h|2 + σ[ul;h] : ε[ul;h]

)
dx−
∫

Ω

f · ul;h dx ≤ E(u0, v0).

Then by our assumption, we have

1

2

∫
Ω

(
ρ|vl;h|2 + σ[ul;h] : ε[ul;h]

)
dx ≤ E(u0, v0) + k(t).

From the property of Hooke’s tensor Eijkl, there exists a constant m > 0 such that

1

2

∫
Ω

(
ρ|vl;h|2 +m|ε[ul;h]|2) dx ≤ E(u0, v0) + k(t). (4.12)

Thus we have

lim sup
h↓0,lh→t

‖vl;h‖L2(Ω) <∞ for any l ≥ 1. (4.13)

Since vh(x, t) are the linear continuous interpolant, vh are uniformly bounded in

L∞(0, T ;L2(Ω)).

Next, we claim that uh are uniformly bounded in W 1,∞(0, T ;L2(Ω)). Now we

consider

u(x, tl) = u(x, 0) +

∫ tl

0

v(x, τ) dτ for any l ≥ 1.

Then we obtain

‖ul;h‖L2(Ω) ≤ ‖u0‖L2(Ω) +

∫ tl

0

‖v(τ)‖L2(Ω) dτ

≤ ‖u0‖L2(Ω) +

∫ T

0

max
0≤τ≤T

‖v(τ)‖L2(Ω) dτ

≤ ‖u0‖L2(Ω) +

∫ T

0

k(τ) dτ.
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Since u0 ∈ H1(Ω) and k(t) is bounded,

lim sup
h↓0,lh→0

‖ul;h‖L2(Ω) <∞. (4.14)

Since vh(x, t) and uh(x, t) are the linear continuous interpolants, by (4.13) and (4.14),

‖uh(t)‖W 1,∞(0,T ;L2(Ω)) = ess sup0≤t≤T

(‖vh(t)‖L2(Ω) + ‖uh(t)‖L2(Ω)

)
<∞.

Also we claim that uh are uniformly bounded in L∞(0, T ;H1(Ω)). Using

Korn’s inequality (Theorem 2.8) with (4.12) and by (4.14), we obtain

‖uh(t)‖L∞(0,T ;H1(Ω)) <∞,

as required.

Note that a continuous function k(t) used in the Lemma 4.3 may be different

for each occurrence. In order to achieve the boundedness of N l in the Sobolev space

H−1/2(∂Ω), we could need nicer spaces for uh and vh. In the next Section we will see

how to derive an estimate of N l which is depending on time step size h, using Fourier

transform and Extension operators. Basically we will use the spaces discussed in the

previous Lemma, in order to do so.

4.2 Sharper estimate for frictionless contact

In this Section, we obtain a uniform estimate of the contact force N l in the

Sobolev space H−1/2(∂Ω) at each time tl, employing the implicit Euler method. We

note that the linear complementarity problem condition will not be used to derive

the estimate. Other numerical schemes with the linear complementarity problem

condition would be employed to obtain better estimates.
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4.2.1 Implicit Euler method

We recall the numerical formulation of motion and the boundary condition

applied by the implicit Euler method:

ul+1 =
h2

2ρ
∇ · σ[ul+1] +

h2

2ρ
f + hvl + ul, (4.15)

σ[ul+1] = N ln on ∂Ω. (4.16)

In this Section our aim is to derive an estimate of N l on H−1/2(∂Ω), based on (4.15)

and (4.16).

4.2.2 Extension operators extk : H1/2(∂Ω)→ H1(Ω)

According to Trace theorem 2.7, there is a continuous linear operator tr from

H1(Ω) onto H1/2(∂Ω). Then the operator tr has bounded right inverse. See, for

example, [47]. In the next Subsection, we will construct a family of the bounded

right inverse operators extk : H1/2(∂Ω) → H1(Ω), i.e., tr ◦ extk = IH1/2(∂Ω), where I

is identity map and k is a positive number.

4.2.3 Results on the half space Rd
+

We start by obtaining estimates for the geometrically simple case Ω = Rd
+ =

Rd−1 × R+. Since ∂Ω = Rd−1 × {0} can be identified with Rd−1, we write x =

(x̃, xd) for any x ∈ Rd so that Ω = {(x̃, xd) | xd > 0} and ∂Ω = {(x̃, xd) | xd = 0}.

Now we want to construct the concrete extension operator of the form extk(w) = u.

Before doing this, we introduce some useful functions; let µ : Rd−1 → R be a test

function of class C∞
0 whose compact support is B = {x̃ | x̃ ∈ Rd−1, | x̃ |≤ 1}, µ ≥ 0
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and ‖µ‖L1(Rd−1) = 1. For any α > 0, let µα(x̃) = (1/αd−1)µ(α−1x̃). When we

derive the estimate, we will have a natural choice of α(xd) = xd. As we shall see in

Lemma 4.7, α(xd) = (xd)
η for η < 1 will turn out to be inappropriate in the process

of deriving estimates.

For w ∈ H1/2(∂Ω) and u ∈ H1(Ω), we want to use the extension operator

extk(w) = u which has the form

u(x̃, xd) =

∫
Rd−1

w(x̃− ỹ)µα(xd)(ỹ) dỹ · (1− kxd)+, (4.17)

where ỹ = (y1, y2, · · · , yd−1) and dỹ = dy1dy2 · · · dyd−1. This idea is based on Lars-

Erik Andersson’s paper [1].

Lemma 4.4. If limxd↓0 α(xd) = 0, then limxd↓0 u(x̃, xd) = w(x̃).

Proof. From (4.17), the Fourier transform of u is

F [u]
(
ξ̃, xd

)
= (2π)−(d−1)(1− kxd)+

∫
Rd−1

[
e−�x·

��

∫
Rd−1

w(x̃− ỹ)µα(xd)(ỹ) dỹ

]
dx̃.

Using substitution z̃ = α−1ỹ and putting B = (2π)−(d−1)(1− kxd)+,

F [u]
(
ξ̃, xd

)
= B

∫
Rd−1

[
e−�x·

��

∫
Rd−1

w(x̃− ỹ)
1

αd−1
µ(α−1ỹ) dỹ

]
dx̃

= B

∫
Rd−1

[
e−�x·

��

∫
Rd−1

w(x̃− α(xd)z̃)
1

αd−1
µ(z̃)αd−1 dz̃

]
dx̃

= B

∫
Rd−1

[
e−�x·

��w(x̃− α(xd)z̃)

∫
Rd−1

µ(z̃) dz̃

]
dx̃.

Recalling that ‖µ‖L1(Rd−1) = 1, we have

F [u]
(
ξ̃, xd

)
= (2π)−(d−1)(1− kxd)+

∫
Rd−1

e−�x·
��w(x̃− α(xd)z̃) dx̃.



64

Thus if limxd↓0 α(xd) = 0, F [u]
(
ξ̃, xd

)
= F [w]

(
ξ̃
)
. Therefore if limxd↓0 α(xd) = 0,

lim
xd↓0

u(x̃, xd) = w(x̃).

Lemma 4.5. From (4.17), we have Fourier transform

F [u](ξ̃, xd) = (2π)(d−1)/2(1− kxd)+ · F [w](ξ̃)F [µα(xd)](ξ̃).

Proof. Putting B = (2π)−(d−1)/2(1− kxd)+,

F [u](ξ̃, xd) = B

∫
Rd−1

[
e−i��·�x
∫

Rd−1

w(x̃− ỹ)µα(xd)(ỹ) dỹ

]
dx̃

= B

∫
Rd−1

e−i��·(�x−�y)w(x̃− ỹ) dx̃

[∫
Rd−1

e−i��·�yµα(xd)(ỹ) dỹ

]
.

Using substitution x̃− ỹ = z̃,

F [u](ξ̃, xd) = B

∫
Rd−1

e−i��·�zw(z̃) dz̃

[∫
Rd−1

e−i��·�yµα(xd)(ỹ) dỹ

]
= (2π)(d−1)/2(1− kxd)+ · F [w](ξ̃)F [µα(xd)](ξ̃).

Lemma 4.6. From the definition of µα(xd),

F [µα](ξ̃) = F [µ](αξ̃).

Proof. The Fourier transformation of µα(xd) has

F [µα](ξ̃) = (2π)−(d−1)/2α−(d−1)

∫
Rd−1

e−i��·�xµ(α−1x̃) dx̃.
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Using substitute α−1x̃ = ỹ,

F [µα](ξ̃) = (2π)−(d−1)/2α−(d−1)

∫
Rd−1

e−iα��·�yµ(ỹ)α(d−1)dỹ

= (2π)−(d−1)/2

∫
Rd−1

e−iα��·�yµ(ỹ) dỹ

= F [µ](αξ̃).

Lemma 4.7. From (4.17), we obtain a estimate

|u|H1(Ω) ≤ C
√

1 + k‖w‖H1/2(∂Ω)

Proof. The H1(Ω) semi norm is written as

|u|2H1(Ω) =

∫
Rd−1

∫ ∞

0

[
d−1∑
i=1

∣∣∣∣∂u(x̃, xd)

∂xi

∣∣∣∣2 +

∣∣∣∣∂u(x̃, xd)

∂xd

∣∣∣∣2
]
dxd dx̃. (4.18)

Let |∇
�xu(x̃, xd)|2 =

∑d−1
i=1 |∂u(x̃, xd)/∂xi|2. In first term of the right side (4.18), by

Plancherel’s Theorem (2.1), Theorem 2.2, and Lemma 4.5,∫
Rd−1

|∇
�xu(x̃, xd)|2 dx̃ =

∫
Rd−1

∣∣∣ξ̃∣∣∣2 ∣∣∣F [u](ξ̃,xd)
∣∣∣2 dξ̃ (4.19)

= B

∫
Rd−1

∣∣∣ξ̃∣∣∣2 ∣∣∣F [w](ξ̃)
∣∣∣2 ∣∣∣F [µα(xd)](ξ̃)

∣∣∣2 dξ̃, (4.20)

where B = (2π)d−1|1− kxd|2. Note that

∂F [u]
(
ξ̃, xd

)
∂xd

= F
[
∂u

∂xd

]
(ξ̃, xd). (4.21)

In the second term of the right side (4.18), by Plancherel’s Theorem and (4.21), we

have ∫
Rd−1

∣∣∣∣∂u(x̃, xd)

∂xd

∣∣∣∣2 dx̃ =

∫
Rd−1

∣∣∣∣∣∣
∂F [u]
(
ξ̃, xd

)
∂xd

∣∣∣∣∣∣
2

dξ̃. (4.22)
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Using Lemmas 4.5, 4.6 and chain rile, for 0 ≤ xd ≤ 1/k we have

∂F [u](ξ̃, xd)

∂xd

= (2π)
d−1
2 F [w]

(
ξ̃
)[
−kF [µ]

(
α(xd)ξ̃

)
+ (1− kxd)

∂F [µα(xd)](ξ̃)

∂xd

]

= (2π)
d−1
2 F [w]

(
ξ̃
)[
−kF [µ]

(
α(xd)ξ̃

)
+ (1− kxd)

∂F [µ](α(xd)ξ̃)

∂xd

]

= (2π)
d−1
2 F [w]

(
ξ̃
) [
−kF [µ]

(
α(xd)ξ̃

)
+ (1− kxd)

∂α(xd)

∂xd

(
ξ̃
)T
· ∇F [u](α(xd)ξ̃)

]
.

Thus using (4.22), and applying Cauchy–Schwartz inequality and the fact that (a −

b)2 ≤ 2(a2 + b2) for a, b ∈ R, we obtain

∫
Rd−1

∣∣∣∣∂u(x̃, xd)

∂xd

∣∣∣∣2 dx̃ (4.23)

≤ 2(2π)d−1

∣∣∣∣dα(xd)

dxd

∣∣∣∣2 (1− kxd)
2

∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2 ∣∣∣ξ̃∣∣∣2 ∣∣∣∇F [µ]

(
α(xd)ξ̃

)∣∣∣2 dξ̃
+ 2(2π)d−1k2

∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2 ∣∣∣∇F [µ]

(
α(xd)ξ̃

)∣∣∣2 dξ̃.
Note that since 0 ≤ xd ≤ 1/k, |1− kxd| ≤ 1, the first term of right side will be

2(2π)d−1

∣∣∣∣dα(xd)

dxd

∣∣∣∣2 (1− kxd)
2

∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2 ∣∣∣ξ̃∣∣∣2 ∣∣∣∇F [µ]

(
α(xd)ξ̃

)∣∣∣2 dξ̃
≤ (2π)d−12

∣∣∣∣dα(xd)

dxd

∣∣∣∣2 ∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2 ∣∣∣ξ̃∣∣∣2 ∣∣∣∇F [µ]

(
α(xd)ξ̃

)∣∣∣2 dξ̃.
Since µ ∈ C∞

0 (Rd−1) has compact support, F [µ](ξ̃) goes to zero faster than any

rational function of
∣∣∣ξ̃∣∣∣. Also note that since ∇F [µ]

(
ξ̃
)

= ix̃µ(x̃), ∇F [µ](ξ̃) decays

faster than any rational function of
∣∣∣ξ̃∣∣∣ . So we can choose m to be a sufficiently large

integer and choose a constant C so that
∣∣∣F [µ]
(
ξ̃
)∣∣∣ , ∣∣∣∇F [µ]

(
ξ̃
)∣∣∣ ≤ C

(
1 +
∣∣∣ξ̃∣∣∣)−m

.
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Therefore from (4.20) and the first term of inequality (4.23),

(2π)d−1(1− kxd)
2

∫
Rd−1

∣∣∣ξ̃∣∣∣2 ∣∣∣F [w](ξ̃)
∣∣∣ ∣∣∣F [µα(xd)](ξ̃)

∣∣∣2 dξ̃
+2(2π)d−1

∣∣∣∣dα(xd)

dxd

∣∣∣∣2 ∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣ ∣∣∣ξ̃∣∣∣2 ∣∣∣∇F [µ]

(
α(xd)ξ̃

)∣∣∣2 dξ̃
≤ (2π)d−1C

(
1 + 2

∣∣∣∣dα(xd)

dxd

∣∣∣∣2
)∫

Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2 ∣∣∣ξ̃∣∣∣2(

1 + α(xd)2

∣∣∣ξ̃∣∣∣2)mdξ̃

Then integrating the above inequality with respect to xd,

(2π)d−1

∫ 1/k

0

(1− kxd)
2

[∫
Rd−1

∣∣∣ξ̃∣∣∣2 ∣∣∣F [w](ξ̃)
∣∣∣ ∣∣∣F [µα(xd)](ξ̃)

∣∣∣2 dξ̃] dxd

+2(2π)d−1

∫ 1/k

0

∣∣∣∣dα(xd)

dxd

∣∣∣∣ [2 ∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣ ∣∣∣ξ̃∣∣∣2 ∣∣∣∇F [µ]

(
α(xd)ξ̃

)∣∣∣2 dξ̃] dxd

≤ C

∫
Rd−1

∣∣∣ξ̃∣∣∣2 ∣∣∣F [w](ξ̃)
∣∣∣2
∫ 1/k

0

1 + 2
∣∣∣dα(xd)

dxd

∣∣∣2(
1 + α(xd)2

∣∣∣ξ̃∣∣∣2)m dxd

 dξ̃.
Suppose that α(xd) = (xd)

η. If η < 1, dα(xd)
dxd

is unbounded as xd ↓ 0. So let η ≥ 1.

Now taking substitution s = xd

∣∣∣ξ̃∣∣∣1/η

, we consider

∫ 1/k

0

dxd(
1 + (xd)2η

∣∣∣ξ̃∣∣∣2)m = |ξ̃|−1/η

∫ |��|1/η
/k

0

ds

(1 + s2η)m

≤ |ξ̃|−1/η

∫ ∞

0

ds

(1 + s2η)m , (4.24)

provided that 2ηm > 1. In (4.24), we can take the natural choice η = 1 so that the

integrand is bounded. So since m is sufficiently large, we have

∫ ∞

0

(1 + s2)−mds ≤
∫ ∞

0

(1 + s2)−1ds =
π

2
.
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Thus taking η = 1 so that α(xd) = xd, we have

(2π)d−1

∫ 1/k

0

(1− kxd)
2

[∫
Rd−1

∣∣∣ξ̃∣∣∣2 ∣∣∣F [w](ξ̃)
∣∣∣ ∣∣∣F [µα(xd)](ξ̃)

∣∣∣2 dξ̃] dxd

+2(2π)d−1

∫ 1/k

0

∣∣∣∣dα(xd)

dxd

∣∣∣∣ [2 ∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣ ∣∣∣ξ̃∣∣∣2 ∣∣∣∇F [µ]

(
α(xd)ξ̃

)∣∣∣2 dξ̃] dxd

≤ C

∫
Rd−1

∣∣∣ξ̃∣∣∣2−1 ∣∣∣F [w](ξ̃)
∣∣∣2 dξ̃

≤ C

∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2(1 +

∣∣∣ξ̃∣∣∣2)1/2

dξ̃

= C‖w‖2H1/2(Rd−1). (4.25)

Finally in the second term of inequality (4.23), using Lemma 4.6 and the fact that∣∣∣F [µ]
(
ξ̃
)∣∣∣ ≤ ‖µ‖L1(Rd−1) = 1, we have

(2π)d−12k2

∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2 ∣∣∣F [µ]

(
α(xd)ξ̃

)∣∣∣2 dξ̃ dxd

≤ 2k2

∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2 dξ̃ dxd

≤ 2k2

∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2(1 +

∣∣∣ξ̃∣∣∣2)1/2

dξ̃ dxd

= 2k2‖w‖2H1/2(Rd−1). (4.26)

Therefore combining (4.25) with (4.26), we have

|u|2H1(Rd
+) ≤ C‖w‖2H1/2(Rd−1) + 2k‖w‖2H1/2(Rd−1).

Taking C1 = max{C, 2}, we obtain

|u|2H1(Rd
+) ≤ C1(1 + k)‖w‖2H1/2(Rd−1),

as required.

Note that C used in the Lemma 4.7 is independent of w ∈ H1/2(Rd−1) and k.
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Lemma 4.8. For all w ∈ H1/2(Ω),

‖extk(w)‖L2(Ω) ≤ C
1√
k
‖w‖H1/2(∂Ω).

Proof. There is a w ∈ H1/2(∂Ω) such that extk(w) = u for any u ∈ H1(Ω) ⊂ L2(Ω).

Using Plancherel’s Theorem and Lemma 4.5,

‖u‖2L2(Ω) = ‖F [u]‖2L2(Ω)

= (2π)(d−1)

∫ 1/k

0

(1− kxd)
2

[∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2 ∣∣∣F [µα(xd)]

(
ξ̃
)∣∣∣2 dξ̃] dxd

= C

∫ 1/k

0

∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2 dξ̃dxd

≤ C

∫ 1/k

0

∫
Rd−1

∣∣∣F [w]
(
ξ̃
)∣∣∣2(1 +

∣∣∣ξ̃∣∣∣2)1/2

dξ̃dxd

= C
1

k
‖w‖2H1/2(∂Ω).

Therefore the result follows.

Lemma 4.9. From Lemmas 4.7 and 4.8, we obtain

‖extk(w)‖H1(Ω) ≤ C
√
k‖w‖H1/2(∂Ω).

Proof. By Lemmas 4.7 and 4.8,

‖extk(w)‖2H1/2(∂Ω) = |u|2H1(Ω) + ‖u‖2L2(Ω)

≤ C(1 + k)‖w‖2H1/2(∂Ω) + C
1

k
‖w‖2H1/2(∂Ω)

≤ Ck‖w‖2H1/2(∂Ω),

as required.
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Figure 4.1: The diffeomorphism Ψx : Ux → Vx.

4.2.4 General domain Ω

Consider a bounded domain Ω ⊂ Rd with smooth boundary. In fact, it is

enough that the boundary is C1. For any x ∈ ∂Ω, we can have diffeomorphism

Ψx : Ux → Vx, where Ux is neighborhood of x and Vx is neighborhood of 0 in Rd
+.

See Figure 4.1 for the illustration. In Vx, we find a set Wx ⊂ Rd−1 × {0} which is

containing origin and relatively open in Rd−1×{0}. Consider the closure of {(x, xd) |

0 ≤ d(x̃,Wx) < xd, 0 < xd < 1/k} which is subset of Vx. Then for sufficiently small

1/k, we can find such a set Wx. Let ψ−1
x (Wx) = Zx ⊂ ∂Ω so that Zx contains x and is

relatively open in ∂Ω. Thus Zx is open covering of ∂Ω. Since ∂Ω is compact, there is

a finite subcovering {Zx1, Zx2, · · · , Zxp}. Use the partition of unity {φ1, φ2, · · · , φp}

subordinate to this finite covering. Choose a sufficiently large number k > 0 such

that the closure of {(x̃, xd) | 0 ≤ d(x̃,Wxj
) < xd < 1/k} ⊂ Vxj

, for 1 ≤ j ≤ p. Now
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for w ∈ H1/2(∂Ω), define

extk,j(w) = extk(φjw ◦ ψ−1
xj

) ◦ ψxj
.

Note that φjw ∈ H1/2(∂Ω). Then by partition of unity, we can set

ẽxtk(w) =

p∑
j=1

extk,j(w).

Lemma 4.10. ẽxtk is right inverse of trace operator tr : H1(Ω)→ H1/2(∂Ω).

Proof. For any w ∈ H1/2(∂Ω), we claim that tr ◦ ẽxtk(w) = w.

tr ◦ ẽxtk(w) = tr(ẽxtk(w))

=

p∑
j=1

tr(extk,j(w))

=

p∑
j=1

tr(extk(φjw ◦ ψ−1
xj

) ◦ ψxj
)

=

p∑
j=1

(φjw ◦ ψ−1
xj

) ◦ ψxj

=

p∑
j=1

φjw = w.

Therefore tr ◦ ẽxtk(w) = IH1/2(∂Ω).

Lemma 4.11. For general bounded domain Ω ⊂ Rd with Lipschitz boundary, we

have

‖ẽxtk(w)‖H1(Ω) ≤ C
√
k‖w‖H1/2(∂Ω) and (4.27)

‖ẽxtk(w)‖L2(Ω) ≤ C
1√
k
‖w‖H1/2(∂Ω) for all w ∈ H1/2(∂Ω). (4.28)
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Proof. For general bounded domain Ω ⊂ Rd,

‖ẽxtk(w)‖H1(Ω) = ‖
p∑

j=1

extk,j(w)‖H1(Ω)

≤
p∑

j=1

‖extk,j(w)‖H1(Ω)

=

p∑
j=1

‖extk((φjw ◦ ψ−1
xj

) ◦ ψxj
)‖H1(Ω).

Then for finite open covering {Zxj
|1 ≤ j ≤ p}, take Uxj

⊃ Zxj
such that Ω =

⋃
Uxj

,

and let ζj be associate partition of unity. Thus for ζju corresponding to φjw, we have

‖ẽxtk(w)‖H1(Ω) ≤
p∑

j=1

‖ζj · u‖H1(Ω)

≤
p∑

j=1

‖ζju‖H1(Rd
+)

=

p∑
j=1

C
√
k‖φjw‖H1/2(Rd−1)

=

p∑
j=1

C
√
k‖w‖H1/2(Zxj )

=

p∑
j=1

C
√
k‖φjw‖H1/2(∂Ω)

≤ C
√
k‖φjw‖H1/2(∂Ω).

Therefore

‖ẽxtk(w)‖H1(Ω) ≤ C
√
k‖w‖H1/2(∂Ω).

Similarly, we have

‖ẽxtk(w)‖L2(Ω) ≤ C
1√
k
‖w‖H1/2(∂Ω).



73

Now using the estimates (4.27), (4.28), we derive estimate of the contact force

N l in H−1/2(∂Ω) at each time tl.

Remark 4.12. We have dealt with the trace operator tr and extension operators extk

on scalar functions. We can extend these on vector functions; we use the notation of

the trace operator as tr : H1(Ω) → H1/2(∂Ω) and extension operators as ẽxtk(w) :

H1/2(∂Ω) → H1(Ω). Indeed, for vector valued functions w ∈ H1/2(∂Ω) the trace

theorem has to be replaced by the decomposed trace theorem. See [32]. However,

notice that we do not consider the tangential components due to frictionless contact

conditions.

Lemma 4.13. For general bounded domain Ω ⊂ Rd with Lipschitzian domain, we

have

‖N l‖H−1/2(∂Ω) = O

(
1√
h

)
, as h→ 0. (4.29)

Proof. We apply the extension operator ẽxtk described in Remark 4.12. There is a

w ∈ H1/2(∂Ω) such that ẽxtk(w) = ω for ω ∈ H1(Ω). Then take the dot product of

ω with (4.15). Then

h2

2ρ

∫
Ω

(∇ · σ[ul+1]
) · ω dx =

∫
Ω

(Φl − ul+1) ·ω dx in Ω, (4.30)

where Φl = (h2/2ρ)f + hvl + ul. Recall that we used the implicit method for the

contact condition. By integration by parts on the left side of (4.30),

h2

2ρ

[∫
∂Ω

nT · σ[ul+1] · ω ds−
∫

Ω

σ[ul+1] : ∇ω dx

]
=

∫
Ω

(Φl − ul+1) · ω dx.
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Thus we have

h2

2ρ

∫
∂Ω

N ln ·w ds =
h2

2ρ

∫
Ω

σ[ul+1] : ∇ω dx+

∫
Ω

(Φl − ul+1) · ω dx

=
h2

2ρ

∫
Ω

σ[ul+1] : ∇ω dx+
h2

2ρ

∫
Ω

f · ω dx

+ h

∫
Ω

vl · ω dx−
∫

Ω

(ul+1 − ul) · ω dx.

So using (3.7),

∫
∂Ω

N ln ·w ds =

∫
Ω

σ[ul+1] : ∇ω dx+

∫
Ω

f · ω dx

+
2ρ

h

∫
Ω

vl · ω dx− ρ

h

∫
Ω

(vl+1 + vl) · ω dx.

=

∫
Ω

σ[ul+1] : ∇ω dx+

∫
Ω

f · ω dx

+
ρ

h

∫
Ω

(
vl − vl+1

) · ω dx.

Therefore, we have

∣∣∣∣∫
∂Ω

N ln ·w ds

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

σ[ul+1] : ∇ω dx

∣∣∣∣ + ∣∣∣∣∫
Ω

f · ω dx

∣∣∣∣
+
ρ

h

∣∣∣∣∫
Ω

(
vl − vl+1

) · ω dx

∣∣∣∣ .
Since σ[ul+1] : ∇ω = Eijklu

l+1
k,l ωi,j, we obtain

∣∣∣∣∫
∂Ω

N ln ·w ds

∣∣∣∣ ≤ C‖ul+1‖H1(Ω)‖ẽxtk(w)‖H1(Ω) + ‖f‖L2(Ω)‖ẽxtk(w)‖L2(Ω)

+
ρ

h

(‖vl‖L2(Ω) + ‖vl+1‖L2(Ω)

) ‖ẽxtk(w)‖L2(Ω).

By Lemma 4.11,

∣∣∣∣∫
∂Ω

N ln ·w ds

∣∣∣∣ ≤ Ck1/2‖ul+1‖H1(Ω)‖w‖H1/2(∂Ω) + Ck−1/2‖f‖L2(Ω)‖w‖H1/2(∂Ω)

+

(
C
k−1/2

h
‖vl‖L2(Ω) + C

k−1/2

h
‖vl+1‖L2(Ω)

)
‖w‖H1/2(Ω).
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Therefore,

sup
‖w‖

H1/2(∂Ω)
≤1

∣∣∣∣∫
∂Ω

N ln ·w ds

∣∣∣∣ ≤ Ck1/2‖ul+1‖H1(Ω) + Ck−1/2‖f‖L2(Ω)

+C
k−1/2

h
‖vl‖L2(Ω) + C

k−1/2

h
‖vl+1‖L2(Ω).

Put k = 1/h. Then we have

‖N l‖H−1/2(∂Ω) ≤ C
1√
h
‖ul+1‖H1(Ω) + C

√
h‖f‖L2(Ω)

+C
1√
h
‖vl‖L2(Ω) + C

1√
h
‖vl+1‖L2(Ω).

Thus by Lemma 4.3, we have

‖N l‖H−1/2(∂Ω) = O

(
1√
h

)
, as h→ 0.
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CHAPTER 5
EULER–BERNOULLI BEAM IN DYNAMIC CONTACT : PENALTY

METHOD

5.1 Formulation of Euler–Bernoulli beam

with Signorini’s contact condition

We recall Section 1.3. Then the function f(x, t) is the body force applied to

the rod; and time t is in between initial time and some fixed time T. We will assume

that ρ, A, and E and I are constants. Note that we use the right end x = l instead

of x = L in this Chapter.

The Euler–Bernoulli equation with Signorini’s contact condition comes from

the following physical situation illustrated in Figure 5.1.

If we impose frictionless Signorini’s contact conditions along the length of the

rod, we represent the equation of motion

ρA
∂2u

∂t2
= −EI ∂

4u

∂x4
+ f(x, t) +N(x, t), (5.1)

where the magnitude of the vertical contact forces (pressures), N(x, t) satisfies the

linear complementary condition

0 ≤ N(x, t) ⊥ u(x, t) + g(x) ≥ 0. (5.2)

Note that g(x), called the gap function, displays a measure of the “the initial normal-

ized gap” between the rod and the rigid foundation. We assume that applied body

force f(x, t) = f(x). So body force f and gap function g do not depend on time t.

We also assume that the gap function g(x) ≥ 0. Note that we can scale t and x to
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Figure 5.1: Euler–Bernoulli beam with frictionless contact.

get ρA = 1 and EI = 1. (However, we cannot simultaneously scale l = 1.) From the

physical point of view, LCP condition can be interpreted as the same way as contact

conditions of elastic body.

Thus we are lead to consider solving the following PDE:

utt = −uxxxx + f(x) +N(x, t) in (0, l)× (0, T ], (5.3)

0 ≤ N(x, t) ⊥ u+ g(x) ≥ 0 in (0, l)× (0, T ], (5.4)

u(0, t) = ux(0, t) = 0 on (0, T ], (5.5)

uxx(l, t) = uxxx(l, t) = 0 on (0, T ], (5.6)

u(x, 0) = u0(x) in (0, l), (5.7)

ut(x, 0) = v0(x) in (0, l). (5.8)

We assume that f ∈ L2(0, l), u0 ∈ H2
cf(0, l), v

0 ∈ L2(0, l). Indeed this implies that we
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can assume that the initial energy is finite. We also assume that g ∈ C∞[0, l], and

g(0) > 0. Equation (5.5) gives the essential boundary conditions for the clamped end

at x = 0, while (5.6) gives the natural boundary conditions for a free end at x = l.

Note that the last two equations (5.7, 5.8) are the initial conditions. The solution u

that we seek is in the space L∞(0, T ;H2
cf(0, l))∩W 1,∞(0, T ;L2(0, l))∩C([0, l]× [0, T ])

where H2
cf(0, l) is the subset of H2(0, l) which satisfies the clamped end conditions at

x = 0 (u(0) = 0, u′(0) = 0) with the same norm. Note that the subscript “c” denotes

“clamped” and “f” denotes “free”. Let Hα
cf(0, l) denote the subspace of Hα(0, l)

that is the closure in Hα of the set of all C∞[0, l] functions satisfying the clamped

end conditions at x = 0. The normal contact force N(x, t) is a Borel measure on

[0, l]× [0, T ].

Note that to interpret (5.4), we require that N is a non-negative measure on

[0, l]× [0, T ], u(x, t) + g(x) ≥ 0 for all (x, t) ∈ [0, l]× [0, T ], and that∫ T

0

∫ l

0

N(x, t) [u(x, t) + g(x)] dx dt = 0. (5.9)

We will set up an approximate penalty formulation with a penalty parameter ε >

0. Then we will show that the approximate solution uε exists for a fixed penalty

parameter ε, and that this solution conserves energy (including the energy associated

with the penalty). Furthermore, the integral of the normal contact force over space

and time
∫ T

0

∫ l

0
Nε(x, t) dx dt will be shown to be uniformly bounded as ε ↓ 0, and

so there is a weakly* convergent subsequence in the space of measures. However, to

establish convergence of a subsequence we need still more regularity; we will prove a

uniform bound on uε in Cp(0, T ;H1/2+σ(0, l)) for suitable values of p, σ > 0.
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5.2 Existence theory

The existence theory that we develop here is based on eigenfunction decom-

positions for the homogeneous Euler–Bernoulli equations which are studied in Sub-

section 5.2.1. A penalty approximation is then described in Subsection 5.2.2 where it

is shown that uε exist for penalty approximation via fundamental solutions. Energy

conservation is shown for the penalty approximation in Subsection 5.2.3, which is

used to obtain uniform bounds on the H2 norm of uε and the L2 norm of u̇ε in space.

In Subsection 5.2.4, bounds are obtained for the integral of the normal contact force

over both space and time; this is used to uniformly bound the normal contact force Nε

in the space of measures. In this Section, it is shown that any limit of uε must satisfy

the constraint u+ g ≥ 0 mentioned above. To complete the proof, we need stronger

regularity that can be obtained from energy bounds. This is done in Subsection 5.2.5.

Finally, the proof of existence is completed.

5.2.1 Decomposition into eigenfunctions

Since the fourth order differential operator K = ∂4/∂x4 is an elliptic self-

adjoint operator with our boundary conditions, we have a sequence of real eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · and limi→∞ λi =∞, and the eigenfunctions φi are orthonor-

mal basis in L2(0, l) with ∂4φi/∂x
4 = λiφi. Then for the penalized PDE system, we

can write

uε(x, t) =

∞∑
i=1

ui
ε(t)φi(x). (5.10)
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Before we solve the PDE (5.25)-(5.29), we first will need to consider the fundamental

solution w for Linear operator ∂2/∂t2 +K, where K is the above operator. We will

solve the equation

wtt = −wxxxx + δ(t) · δ(x− x∗) for a fixed point x∗ ∈ (0, l) (5.11)

with the initial conditions (w(x, 0) = 0, wt(x, 0
+) = δ(x − x∗)) and the the same

boundary conditions as (5.26) and (5.27): w(0, t) = wx(0, t) = 0 and wxx(l, t) =

wxxx(l, t) = 0. The solution w(x, t) can be solved by means of the eigenfunctions φi.

Thus suppose that

φ′′′′
i = λiφi, (5.12)

φi(0) = φ′
i(0) = 0, (5.13)

φ′′
i (l) = φ′′′

i (l) = 0. (5.14)

Then we can write

w(x, t) =

∞∑
i=1

wi(t)φi(x). (5.15)

Since for t > 0, wtt(x, t) = −wxxxx(x, t) from (5.11), using (5.12) and (5.15)

∞∑
i=1

(wi)tt(t)φi(x) = −
∞∑
i=1

wi(t)(φi)xxxx(x) = −
∞∑
i=1

λiwi(t)φi(x).

Thus we obtain

(wi)tt(t) = −λiwi(t) for t > 0. (5.16)

We can also extend w(x, t; x∗) = 0 for t < 0.
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Lemma 5.1. The fundamental solution of equation (5.11) can be represented in

terms of the eigenfunctions as

w(x, t; x∗) =

∞∑
i=1

sin(λ
1/2
i t)

λ
1/2
i

φi(x)φi(x
∗) for the fixed point x∗ ∈ (0, l).

Proof. From the ordinary differential equation (ODE) (5.16), we have

wi(t) = Ai sin(λ
1/2
i t) +Bi cos(λ

1/2
i t).

By the initial condition w(x, 0) = 0, Bi = 0 for all i ≥ 1, and thus wi(t) = Ai sin λ
1/2
i t.

From (5.15),

wt(x, t) =

∞∑
i=1

Aiλ
1/2
i cos(λ

1/2
i t)φi(x) for t > 0.

Applying the initial condition wt(x, 0
+) = δ(x− x∗),

wt(x, 0
+) =

∞∑
i=1

Aiλ
1/2
i φi(x) = δ(x− x∗). (5.17)

Multiplying by φj for each j ≥ 1 and taking a integral over (0, l) on the both of last

two equations of (5.17),∫ l

0

∞∑
i=1

Aiλ
1/2
i φi(x)φj(x)dx =

∫ l

0

δ(x− x∗)φj(x)dx.

Thus we find Aj = λ
−1/2
j φj(x

∗) for each j ≥ 1. Therefore from (5.15), we have

w(x, t; x∗) =

∞∑
i=1

sin(λ
1/2
i t)

λ
1/2
i

φi(x)φi(x
∗) for t > 0.

Lemma 5.2. Under the assumption (5.12)-(5.14), we have a constant M such that

max
0≤x≤l

|φi(x)| ≤M <∞ for each i ≥ 1.
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Proof. From ODE (5.12), we have the solution

φi(x) = Aie
λ
1/4
i x +Bie

−λ
1/4
i x + Ci sin(λ

1/4
i x) +Di cos(λ

1/4
i x) for each i ≥ 1.

Using the clamped boundary conditions (5.13), we have better form of the solution

φi(x) = −Di[cosh(λ
1/4
i x)− cos(λ

1/4
i x)]− Ci[sinh(λ

1/4
i x)− sin(λ

1/4
i x)]. (5.18)

Using the boundary condition (5.14), we have a homogeneous linear system cosh(λ
1/4
i l) + cos(λ

1/4
i l) sinh(λ

1/4
i l) + sin(λ1/4

i
l)

sinh(λ
1/4
i l)− sin(λ

1/4
i l) cosh(λ

1/4
i l) + cos(λ

1/4
i l)


 Di

Ci

 =

 0

0

 . (5.19)

In order to obtain no trivial solutions Ci, Di, the determinant of system (5.19) has

to be zero:

[cosh(λ
1/4
i l) + cos(λ

1/4
i l)]2 − [sinh2(λ

1/4
i l)− sin2(λ

1/4
i l)] = 0.

That is,

cosh2(λ
1/4
i l) + 2 cosh(λ

1/4
i l) cos(λ

1/4
i l) + cos2(λ

1/4
i l)− sinh2(λ

1/4
i l) + sin2(λ

1/4
i l) = 0.

Using the well-known facts that cosh2 z − sinh2 z = 1 and cos2 z + sin2 z = 1 we get

2 + 2 cosh(λ
1/4
i l) cos(λ

1/4
i l) = 0. So the eigenvalues λi satisfy the equation

−1/ cosh(λ
1/4
i l) = cos(λ

1/4
i l). (5.20)

Note that as i becomes large, λ
1/4
i
∼= (2i + 1)π/2l. From the homogeneous system

(5.19), let −Di = c[sinh(λ
1/4
i l) + sin(λ

1/4
i l)] and − Ci = −c[cosh(λ

1/4
i l) + cos(λ

1/4
i l)].

Then plugging Ci and Di into (5.18), we have eigenfunction

φi(x) = c[sinh(λ
1/4
i l) + sin(λ

1/4
i l)][cosh(λ

1/4
i x)− cos(λ

1/4
i x)]

− c[cosh(λ
1/4
i l) + cos(λ

1/4
i l)][sinh(λ

1/4
i x)− sin(λ

1/4
i x)]. (5.21)
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So using the orthonormal property of the eigenfunction φi (‖φi‖L2 = 1), we can find

c. Put λ
1/4
i = a and φi = φ. Then

‖φ‖L2(0,l) =
c2

4a

{
[al + cos2(al)− 3 sin(al) cos(al)]e2al

+ [4al sin(al)− 6 sin(al)− cos(al)]eal

+ [2al − 4al cos2(al)− 6 sin(al) cos(al)]

− [4al sin(al) + 6 sin(al) + 6 cos(al)]e−al

+ [al − 3 sin(al) cos(al)− 3 cos2(al)]e−2al
}
. (5.22)

For sufficiently large al (λi � l−4), the last three terms of (5.22) are bounded. So

focusing on the dominant term, we have

1 = ‖φ‖2L2(0,l) = c2
[
al

4a
e2al +O(eal)

]
= c2e2al

[
(l/4) +O(e−al)

]
Taking the positive sign, c ∼ [(2/l1/2)e−al +O(e−2al)

]
. Plugging this into (5.21) we

obtain

φ(x) ∼ 2e−al

l1/2
{[sinh(al) + sin(al)][cosh(ax)− cos(ax)]

− [cosh(al) + cos(al)][sinh(ax)− sin(ax)]}

=
2e−al

l1/2

{
[
eal

2
+O(1)][cosh(ax)− cos(ax)]− [

eal

2
+O(1)][sinh(ax)− sin(ax)]

}
=

1

l1/2

{
[1 +O(e−al)][cosh(ax)− cos(ax)]− [1 +O(e−al)][sinh(ax)− sin(ax)]

}
.

Since e−al cosh(ax) ≤ e−a(l−x) ≤ 1 and e−al sinh(ax) ≤ e−a(l−x)/2 + O(1) = O(1), we

have

φi(x) ∼ 1

l1/2
[cosh(λ

1/4
i x)− sinh(λ

1/4
i x) +O(1)] = O(1), for sufficiently large λi.
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Since cosh z − sinh z ≤ 1 for z ≥ 0, maxx supi |φi(x)| is bounded and the result

follows.

The next Proposition is useful to prove Lemma 5.16.

Proposition 5.3. Assume that w ∈ H
(σ+1/2)/4
cf (0, l) for any σ > 0. Then for the

elliptic self-adjoint fourth order partial differential operator K = ∂4/∂x4, the norms

w �→ ‖w‖Hσ+1/2(0,l) and w �→
(
‖K(σ+1/2)/4w‖2L2(0,l) + ‖w‖2L2(0,l)

)1/2

are equivalent.

5.2.2 Penalty method

As an alternative to the original Euler–Bernoulli equation with the Signorini’s

condition, we consider a penalty formulation which provides a more satisfactory in-

formation for an approximate solution uε. See the details in [32] for the detailed

arguments. We define the sequence of contact force, Nε as a penalty function for the

constraint u+ g ≥ 0,

Nε =
1

ε
ϕ ◦ (−g − uε), ε > 0, (5.23)

where

ϕ(s) =
√

1 + (s+)2 − 1, with s+ = max(s, 0).

Note that ϕ is C1 with bounded 2nd derivatives everywhere except at zero. Now

taking the penalty functional Nε in (5.1) instead of the contact force N , we obtain

the penalty formulation

(uε)tt = −(uε)xxxx + f(x) +
1

ε
ϕ(−g − uε) for ε > 0. (5.24)
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We have approximated the linear complementary condition (5.4) with a penalty term.

Now that we have the penalty formulation, we will begin with solving the penalized

boundary value problem:

(uε)tt = −(uε)xxxx + f(x) +
1

ε
ϕ ◦ (−g − uε) in (0, l)× (0, T ], (5.25)

uε(0, t) = (uε)x(0, t) = 0 on (0, T ], (5.26)

(uε)xx(l, t) = (uε)xxx(l, t) = 0 on (0, T ], (5.27)

uε(x, 0) = u1(x) in (0, l), (5.28)

(uε)t(x, 0) = v1(x) in (0, l). (5.29)

We will assume that f ∈ L2(0, l), u1 ∈ H2
cf(0, l), and v1 ∈ L2(0, l). Note that by

scaling x and t appropriately we can put ρA = EI = 1 in order to simplify our

computations. In Lemma 5.5, we will show that the approximate solution uε exists

using the Banach fixed-point theorem.

Lemma 5.4. The homogeneous system (uε)tt + (uε)xxxx = 0 has a solution

uε,hom(x, t) =

∫ l

0

w(x, t; x∗)v1(x
∗) dx∗ +

∫ l

0

∂w

∂t
(x, t; x∗)u1(x

∗) dx∗.

Proof. Since φ′′′′
i (x) = λiφi(x) for each i ≥ 1, using (5.10) we have ODE:

∂2ui
ε(t)

∂t2
+ λiu

i
ε(t) = 0. (5.30)

Thus the solution of (5.30) is ui
ε(t) = A sin(λ

1/2
i t) +B cos(λ

1/2
i t) for each i ≥ 1. So

uε(x, t) =

∞∑
i=1

[A sin(λ
1/2
i t) +B cos(λ

1/2
i t)]φi(x). (5.31)
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From the initial condition (5.28), we have

uε(x, 0) =

∞∑
i=1

Bφi(x) = u1(x).

Similarly, for x∗ ∈ [0, l] we obtain

uε(x
∗, 0) =

∞∑
i=1

Bφi(x
∗) = u1(x

∗).

Since ‖φi‖L2(0,l) = 1, B =
∫ l

0
u1(x

∗)φi(x
∗) dx∗. From the initial condition (5.29), we

have

(uε)t(x, 0) =
∞∑
i=1

Aλ
1/2
i φi(x) = v1(x).

Similarly, we can obtain A = λ
−1/2
i

∫ l

0
v1(x

∗)φ(x∗) dx∗. Therefore plugging A, B into

(5.31),

uε,hom(x, t) =

∞∑
i=1

[
sin(λ

1/2
i t)

λ
1/2
i

∫ l

0

v1(x
∗)φi(x

∗) dx∗ + cos(λ
1/2
i t)

∫ l

0

u1(x
∗)φi(x

∗) dx∗
]
φi(x)

=

∫ l

0

∞∑
i=1

sin(λ
1/2
i t)

λ
1/2
i

φi(x)v1(x
∗)φi(x

∗) dx∗

+

∫ l

0

∞∑
i=1

cos(λ
1/2
i t)φi(x)u1(x

∗)φi(x
∗)dx∗

=

∫ l

0

w(x, t; x∗)v1(x
∗) dx∗ +

∫ l

0

∂w

∂t
(x, t; x∗)u1(x

∗) dx∗,

as required.

Lemma 5.5. There exists a unique solution uε of the penalty equations (5.25)–(5.29).

Proof. In order to show that the solution uε satisfying (5.25), (5.28), (5.29) is a

solution of the integral equation, we first need to solve the homogeneous system of
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(5.25), i.e, (uε)tt + (uε)xxxx = 0. By Lemma 5.4, we have a solution uε,hom of the

homogeneous system:

uε,hom(x, t) =

∫ l

0

w(x, t; x∗)v1(x
∗)dx∗ +

∫ l

0

∂w

∂t
(x, t; x∗)u1(x

∗) dx∗.

In the inhomogeneous system (uε)tt +(uε)xxxx = f(x)+ 1
ε
ϕ ◦ (−uε− g), the particular

solution uε,par is given by the integral equation:

uε,par(x, t) =

∫ t

0

∫ l

0

w(x, t− s; x∗)
[
f(x∗) +

1

ε
ϕ(−uε(x

∗, s)− g(x∗))
]
dx∗ds.

So the penalized solution is given by

uε(x, t) =

∫ l

0

w(x, t; x∗)v1(x
∗)dx∗ +

∫ l

0

∂w

∂t
(x, t; x∗)u1(x

∗) dx∗ +∫ t

0

∫ l

0

w(x, t− s; x∗)
[
f(x∗) +

1

ε
ϕ(−uε(x

∗, s)− g(x∗))
]
dx∗ds.(5.32)

Let the first two terms of (5.32) be

r(x, t) =

∫ l

0

w(x, t; x∗)v1(x
∗)dx∗ +

∫ l

0

∂w

∂t
(x, t; x∗)u1(x

∗) dx∗ in C(0, T ;L2(0, l)).

Note that ‖u‖C(0,T ;L2(0,l)) = supt∈[0,T ]

{∫ l

0
|u(x, t)|2dx

}1/2

. Now we define a nonlinear

integral operator Γ : C(0, T ;L2(0, l))→ C(0, T ;L2(0, l)) by

Γu(x, t) :=

∫ t

0

∫ l

0

w(x, t− s; x∗)
[
f(x∗) +

1

ε
ϕ(−u(x∗, s)− g(x∗))

]
dx∗ds. (5.33)

We claim that Γ is a contraction mapping on C(0, T ;L2(0, l)) for sufficiently

small T . First we define the bounded operator as Lt : L2(0, l)→ L2(0, l) for the fixed

t ∈ [0, T ]

(Ltz(·, t))(x) =

∫ l

0

w(x, t; x∗)z(x∗, t) dx∗. (5.34)
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If we express z(x, t) as z(x, t) =
∑∞

i=1 zi(t)φi(x), by Lemma 5.1 and (5.34), we

obtain

(Ltz(·, t))(x) =

∫ l

0

[ ∞∑
i=1

sin(λ
1/2
i t)

λ
1/2
i

φi(x)φi(x
∗) ·

∞∑
j=1

zj(t)φj(x
∗)

]
dx∗

=
∞∑
i=1

sin(λ
1/2
i t)

λ
1/2
i

zi(t)φi(x)‖φi‖2L2(0,l)

=

∞∑
i=1

sin(λ
1/2
i t)

λ
1/2
i

zi(t)φi(x).

Now, we define the norm of a bounded operator as

‖Lt‖ = sup
‖z‖L2(0,l) �=0

‖Ltz‖L2(0,l)

‖z‖L2(0,l)

= sup
‖z‖L2(0,l)=1

‖Ltz‖L2(0,l).

Notice that
∑∞

i=1 zi(t)
2 = 1, since ‖z(·, t)‖

L2(0,l)
= 1. This leads us to the estimate:

‖Ltz(·, t)‖2L2(0,l) = (Ltz(·, t),Ltz(·, t))L2(0,l)

=

( ∞∑
i=1

sin(λ
1/2
i t)

λ
1/2
i

zi(t)φi(·),
∞∑

j=1

sin(λ
1/2
j t)

λ
1/2
j

zj(t)φj(·)
)

L2(0,l)

=
∞∑
i=1

[
sin(λ

1/2
i t)

λ
1/2
i

]2
zi(t)

2 ≤
[
sup
i≥1

sin(λ
1/2
i t)

λ
1/2
i

]2
.

Therefore the norm ‖Lt‖ of the operator Lt : L2(0, l)→ L2(0, l) is

‖Lt‖ = sup
‖z‖L2=1

‖Ltz‖L2(0,l)

≤ sup
i≥1

| sin(λ
1/2
i t)|

λ
1/2
i

≤ sup
λ≥λ1

∣∣∣∣sin(λ1/2t)

λ1/2

∣∣∣∣
= t sup

λ≥λ1

∣∣∣∣sin(λ1/2t)

λ1/2t

∣∣∣∣ = t sup
θ≥λ

1/2
1 t

∣∣∣∣sin θθ
∣∣∣∣

≤ tmin

(
1

λ
1/2
1 t

, 1

)
= min(λ

−1/2
1 , t).
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From (5.33), takeG(x, w) = f(x)+1
ε
ϕ (−w − g(x)) for w ∈ R. Note thatG(·, u(·, t)) ∈

L2(0, l). Then operator w(·) �→ G(·, w(·)) is a Lipschitz operator on L2(0, l) with con-

stant 1/ε, i.e., for the fixed ε > 0

‖G(·, u1(·, t))−G(·, u2(·, t))‖L2(0,l) ≤ 1

ε
‖u1(·, t)− u2(·, t)‖L2(0,l).

From (5.33) we have

Γuε(·, t) =

∫ t

0

Lt−s(G(·, uε(·, s))) ds.

Thus for (uε)1, (uε)2 ∈ C(0, T ;L2(0, l)),

‖Γ(uε)1(x, t)− Γ(uε)2(x, t)‖L2(0,l)

≤
∫ t

0

‖Lt−s‖‖G(·, (uε)1(·, s))−G(·, (uε)2(·, s))‖L2(0,l)ds

≤
∫ t

0

min(λ
−1/2
1 , t− s)M

ε
‖(uε)1(·, s)− (uε)2(·, s)‖L2(0,l)ds

≤ 1

λ
1/2
1

1

ε

∫ t

0

‖(uε)1(·, s)− (uε)2(·, s)‖L2(0,l)ds

≤ 1

λ
1/2
1

t

ε
sup

s∈[0,t]

‖(uε)1(·, s)− (uε)2(·, s)‖L2(0,l).

Therefore

sup
t∈[0,T ]

‖Γ(uε)1(·, t)− Γ(uε)2(·, t)‖L2(0,l)

≤ T

λ
1/2
1 ε

sup
t∈[0,T ]

‖(uε)1(·, t)− (uε)2(·, t)‖L2(0,l).

So if T is small enough that λ
−1/2
1 T < ε for fixed ε > 0, u �→ Γu + r is a contrac-

tion mapping on C(0, T ;L2(0, l)), for r ∈ C(0, T ;L2(0, l)). By the Banach Fixed

point theorem (see, e.g., [55, Ex. 3.19, p. 113]), there exist a unique solution uε(·, t)

of the penalty formulation for t ∈ [0, T ]. By using continuation arguments as for
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ordinary differential equations [15, §4, pp. 13-15], there is a unique solution uε in

C(0, T ;L2(0, l)) for any T > 0.

5.2.3 Conservation of energy and energy bounds

In order to establish conservation of energy, we need to establish some stronger

regularity results.

Lemma 5.6. If v1 ∈ H2
cf(0, l), u1 ∈ H4

cf(0, l), and f ∈ H2(0, l), then the solution uε

of the penalty equations (5.25), (5.26), (5.27) is in C1(0, T ;H2
cf(0, l)).

Proof. Since we have established that we have a solution uε ∈ C(0, T ;L2(0, l)) from

the previous Section, we note that the penalty equation can be written as

(uε)tt + (uε)xxxx = f +
1

ε
ϕ ◦ (−uε − g)

and the right-hand side is in C(0, T ;L2(0, l)). We can then apply standard regular-

ity theory for linear hyperbolic PDEs (e.g., [47, Thm. 10.8]) to conclude that uε ∈

C1(0, T ;L2(0, l))∩C(0, T ;H2
cf(0, l)). This means that ϕ◦(−uε−g) ∈ C(0, T ;H2

cf(0, l)).

Putting f̃ε = f +ϕ ◦ (−uε− g) and expanding in terms of eigenfunctions, the solution

can be written as uε(x, t) =
∑

i uε,i(t)φi(x) where

uε,i(t) = cos(λ
1/2
i t)(u1)i + λ

−1/2
i sin(λ

1/2
i t)(v1)i +

∫ t

0

λ
−1/2
i sin(λ

1/2
i (t− τ)) f̃ε,i(τ) dτ.

We can easily see that

u̇ε,i(t) = −λ1/2
i sin(λ

1/2
i t)(u1)i + cos(λ

1/2
i t)(v1)i +

∫ t

0

cos(λ
1/2
i (t− τ)) f̃ε,i(τ) dτ

and using the equivalence of the norms, uε ∈ C1(0, T ;H2
cf(0, l)) as desired.
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For the penalty approximation, we define the energy functional as

Eε[uε] :=

∫ l

0

[
1

2
[(uε)t]

2 +
1

2
[(uε)xx]

2 +
1

ε
Φ ◦ (−g − uε)− f(x) · uε

]
dx, (5.35)

where Φ(s) =
∫ s

0
ϕ(σ) dσ.

Lemma 5.7. Suppose that the approximate solution uε satisfies (5.25), (5.26), (5.27).

Then energy is conserved for uε. That is, Eε[uε(·, t)] is independent of t.

Proof. We first assume that u1, v1 and f are all as smooth as required for Lemma 5.6.

We claim that for any 0 ≤ t1 ≤ t2 ≤ T and fixed ε > 0,∫ l

0

[
1

2
(uε)

2
t (x, t1) +

1

2
(uε)

2
xx(x, t1) +

1

ε
Φ(−g(x)− uε(x, t1))− f(x) · uε(x, t1)

]
dx

=

∫ l

0

[
1

2
(uε)

2
t (x, t2) +

1

2
(uε)

2
xx(x, t2) +

1

ε
Φ(−g(x)− uε(x, t2))− f(x) · uε(x, t2)

]
.

From the penalized formulation (5.25),

0 =

[
(uε)tt + (uε)xxxx − 1

ε
ϕ(−g − uε)− f

]
(uε)t

=
1

2

d

dt

[
(uε)

2
t + (uε)

2
xx +

2

ε
Φ(−g − uε)− 2f · uε

]
+

d

dx
((uε)xxx(uε)t)− d

dx
((uε)xx(uε)tx).

Thus,

1

2

∂

∂t

[
(uε)

2
t + (uε)

2
xx −

2

ε
Φ(−g − uε)− 2f · uε

]
=

∂

∂x
((uε)xx(uε)tx)− ∂

∂x
((uε)xxx(uε)t).

(5.36)

For any 0 ≤ t1 ≤ t2 ≤ T , taking an integration over the rectangle (x, t) ∈ [0, l]×[t1, t2]

on the both side of (5.36),

1

2

∫ t2

t1

∫ l

0

∂

∂t

[
(uε)

2
t + (uε)

2
xx +

2

ε
Φ(−g − uε)− 2f · uε

]
dx dt

=

∫ t2

t1

∫ l

0

[
∂

∂x
((uε)xx(uε)tx)− ∂

∂x
((uε)xxx(uε)t)

]
dx dt.
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So we have

1

2

∫ l

0

[
(uε)

2
t (x, t2)− (uε)

2
t (x, t1) + (uε)

2
xx(x, t2)− (uε)

2
xx(x, t1)

]
dx

+
1

ε

∫ t

0

[Φ(−g(x)− uε(x, t2))− Φ(−g(x)− uε(x, t1))] dx

−
∫ l

0

[f(x)uε(x, t2)dx− f(x)uε(x, t1)] dx

=

∫ t2

t1

[(uε)xx(l, t) · (uε)tx(l, t)− (uε)xx(0, t) · (uε)tx(0, t)] dt

+

∫ t2

t1

[(uε)xxx(l, t) · (uε)t(l, t)− (uε)xxx(0, t) · (uε)t(0, t)] dt.

From the boundary conditions (5.26), (5.27),

(uε)t(0, t) = 0 and (uε)tx(0, t) = (uε)xt(0, t) = 0.

Therefore the result follows for sufficiently smooth u1, v1 and f .

For the general case, we note that if uk
1 → u1 in H2

cf(0, l), v
k
1 → v1 in L2(0, l),

and fk → f in L2(0, l), then the corresponding solution uk
ε → uε in C(0, T ;H2

cf(0, l))∩

C1(0, T ;L2(0, l)) and we obtain energy conservation in the limit.

Proposition 5.8. Assume that Y (t, ·) is monotone increasing and Lipschitz continu-

ous for all t. If dy(t)/dt ≤ Y (t, y(t)) and dz(t)/dt = Y (t, z(t)) and y(0) = z(0) = y0,

then y(t) ≤ z(t) for all t.

Now we will assume that the initial energy is finite in terms of the physical

point of view. In Lemma 5.9, it is shown that
∫ l

0
f(x)uε(x, t)dx is bounded by a

function of time t only.
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Lemma 5.9. For any time t ∈ [0, T ], we have

∣∣∣∣∫ l

0

f(x)uε(x, t)dx

∣∣∣∣ ≤ C(t).

Proof. Since f does not depend on time t,

d

dt

∫ l

0

f(x)uε(x, t)dx =

∫ l

0

f(x) · d
dt
uε(x, t)dx ≤ ‖f‖L2(0,l)‖(uε)t(t)‖L2(0,l). (5.37)

Let (uε)t(t) be a velocity function v(t). Define the energy function as

E(t) := Eε[uε(·, t)]

=

∫ l

0

[
1

2
(uε)

2
t (x, t) +

1

2
(uε)

2
xx(x, t) +

1

ε
Φ(−uε(x, t)− g(x))− f(x) · uε(x, t)

]
dx.

By the conservation of energy in the penalized formulation, we have

∫ l

0

1

2

[
(uε)

2
t (x, t) + (uε)

2
xx(x, t) +

1

ε
Φ(−uε(x, t)− g(x))

]
dx

= E(0) +

∫ l

0

f(x) · uε(x, t)dx.

Thus since we put (uε)t(·, t) = v(·, t) for any t ∈ [0, T ],

‖v(·, t)‖L2(0,l) ≤
√

2

(
E(0) +

∫ l

0

f(x) · uε(x, t)dx

)
. (5.38)

From (5.37), we obtain

d

dt

∫ l

0

f(x)uε(x, t)dx ≤ ‖f‖L2(0,l)‖v(t)‖L2(0,l)

≤ ‖f‖L2(0,l)

√
2

(
E(0) +

∫ l

0

f(x) · uε(x, t)dx

)
.

Take y(t) =
∫ l

0
f(x)uε(x, t)dx and

Y (t, y) = ‖f‖L2(0,l)

√
2 (E(0) + y),
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we have dy/dt ≤ Y (t, y). Thus by Proposition 5.8, the result follows where C(t)

solves the differential equation dC/dt = ‖f‖L2(0,l)

√
2 (E(0) + C(t)) and C(0) =∫ l

0
f(x)u1(x) dx, provided E(0) > 0.

Note that we have a continuous function C(t) of time only t:

C(t) =
1

2

{[
‖f‖L2(0,l) · t+

√
2(E(0) + C(0))

]2
− E(0)

}
.

Lemma 5.10. The approximate solutions uε are bounded in L∞(0, T ;H2(0, l)), as

ε→ 0.

Proof. By the conservation of energy, for any t ∈ [0, T ] we have

E(0) =

∫ l

0

1

2

[
(uε)

2
t (x, t) + (uε)

2
xx(x, t) +

2

ε
Φ(−g(x)− uε(x, t))

]
dx

−
∫ l

0

f(x) · uε(x, t)dx.

Using Lemma 5.7,

1

2

∫ l

0

[
(uε)

2
t (x, t) + (uε)

2
xx(x, t) +

2

ε
Φ(−g(x)− uε(x, t))

]
dx

= E(0) +

∫ l

0

f(x) · uε(x, t)dx ≤ E(0) + C(t). (5.39)

Thus we obtain ∫ l

0

(uε)
2
xx(x, t)dx ≤ 2(E(0) + C(t)), for each ε > 0. (5.40)

Using the Dirichlet boundary conditions (5.26), indefinite integrals and Hölder’s in-

equality, we can show that∫ l

0

(uε)
2
x(x, t)dx and

∫ l

0

(uε)
2(x, t)dx are both bounded by function of time only.
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Therefore for any t ∈ [0, T ], ‖uε(t)‖H2(0,l) <∞. This means that as ε→ 0,

‖uε‖L∞(0,T ;H2(0,l)) = sup
0≤t≤T

‖uε(t)‖H2(0,l) <∞.

Lemma 5.11. The approximate solutions uε are bounded in W 1,∞(0, T ;L2(0, l)), as

ε→ 0.

Proof. From (5.39), we have

∫ l

0

(uε)
2
t (x, t)dx ≤ 2(E(0) + C(t)) for each ε > 0.

Since for any t ∈ [0, T ], ‖uε(·, t)‖H2(0,l) is bounded by a continuous function of t only,

sup
0≤t≤T

{‖uε(t)‖L2(0,l) + ‖(uε)t(t)‖L2(0,l)

}
<∞.

Therefore uε is bounded in W 1,∞(0, T, L2(0, l)), as ε→ 0.

5.2.4 Bounds on the contact force

and constraint violation

In this Section we will first bound the integral of the normal contact force Nε

over space and time (which uniformly bounds Nε in the space of measures), and then

bound a measure of the constraint violation:
∫ l

0
Φ ◦ (−uε − g) dx.

Lemma 5.12.
∫ T

0

∫ l

0
Nε dx dt is bounded as ε→ 0.

Proof. We multiply by x2/2 on both side of (5.25) and take an integral over [0, l] ×
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[0, T ]. Then we have

∫ T

0

∫ l

0

x2

2
(uε)ttdx dt = −

∫ T

0

∫ l

0

x2

2
(uε)xxxxdx dt+

∫ T

0

∫ l

0

x2

2
f(x)dx dt

+

∫ T

0

∫ l

0

x2

2
Nεdx dt. (5.41)

Changing the order of integration on the left side (5.41) and using integration by

part, and applying the boundary condition (5.26), (5.27),

∫ l

0

x2

2
((uε)t(T )− (uε)t(0))dx

= −
∫ T

0

[[
x2

2
(uε)xxx

]l
0

−
∫ l

0

x · (uε)xxx

]
dt

+

∫ T

0

∫ l

0

x2

2
f(x) dx dt+

∫ T

0

∫ l

0

x2

2
Nε dx dt

=

∫ T

0

[x · (uε)xx]
l
0dt−
∫ T

0

∫ l

0

(uε)xx dx dt

+

∫ T

0

∫ l

0

x2

2
f(x) dx dt+

∫ T

0

∫ l

0

x2

2
Nε dx dt.

= −
∫ T

0

∫ l

0

(uε)xx dx dt+

∫ T

0

∫ l

0

x2

2
f(x) dx dt

+

∫ T

0

∫ l

0

x2

2
Nε dx dt.

By (5.38) and Lemmas 5.9 and 5.11,
∫ T

0

∫ l

0
x2

2
Nε dx dt is bounded. Now since g(0) > 0,

using the energy bound on ‖uε‖H2(0,l) and as uε(0, t) = ∂uε/∂x(0, t) = 0, we can show

that there is an η > 0 (independent of ε > 0) where uε(x, t) > −g(x) for all x ∈ [0, η].

This implies that there is no contact force between rod and rigid obstacle in [0, η].

Thus for 0 ≤ x ≤ η, Nε = 0. Since Nε ≥ 0 and x2/2 ≥ η2/2 ≥ 0 in [η, l], we have

∫ T

0

∫ l

0

x2

2
Nε dx dt =

∫ T

0

∫ l

η

x2

2
Nε dx dt ≥ η2

2

∫ T

0

∫ l

η

Nε dx dt =
η2

2

∫ T

0

∫ l

0

Nε dx dt

Therefore the result follows.
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Proposition 5.13. Weak* convergence in L∞(0, T ;H) implies weak convergence in

L2(0, T ;H), where H is a separable real Hilbert space.

The next Lemma 5.14 indicates that the solution u satisfies the constraint

u+ g ≥ 0.

Lemma 5.14. If uε ⇀ u in L2(0, T ;L2(0, l)) in some subsequence (and there are

converging subsequences), then u+ g ≥ 0.

Proof. From (5.39), for all 0 ≤ t ≤ T we have

∫ l

0

Φ(−uε(x, t)− g(x))dx ≤ C · ε.

Then ‖Φ ◦ (uε(·, t)− g)‖L1(0,l) → 0, as ε→ 0. Thus we obtain

∫ T

0

∫ l

0

Φ ◦ (−uε − g) dx dt→ 0.

According to Lemma 5.11, there exists u such that uε ⇀
∗ u in a subsequence in

L∞(0, T, L2(0, l)). By Proposition 5.13, we have the solution u such that uε ⇀ u in

L2(0, T, L2(0, l)). Define the functional F [u] :=
∫ T

0

∫ l

0
Φ ◦ (−u − g) dx dt. Then F [u]

is a convex lower semicontinuous function. So F [u] is a weakly lower semicontinuous

by Mazur’s Lemma [35, Thm. IV.2.1]. Thus we have

0 ≤ F [u] ≤ lim inf F [uε] =

∫ T

0

∫ l

0

Φ ◦ (−uε − g) dx dt→ 0 as ε→ 0

in the subsequence. This implies that ‖Φ◦(−u−g)‖L1(0,l) = 0 and so Φ◦(−u−g) = 0

a.e. By the definition of Φ, u + g ≥ 0 a.e. Since u and g are in C(0, T ;H2(0, l)) it

follows that u+ g ≥ 0 everywhere on [0, l]× [0, T ].
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5.2.5 Hölder regularity of the penalty solution

and convergence

We will show that the solution uε is uniformly Hölder continuous with exponent

p from [0, T ] intoH1/2+σ(0, l), and then uε is uniformly bounded in Cp(0, T ;H1/2+σ(0, l))

for some p, σ > 0, where σ/2 + p < 1/2. This combined with the weak* convergence

of Nε in the space of measures will establish the complementarity conditions for the

limit as h ↓ 0.

Lemma 5.15. Define fα(t) = sin(αt)/αp and gα(t) = cos(αt)/αp with α > 0 and 0 <

p ≤ 1. Then fα and gα are Hölder continuous with exponent p with a Hölder constant

that is independent of α.

Proof. We want to show that for all t1, t2

|fα(t2)− fα(t1)| ≤ Cp|t2 − t1|p,

where Cp depends only on p and not on α. By the definition of fα(t), we have

|fα(t2)− fα(t1)| =
1

αp
| sin(αt2)− sin(αt1)| = 2

αp

∣∣∣∣cos

(
α(t2 + t1)

2

)
sin

(
α(t2 − t1)

2

)∣∣∣∣
≤ 2

αp

∣∣∣∣sin(α(t2 − t1)
2

)∣∣∣∣ ≤ 2

αp

∣∣∣∣sin(α(t2 − t1)
2

)∣∣∣∣p (5.42)

Note that

sin

(
α(t2 − t1)

2

)
=

(t2 − t1)
2

∫ α

0

cos

(
(t2 − t1)x

2

)
dx

Therefore from (5.42), we obtain

|fα(t2)− fα(t1)| ≤ 2

αp

∣∣∣∣sin(α(t2 − t1)
2

)∣∣∣∣p
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≤ 2

αp

[ |t2 − t1|
2

∣∣∣∣∫ α

0

cos

(
(t2 − t1)x

2

)
dx

∣∣∣∣]p
≤ 2

αp

|t2 − t1|p
2p

[∫ α

0

dx

]p
=

2

αp

|t2 − t1|p
2p

αp

= 21−p|t2 − t1|p = Cp|t2 − t1|p,

where Cp = 21−p. So the result follows for fα.

The result for gα follows since gα(t) = cos(αt)/αp = sin(αt + π/2)/αp =

fα(t+ π/(2α)).

Lemma 5.16. The fundamental solution t �−→ w(·, t; x∗) is Hölder continuous from

[0, T ] into Hσ+1/2(0, l) with exponent 0 < p ≤ 1 and σ > 0, where σ/2 + p < 1/2

uniformly in x∗.

Proof. Applying Lemma 5.1,

‖L(σ+1/2)/4w‖2L2(0,l)

=

( ∞∑
i=1

sin(λ
1/2
i t)

λ
1/2
i

λ
(σ+1/2)/4
i φi(·)φi(x

∗),
∞∑

j=1

sin(λ
1/2
j t)

λ
1/2
j

λ
(σ+1/2)/4
j φj(·)φj(x

∗)

)

=
∞∑
i=1

sin2(λ
1/2
i t)

λi

λ
(σ+1/2)/2
i φi(x

∗)2.

We claim that ‖w(t2)−w(t1)‖2Hσ+1/2(0,l)
≤ C|t2− t1|p for some constant C. By

Proposition 5.3, we have

‖w(t2)− w(t1)‖2Hσ+1/2(0,l)

=

∞∑
i=1

φi(x
∗)2 [sin(λ

1/2
i t2)− sin(λ

1/2
i t1)]

2

λi
λ

(σ+1/2)/2
i

+
∞∑

j=1

φj(x
∗)2

[sin(λ
1/2
j t2)− sin(λ

1/2
i t1)]

2

λj
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=
∞∑
i=1

[
sin(λ

1/2
i t2)− sin(λ

1/2
i t1)

(λ
1/2
i )p

](
λ

σ/2+1/4−1+p
i + λ−1+p

i

)
.

We claim that ‖w(t2)− w(t1)‖2Hσ+1/2(0,l)
≤ C|t2 − t1|p for some constant.

‖w(·, t2; x∗)− w(·, t1; x∗)‖2Hσ+1/2(0,l) ≤ C

∞∑
i=1

|t2 − t1|2p
(
λ

σ/2−3/4+p
i + λ−1+p

i

)
≤ C|t2 − t1|2p

∞∑
i=1

(
λ

σ/2−3/4+p
i + λ−1+p

i

)
(5.43)

Applying (5.20), for large λi, we have λ
1/4
i ∼ (2i + 1)π/(2l). Thus for sufficiently

large i, λi ∼ Ci4. This implies that we can choose another C > 0 such that λi ≥ Ci4

for sufficiently large i.

Since the exponents of λi satisfy σ/2− 3/4 + p > −1 + p, from (5.43), we have

‖w(·, t2; x∗)− w(·, t1; x∗)‖2Hσ+1/2(0,l)

≤ C|t2 − t1|2p

[
m∑

i=1

(
λ

σ/2−3/4+p
i + λ−1+p

i

)
+

∞∑
i=m+1

(
λ

σ/2−3/4+p
i + λ−1+p

i

)]

≤ C|t2 − t1|2p

[
m∑

i=1

(
λ

σ/2−3/4+p
i + λ−1+p

i

)
+ 2

∞∑
i=m+1

(
λ

σ/2−3/4+p
i

)]

≤ C|t2 − t1|2p

[
m∑

i=1

(
λ

σ/2−3/4+p
i + λ−1+p

i

)
+ 2C

∞∑
i=m+1

(
i4(σ/2−3/4+p)

)]
. (5.44)

where m is an appropriate large number. So we have

‖w(·, t2; x∗)− w(·, t1; x∗)‖Hσ+1/2(0,l)

≤ C|t2 − t1|p
√√√√ m∑

i=1

(
λ

σ/2−3/4+p
i + λ−1+p

i

)
+ 2C

∞∑
i=m+1

(i4(σ/2−3/4+p)).(5.45)

By the integral test, the second term of inside of square root of (5.45) will be bounded

if 4(σ/2−3/4+ p) < −1. Therefore the fundamental solution w is Hölder continuous

with exponent 0 < p ≤ 1 for some σ > 0, where σ/2 + p < 1/2.
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We define the space of Hölder continuous functions Cp(0, T ;H1/2+σ(0, l)) with

the norm

‖u‖Cp(0,T ;H1/2+σ) = ‖u‖L2(0,T ;L2(0,l)) + sup
t1 �=t2

{‖u(t1)− u(t2)‖H1/2+σ(0,l)

|t2 − t1|p
}
.

Lemma 5.17. The approximate solution uε is uniformly bounded in Cp(0, T ;H1/2+σ(0, l)).

Proof. Recall that the solution uε can be expressed as the integral equation (5.32)

with Nε = ϕ ◦ (uε − g)/ε:

uε(x, t) =

∫ l

0

w(x, t; x∗)v1(x
∗) dx∗ +

∫ l

0

∂w

∂t
(x, t; x∗)u1(x

∗) dx∗

+

∫ t

0

∫ l

0

w(x, t− s; x∗) [f(x∗) +Nε(x
∗, s)] dx∗ ds. (5.46)

So to bound ‖uε(·, t2)− uε(·, t1)‖H1/2+σ(0,l) we bound the corresponding differences of

each of the terms in (5.46). Suppose t1 ≤ t2.

In the first term of right side of (5.24), applying Lemma 5.16,

∥∥∥∥∫ l

0

w(·, t2; x∗)v1(x
∗)dx∗ −

∫ l

0

w(·, t1; x∗)v1(x
∗)dx∗
∥∥∥∥

H1/2+σ(0,l)

≤
∫ l

0

‖w(·, t2; x∗)− w(·, t1; x∗)‖H1/2+σ(0,l)|v1(x
∗)|dx∗

≤ C|t2 − t1|p‖v1‖L2(0,l) ≤ C|t2 − t1|p,

since v1 ∈ L2(0, l). In the second term of right side of (5.46), we want to obtain a

bound C|t2 − t1|p on ‖uε(·, t2)− uε(·, t1)‖H1/2+σ(0,l). Let u1(·) =
∑

i=1(u1)iφi(·). Since

u1 ∈ H2(0, l),

|u1|2H2(0,l) =

∞∑
i=1

λi(u1)
2
i <∞. (5.47)
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Using Lemma 5.16,∥∥∥∥∫ l

0

∂w

∂t
(·, t2; x∗)u1(x

∗) dx∗ −
∫ l

0

∂w

∂t
(·, t1; x∗)u1(x

∗) dx∗
∥∥∥∥

H1/2+σ(0,l)

=

∥∥∥∥∫ l

0

(
∂w

∂t
(·, t2; x∗)− ∂w

∂t
(·, t1; x∗)

)
u1(x

∗)dx∗
∥∥∥∥

H1/2+σ(0,l)

=

∥∥∥∥∥
∫ l

0

∞∑
i=1

(
cos(λ

1/2
i t2)− cos(λ

1/2
i t1)
)
φi(·)φi(x

∗) ·
∞∑

j=1

(u1)jφj(x
∗)dx∗
∥∥∥∥∥

H1/2+σ(0,l)

=

∥∥∥∥∫ l

0

(
∂w

∂t
(·, t2; x∗)− ∂w

∂t
(·, t1; x∗)

)
u1(x

∗)dx∗
∥∥∥∥

H1/2+σ(0,l)

.

By the similar argument to Lemma 5.16, we have∥∥∥∥∥L(σ+1/2)/4

∞∑
i=1

(
cos(λ

1/2
i t2)− cos(λ

1/2
i t1)
)
φi(·)(u1)i

∥∥∥∥∥
2

L2(0,l)

=
∞∑
i=1

(
cos(λ

1/2
i t2)− cos(λ

1/2
i t1)
)2
λ

(σ+1/2)/2
i (u1)

2
i

=
∞∑
i=1

[
cos(λ

1/2
i t2)− cos(λ

1/2
i t1)

(λ
1/2
i )p

]2
λ

σ/2+1/4−1+p
i · λi(u1)

2
i

≤ C|t2 − t1|2p

( ∞∑
i=1

λ
σ/2−3/4+p
i · λi(u1)

2
i

)
.

and ∥∥∥∥∥
∞∑
i=1

(
cos(λ

1/2
i t2)− cos(λ

1/2
i t1)
)
φi(·)(u1)i

∥∥∥∥∥
2

L2(0,l)

=

∞∑
i=1

(
cos(λ

1/2
i t2)− cos(λ

1/2
i t1)
)2

(u1)
2
i

=
∞∑
i=1

[
cos(λ

1/2
i t2)− cos(λ

1/2
i t1)

(λ
1/2
i )p

]2
λ−1+p

i · λi(u1)
2
i

≤ C|t2 − t1|2p

( ∞∑
i=1

λ−1+p
i · λi(u1)

2
i

)
.

Applying Proposition 5.3 and Lemma 5.15∥∥∥∥∫ l

0

∂w

∂t
(·, t2; x∗)v1(x

∗) dx∗ −
∫ l

0

∂w

∂t
(·, t1; x∗)v1(x

∗) dx∗
∥∥∥∥

H1/2+σ(0,l)

≤ C |t2 − t1|p.
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In the third and last term of (5.46), we have∥∥∥∥∫ t2

0

∫ l

0

w(·, t2 − s; x∗)Nε(x
∗, s) dx∗ ds−

∫ t1

0

∫ l

0

w(·, t1 − s; x∗)Nε(x
∗, s) dx∗ ds

∥∥∥∥
H1/2+σ(0,l)

≤
∫ t2

t1

∫ l

0

‖w(·, t2 − s; x∗)− w(·, 0; x∗)‖H1/2+σ(0,l)|Nε(x
∗, s)| dx∗ ds

+

∫ t1

0

∫ l

0

‖w(·, t2 − s; x∗)− w(·, t1 − s; x∗)‖H1/2+σ(0,l)|Nε(x
∗, s)| dx∗ ds

≤
∫ t2

t1

∫ l

0

C|t2 − s|p |Nε(x
∗, s)| dx∗ ds+

∫ t1

0

∫ l

0

C|t2 − t1|p |Nε(x
∗, s)| dx∗ ds

≤ C|t2 − t1|p
∫ t2

0

∫ l

0

|Nε(x
∗, s)| dx∗ ds ≤ C|t2 − t1|p

∫ T

0

∫ l

0

|Nε(x
∗, s)| dx∗ ds,

and since
∫ T

0

∫ l

0
|Nε(x

∗, s)| dx∗ ds is bounded independently of ε, we have a bound

C|t2 − t1|p on ‖uε(·, t2) − uε(·, t1)‖H1/2+σ(0,l) that is independent of ε. Similarly, we

have∥∥∥∥∫ t2

0

∫ l

0

w(·, t2 − s; x∗)f(x∗) dx∗ ds−
∫ t1

0

∫ l

0

w(·, t1 − s; x∗)f(x∗) dx∗ ds

∥∥∥∥
H1/2+σ(0,l)

= C|t2 − t1|p‖f‖L2(0,l) = C|t2 − t1|p,

since f ∈ L2(0, l). So using the definition of the norm of Cp(0, T ;H1/2+σ(0, l)),

‖uε‖Cp(0,T ;H1/2+σ(0,l)) ≤M , where M does not depend on ε.

In the previous Lemma 5.17, uε is uniformly bounded in Cp(0, T ;H1/2+σ(0, l).

As this space is compactly imbedded in C([0, l]× [0, T ]) (this follows directly from the

Ascoli theorem [35, p. 57]), there exists a subsequence of uε that converges u strongly

in C([0, l]× [0, T ]).

Lemma 5.18. For any weakly converging subsequence of (uε)ε>0 in Cp(0, T ;H1/2+σ(0, l))

(and there is at least one such subsequence) we have∫ T

0

∫ l

0

Nε (uε + g) dx dt→
∫ T

0

∫ l

0

N (u+ g) dx dt.
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Thus there is a solution u ∈ C(0, T ;H2
cf(0, l))∩W 1,∞(0, T ;L2(0, l))∩C([0, l]× [0, T ])

of (5.3–5.8).

Proof. Note that since Nε ≥ 0, subsequence of Nε ⇀
∗ N as measures, so N ≥ 0 in the

sense of measures. Also, the constraint condition u+ g ≥ 0 follows from Lemma 5.14

that Nε(uε + g) ≤ 0 since Nε(x, t) > 0 only when uε(x, t) + g(x) < 0. Thus, we have

0 ≥
∫ T

0

∫ l

0

Nε (uε + g) dx dt and

∫ T

0

∫ l

0

N (u+ g) dx dt ≥ 0.

Note that Cp(0, T ;H1/2+σ(0, l)) is compactly imbedded in C([0, T ]× [0, l]) for

p, σ > 0. To see this, suppose that B is a bounded subset of Cp(0, T ;H1/2+σ(0, l)).

Then for each s, t ∈ [0, T ] there is a bound ‖z(t)‖H1/2+σ(0,l) ≤ M and ‖z(t) −

z(s)‖H1/2+σ(0,l) ≤M |t−s|p for each z ∈ B. The set B is an equicontinuous set of func-

tions into H1/2+σ(0, l) by the Hölder bound: for any ε > 0 we can set δ = (ε/M)1/p so

that |s−t| < δ implies that ‖z(t)−z(s)‖H1/2+σ(0,l) < ε. Furthermore, for each t ∈ [0, T ],

the set { z(t) | z ∈ B } is bounded in H1/2+σ(0, l) and therefore is compact in C[0, l].

Thus by the Ascoli theorem [35, pp.57–59] there is a uniformly convergent subsequence

in C(0, T ; C(0, l)) of any bounded sequence uε in Cp(0, T ; H1/2+σ(0, l)). Denote the

subsequence which converges strongly in C(0, T ; C(0, l)) = C([0, T ]× [0, l]), uε. Call

this limit u so that ‖uε−u‖C([0,T ]×[0,l])→ 0 as ε ↓ 0 in this subsequence. Thus applying

Lemma 5.12, ∫ T

0

∫ l

0

Nε uε dx dt→
∫ T

0

∫ l

0

N udx dt,

as ε ↓ 0 in the subsequence. Since g ∈ C[0, l], and Nε converges weak* to N ,∫ T

0

∫ l

0

Nε(x, t) g(x) dx dt→
∫ T

0

∫ l

0

N(x, t) g(x) dx dt.
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Combining these results gives

0 ≥
∫ T

0

∫ l

0

Nε(uε + g) dx dt→
∫ T

0

∫ l

0

N(u+ g) dx dt ≥ 0.

Now we see that the integral
∫ T

0

∫ l

0
N(u + g) dx dt = 0 as it is the only non-negative

number that is a limit of non-positive numbers. Thus there is a solution u ∈

C(0, T ;H2
cf(0, l)) ∩W 1,∞(0, T ;L2(0, l)) of our problem (5.3–5.8). The proof is com-

plete.
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CHAPTER 6
EULER–BERNOULLI BEAM IN DYNAMIC CONTACT :

TIME DISCRETIZATION

6.1 Formulation of the discrete-time problem

For a dynamical problem, time discretization is one of the useful numerical

methods. In order to obtain a numerical formulation, we will employ the two numer-

ical schemes on the time space:

• Elasticity (uxxxx) - Midpoint rule is used

• Contact condition - Implicit Euler is used.

First we consider a partition of time:

0 = t0 < t1 < t2 < · · · < tl < tl+1 < · · · < T.

We denote by ul(x) numerical solution of displacement u(x, tl) and by vl(x) numerical

solution of velocity v(x, tl) and N l(x) numerical solution of magnitude of contact

force, N(x, tl), respectively at each discretized time tl = lh. Then the time step size

is h = tl+1 − tl, for l ≥ 0. From (5.3), we take ρA = EI = 1 by proper scaling.

Using our numerical scheme we establish numerical formulation:

vl+1 − vl

h
= −

(
ul+1

xxxx + ul
xxxx

2

)
+ f(x) +N l, (6.1)

ul+1 − ul

h
=

vl+1 + vl

2
, (6.2)

0 ≤ N l ⊥ ul+1 + g ≥ 0, (6.3)

where ul = ul(x), vl = vl(x), N l = N l(x) for each l ≥ 0.
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6.2 Energy dissipation in semi-discrete case

In this Section, we will see that numerical formulations (6.1–6.3) cause energy

dissipation. Indeed, energy is conserved when beam does not touch a rigid founda-

tion and energy is dissipated when beam reaches to the rigid foundation as we shall

see in the next Lemma. Now we define energy functional which is dependent on

displacement u and velocity v:

E(u, v) =
1

2

∫ L

0

(|v|2 + |uxx|2
)
dx−
∫ L

0

f · u dx. (6.4)

The first term
∫ L

0
|v|2dx is the kinetic energy, the second term

∫ L

0
|uxx|2dx is the

elastic energy and the last term − ∫ L

0
f ·u dx is the external potential energy. We will

derive energy dissipation for our time-discretization.

Lemma 6.1. In the semi-discrete case, energy is dissipated.

Proof. We want to show that E(ul+1, vl+1) ≤ E(ul, vl). Using (6.1–6.2), we have

∫ L

0

|vl+1|2 − |vl|2
2h

dx = −
∫ L

0

(ul+1
xxxx + ul

xxxx)(u
l+1 − ul)

2h
dx

+

∫ L

0

f · (ul+1 − ul)

h
dx+

∫ L

0

N l · (ul+1 − ul)

h
dx.(6.5)

Multiplying by h on the both side of (6.5) and using integration by parts and the

boundary conditions, we obtain

∫ L

0

|vl+1|2 − |vl|2
2

dx = −
∫ L

0

|ul+1
xx |2 − |ul

xx|2
2

dx

+

∫ L

0

f · (ul+1 − ul) dx+

∫ L

0

N l · (ul+1 − ul) dx.
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Thus from the LCP condition (6.3),

1

2

∫ L

0

(|vl+1|2 − |vl|2) dx
= −1

2

∫ L

0

(|ul+1
xx |2 − |ul

xx|2
)
dx+

∫ L

0

f · (ul+1 − ul) dx

+

∫ L

0

N l · (ul+1 + g) dx−
∫ L

0

N l · (ul + g) dx

≤ −1

2

∫ L

0

(|ul+1
xx |2 − |ul

xx|2
)
dx+

∫ L

0

f · (ul+1 − ul) dx, (6.6)

as
∫ L

0
N l · (ul+1 + g) dx = 0 by (6.3), but N l and ul + g ≥ 0 so

∫ L

0
N l · (ul + g) dx ≥ 0.

Therefore we have

(
1

2

∫ L

0

(|vl+1|2 + |ul+1
xx |2
)
dx

)
−
∫ L

0

f · ul+1 dx

≤
(

1

2

∫ L

0

|vl|2 + |ul
xx|2 dx
)
−
∫ L

0

f · ul dx

as desired.

From (6.6), we note that the energy E is conserved if N l = 0, and energy is dis-

sipated by the LCP condition (6.3) if N l(x) > 0 for some x ∈ (0, L). Assume that the

initial energy is finite. Then Lemma 6.1 implies that vl ∈ L2(0, L) and ul ∈ H2
cf(0, L)

for all l ≥ 1 and h > 0, and that they are bounded in these spaces independently of

l and h > 0.

6.3 Convergence of the time discretization

In this Section one time step solution for the numerical formulation is obtained

algebraically. Also the convergence for our numerical scheme is investigated. Those

are considered in the semi-discrete case: only time space is discretized. .
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6.3.1 Convergence of the numerical scheme

As mentioned in Chapter 6, the fourth order differential operator K = ∂4/∂x4

has the orthonormal basis φi with ∂4φi/∂x
4 = λiφi and satisfying the homogeneous

boundary conditions (φi(0) = φ′
i(0) = φ′′

i (L) = φ′′′
i (L) = 0). We order the eigenvalues

λi so that 0 < λ1 ≤ λ2 ≤, · · · ≤ λi ≤ · · · and limi→∞ λi = ∞. Properties of

these eigenfunctions are discussed in Subsection 5.2.1, we can write the discrete-time

solution quantities as

ul(x) =

∞∑
i=1

ul
iφi(x), vl(x) =

∞∑
i=1

vl
iφi(x), and N l(x) =

∞∑
i=1

N l
iφi(x).

So using the above numerical solution expressions and the numerical formulation

(6.1–6.2), we have

vl+1
i − vl

i

h
= −λi

(
ul+1

i + ul
i

2

)
+N l

i , (6.7)

ul+1
i − ul

i

h
=

vl+1
i + vl

i

2
. (6.8)

Note that when we investigate the convergence of our numerical scheme, we will ignore

the external body force f(x).

Lemma 6.2. From (6.7) and (6.8), ul+1
i and vl+1

i are expressed in terms of ul
i and vl

i

for each i ≥ 1 and each l ≥ 0 in the following way: ul+1
i

vl+1
i

 =

 1 0

0 λ
1/2
i


 cosχi sinχi

− sinχi cosχi


 1 0

0 λ
−1/2
i


 ul

i

vl
i



+
hN l

i

1 + h2λi/4

 h
2

1

 , (6.9)

where χi = χ(hλ
1/2
i ), i.e., function χi depends only on hλ

1/2
i .
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Proof. From (6.8), we have

vl+1
i =

2

h
(ul+1

i − ul
i)− vl

i (6.10)

Multiplying by h on (6.7) and plugging (6.10) into (6.7), we obtain

2

h
(ul+1

i − ul
i)− 2vl

i = −h
2
(λiu

l+1
i + λiu

l
i) + hN l

i . (6.11)

Thus multiplying by h/2 on (6.11) gives

(1 + h2λi/4)ul+1
i = (1− h2λi/4)ul

i + hvl
i + h2N l

i/2.

So the discrete-time solution at the next step is

ul+1
i = (1 + h2λi/4)−1

[
(1− h2λi/4)ul

i + hvl
i + h2N l

i/2
]
.

In order to obtain the next step’s velocity, we use (6.10):

vl+1
i =

2

h

[
(1 + h2λi/4)−1

(
(1− h2λi/4)ul

i + hvl
i + h2N l

i/2
)− ul

i

]− vl
i

=
2/h

1 + h2λi/4

[
(1− h2λi/4)ul

i + hvl
i + h2N l

i/2− (1 + h2λi/4)ul
i

]− vl
i

=
2/h

1 + h2λi/4

[
−h

2

2
λiu

l
i + hvl

i +
h2

2
N l

i −
h

2
(1 + h2λi/4)vl

i

]
=

1

1 + h2λi/4

[−hλiu
l
i + (1− h2λi/4)vl

i + hN l
i

]
.

Therefore solving the equations for ul+1 and vl+1 in terms of ul and vl gives: ul+1
i

vl+1
i

 =
1

1 + h2λi/4

 1− h2λi/4 h

−hλi 1− h2λi/4


 ul

i

vl
i

+
hN l

i

1 + h2λi/4

 h
2

1

 .
The above system can be written as: ul+1

i

vl+1
i

 =
1

1 + h2λi/4

 1 0

0 λ
1
2
i


 1− h2

4
λi hλ

1/2
i

−hλ1/2
i 1− h2

4
λi


 1 0

0 λ
− 1

2
i


 ul

i

vl
i


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+
hN l

i

1 + h2λi/4

 h
2

1

 .
Note that we have

(
1− h2λi/4

1 + h2λi/4

)2

+

(
hλ

1/2
i

1 + h2λi/4

)2

=
h4λ2

i /16 + h2λi/2 + 1

(1 + h2λi/4)2

=

(
1 + h2λi/4

1 + h2λi/4

)2

= 1.

So we can write

sinχi =
hλ

1/2
i

1 + h2λi/4
, cosχi =

1− h2λi/4

1 + h2λi/4
,

where χi = χ(hλ
1/2
i ). Hence the result follows.

Indeed, we can require that χi be restricted to [0, π].

Remark 6.3. Consider a sequence of vectors zl+1 = Czl + bl, for l ∈ N. Then we

have

zl = Clz0 +
l−1∑
j=0

Cl−1−jbj .

It is easy to prove this formula using mathematical induction.

Lemma 6.4. From (6.7) and (6.8), ul
i for each l ≥ 1 can be expressed as

ul
i = u0

i cos(lχi) + v0
i sin(lχi)/λ

1/2
i

+
h

1 + h2λi/4

l−1∑
j=0

(
h cos{(l − 1− j)χi}

2
+

sin{(l − 1− j)χi}
λ

1/2
i

)
N j

i ,(6.12)

where u0
i and v0

i are coefficients for the initial displacement and velocity, respectively.
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Proof. In order to apply Remark 6.3, we set

zl =

 ul
i

vl
i

 , C =

 1 0

0 λ
1/2
i


 cosχi sinχi

− sinχi cosχi


 1 0

0 λ
−1/2
i

 , bl =

 h
2
N l

i

N l
i

 .
So from Lemma 6.2, we have ul

i

vl
i

 =


 1 0

0 λ
1/2
i


 cosχi sinχi

− sinχi cosχi


 1 0

0 λ
−1/2
i




l  u0
i

v0
i

+

h

1 + h2λi/4

l−1∑
j=0


 1 0

0 λ
1/2
i


 cosχi sinχi

− sinχi cosχi


 1 0

0 λ
−1/2
i




l−1−j  h
2
N j

i

N j
i

 .
Note that  cosχi sinχi

− sinχi cosχi


is a transformation matrix called the clockwise rotation through χi. By mathematical

induction, ul
i

vl
i

 =

 cos(lχi) λ
−1/2
i sin(lχi)

−λ1/2
i sin(lχi) cos(lχi)


 u0

i

v0
i

+

h

1 + h2λi/4

l−1∑
j=0

 cos{(l − 1− j)χi} λ
−1/2
i sin{(l − 1− j)χi}

−λ1/2
i sin{(l − 1− j)χi} cos{(l − 1− j)χi}


 h

2
N j

i

N j
i

 .
Multiplying by row vector [1, 0] on the both side of the above system, the coefficient

ul
i of ul(x) is obtained as desired.

We define the impulse response function (or fundamental solution of the time-

discretization) for fixed x∗ ∈ (0, L) to be

wl(x) =
∞∑
i=1

wl
iφi(x),
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where wl
i = (h cos(lχi)/2 + sin(lχi)/λ

1/2
i )/(1 + h2λi/4). Similar to the fundamental

solution of the PDE system, we extend wl
i = 0 for l < 0. Thus using this form of

impulse response function with Lemma 6.4, we have

ul
i = u0

i cos(lχi) + v0
i

sin(lχi)

λ
1/2
i

+ h

l−1∑
j=0

wl−j−1
i N j

i . (6.13)

Recalling the fundamental solution of the PDE system, we define impulse response

function for fixed x∗ ∈ (0, L),

wl(·, x∗) =
∞∑
i=1

wl
iφi(x

∗)φi(·). (6.14)

Lemma 6.5. Using the impulse response function wl(·), the discrete-time solution

ul(·) can be expressed as:

ul(·) =

∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·) + h

l−1∑
j=0

∫ L

0

wl−j−1(·, x∗)N j(x∗)dx∗.

Proof. Employing (6.13) for fixed x∗ ∈ (0, L), we have

∞∑
i=1

ul
iφi(·) =

∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·) + h

l−1∑
j=0

∞∑
i=1

wl−j−1
i N j

i φi(·).

Since N j(·) =
∑∞

r=1N
j
rφr(·) and φi is orthonormal basis in L2(0, L), we have

N j
i =

∫ L

0

∞∑
r=1

N j
rφr(x

∗)φi(x
∗)dx∗ =

∫ L

0

N j(x∗)φi(x
∗)dx∗.

Thus

ul(·) =
∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·)

+ h
l−1∑
j=0

∞∑
i=1

wl−j−1
i φi(·)

∫ L

0

N j(x∗)φi(x
∗)dx∗
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=
∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·)

+ h
l−1∑
j=0

∫ L

0

∞∑
i=1

wl−j−1
i φi(x

∗)φi(·)N j(x∗)dx∗

=

∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·)

+ h

l−1∑
j=0

∫ L

0

wl−j−1(·, x∗)N j(x∗)dx∗.

as required.

We now need a Lemma giving some basic bounds on the function χ(s). These

basic bounds will be used to establish a uniform Hölder continuity result for the

discrete fundamental solution w, and then for the solution uh of the discrete-time

problem.

Lemma 6.6. If cosχ(s) = (1 − s2/4)/(1 + s2/4) and sinχ(s) = s/(1 + s2/4), then

χ(s) ≤ s for s ≥ 0.

Proof. Taking a derivative sinχ(s) with respect to s,

d sinχ(s)

d χ

d χ

d s
=

d

d s

(
s

1 + s2/4

)
.

Thus we have

cosχ · d χ
d s

=
1− s2/4

(1 + s2/4)2

=
1

1 + s2/4
· 1− s

2/4

1 + s2/4
=

1

1 + s2/4
cosχ < cosχ.

So if s �= 2, d χ/d s < 1. Since χ(0) = 0, we have χ(s) ≤ s for s ≥ 0 by Proposi-

tion 5.8. If s = 2, cosχ(2) = 0. So χ(2) = π/2 < 2. Therefore the result follows.
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Lemma 6.7. The following uniform Hölder continuity property holds for p = 2γ,

0 < p ≤ 1: ∣∣∣∣sin{(l + r)χ(hλ1/2)} − sin{lχ(hλ1/2)}
λγ

∣∣∣∣ ≤ Cp · (rh)p,

where Cp is independent of h and λ.

Proof. Suppose r ≥ 1. We have∣∣∣∣sin{(l + r)χ(hλ1/2)} − sin{lχ(hλ1/2)}
λγ

∣∣∣∣ =
2

λγ

∣∣∣∣cos

{
(2l + r)χ

2

}∣∣∣∣ ∣∣∣sin(rχ2 )∣∣∣
≤ 2

λγ

∣∣∣sin(rχ
2

)∣∣∣ .
Since rχ− sin(rχ/2) ≥ 0 for rχ ≥ 0, we have

λ−γ |sin{(l + r)χ} − sin(lχ)| ≤ 2λ−γ min(rχ, 1).

Applying Lemma 6.6, for hλ1/2 ≤ 2

λ−γ |sin{(l + r)χ} − sin(lχ)| ≤ 2λ−γ min(rhλ1/2, 1), (6.15)

and for hλ1/2 ≥ 2, (6.15) also holds by inspection as rhλ1/2 > 1. Dividing by (rh)p

on the both side of (6.15),

λ−γ |sin{(l + r)χ} − sin{lχ}|
(rh)p

≤ 2λ−γ(rh)−p min(rhλ1/2, 1).

If rhλ1/2 ≤ 1,

λ−γ |sin{(l + r)χ} − sin{lχ}| (rh)−p ≤ 2λ−γ(rh)−p(rhλ1/2)

= 2λ−γ+1/2(rh)1−p

≤ 2λ−γ+1/2λp/2−1/2 = 2λp/2−γ.
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If rhλ1/2 ≥ 1, |λ−γ sin{(l + r)χ} − λ−γ sin{lχ}| (rh)−p ≤ 2λ−γ(rh)−p ≤ 2λp/2−γ. Thus

putting p = 2γ, we have

λ−γ
∣∣sin{(l + r)χ(hλ1/2)} − sin{lχ(hλ1/2)}∣∣ ≤ 2(hr)p,

as required.

Let the value uh(·, t) be a continuous piecewise linear interpolant of uh(·, lh) =

ul and uh(·, (l+ 1)h) = ul+1 for t ∈ [lh, (l+ 1)h]. Then recalling Lemma 6.4, uh(·, lh)

computed at step l is expressed as

uh(·, lh) =

∞∑
i=1

u0
i cos(lχi) · φi(·) +

∞∑
i=1

v0
i

sin(lχi)

λ
1/2
i

φi(·)

+ h

l−1∑
j=0

∫ L

0

wh(·, (l − j − 1)h, x∗)N j(x∗)dx∗, (6.16)

where wh(·, lh, x∗) =
∑∞

i=1(h cos(lχi)/2 + sin(lχi)/λ
1/2
i )φi(·)φi(x

∗)/(1 + h2λi/4). Now

we define the discrete-time contact force Nh(x, t) as

Nh(x, t) = h

�T/h�−1∑
j=0

δ(t− (j + 1)h)N j(x),

where δ is the Dirac-δ function and �T/h� is the number of time-steps. We also

identify Nh with a non-negative Borel measure on [0, L]× [0, T ] by

Nh(B) =

∫
B

Nh(x, t) dx dt,

where B is any Borel set in [0, L] × [0, T ]. The next Lemma shows that the Borel

measures Nh can be expressed in another way. Indeed, it will play an important role

in bounding the measure Nh.
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Lemma 6.8. From the definition of Nh(x, t), we have

∫ T

0

∫ L

0

Nh(x, t) dx dt = h

�T/h�−1∑
l=0

∫ L

0

N l(x) dx.

Proof. Using the definition Nh, we have

∫ T

0

∫ L

0

Nh(x, t) dx dt = limε↓0

∫ T+ε

0

∫ L

0

Nh(x, t) dx dt

= h lim
ε↓0

∫ T+ε

0

∫ L

0

�T/h�−1∑
l=0

δ(t− (l + 1)h)N l(x) dx dt

= h

∫ L

0

�T/h�−1∑
l=0

lim
ε↓0

(∫ T+ε

0

δ(t− (l + 1)h) dt

)
N l(x) dx

= h

�T/h�−1∑
l=0

∫ L

0

N l(x) dx, (6.17)

as required. Note that ε is not dependent on h.

Lemma 6.9. The Borel measures Nh are uniformly bounded as measures on [0, L]×

[0, T ] as h ↓ 0 for vl ∈ L2(0, L) and ul ∈ H2
cf(0, L).

Proof. Multiplying (6.1) by h and ignoring the body force f(x),

vl+1 − vl = −h
2
(ul+1

xxxx + ul
xxxx) + hN l.

Then multiplying x2/2 on the both side in (6.1) and taking integral on the both side

in (6.1),

∫ L

0

x2

2
(vl+1 − vl)dx = −h

2

∫ L

0

x2

2
(ul+1

xxxx + ul
xxxx)dx+ h

∫ L

0

x2

2
N ldx.

Thus taking sum over l ≥ 0 and using an integration by parts,

h

�T/h�−1∑
l=0

∫ L

0

x2

2
N ldx =

�T/h�−1∑
l=0

∫ L

0

x2

2
(vl+1 − vl)dx+

h

2

�T/h�−1∑
l=0

∫ L

0

x2

2
(ul+1

xxxx + ul
xxxx)dx
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=

�T/h�−1∑
l=0

∫ L

0

x2

2
(vl+1 − vl)dx+

h

2

�T/h�−1∑
l=0

∫ L

0

(ul+1
xx + ul

xx)dx

≤ L2

2
(‖v�T/h�‖L2(0,L) + ‖v0‖L2(0,L))

+ CL1/2 · max
0≤l≤�T/h�

‖ul
xx‖L2(0,L),

where C = T does not depend on time step size h.

We want to show that
∫ L

0
N ldx is bounded by

∫ L

0
x2

2
N ldx for all l ≥ 0. Since

g(0) > 0 and u(0, tl+1) = ∂u/∂x(0, tl+1) = 0 and ul+1 ∈ H2
cf(0, L), there is an η > 0

such that ul+1(x) > −g(x) for all x ∈ [0, η]. So by LCP condition of the numerical

formulation, N l = 0 for 0 ≤ x ≤ η. Since N l ≥ 0 and x2/2 ≥ η2/2 > 0 for [η, L], we

have

∫ L

0

x2

2
N ldx =

∫ L

η

x2

2
N ldx ≥ η2

2

∫ L

η

N ldx =
η2

2

∫ L

0

N ldx.

So by Lemma 6.8, the Borel measure Nh is bounded, independent of h as h ↓ 0.

The proof is complete.

Lemma 6.10. The discrete-time solution t �→ uh(·, t) is uniformly Hölder continuous

into Hβ(0, L) as h ↓ 0 with an exponent 0 < p ≤ 1 and β > 0 in the following sense:

‖uh(·, (l + r)h)− uh(·, lh)‖Hβ(0,L) < Cp(rh)
p,

for integers l and r, where β/2 + p < 3/4 and Cp is independent of h.

Proof. Applying (6.16), the last term of uh(·, (l + r)h) becomes

h
l+k−1∑
j=0

∫ L

0

wh(·, (l + r − j − 1)h, x∗)N j(x∗)dx∗. (6.18)
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Similarly, last term of uh(·, lh) becomes

l−1∑
j=0

∫ L

0

wh(·, (l− j − 1)h, x∗)N j(x∗)dx∗. (6.19)

We denote (6.18) by (I) and (6.19) by (II). Thus using Lemma 6.7, we have

‖uh(·, (l + r)h)− uh(·, lh)‖Hβ(0,L)

≤
∥∥∥∥∥

∞∑
i=1

u0
i [cos{(l + r)χi} − cos(lχi)]φi(x)

∥∥∥∥∥
Hβ(0,L)

+

∥∥∥∥∥
∞∑
i=1

v0
i

sin{(l + r)χi} − sin(lχi)

λ
1/2
i

φi(x)

∥∥∥∥∥
Hβ(0,L)

+ h

∥∥∥∥∫ L

0

[(I)− (II)]dx∗
∥∥∥∥

Hβ(0,L)

. (6.20)

Since u0 ∈ H2
cf(0, L), |u0|2H2(0,L) =

∑
i λi(u

0
i )

2 < ∞. Using Proposition 5.3, in the

first term of (6.20) we have

‖
∞∑
i=1

u0
i [cos{(l + r)χi} − cos(lχi)]φi(x)‖2Hβ(0,L)

=
∞∑
i=1

[cos{(l + r)χi} − cos(lχi)]
2λ

β/2
i (u0

i )
2

+

∞∑
i=1

[cos{(l + r)χi} − cos(lχi)]
2(u0

i )
2

=

∞∑
i=1

[
cos{(l + r)χi} − cos(lχi)

λ
p/2
i

]2
λ

β/2+p−1
i · λi(u

0
i )

2

+
∞∑
i=1

[
cos{(l + r)χi} − cos(lχi)

λ
p/2
i

]2
λp−1

i · λi(u
0
i )

2

= (rh)2p

[ ∞∑
i=1

λi(u
0
i )

2λ
β/2+p−1
i +

∞∑
i=1

λi(u
0
i )

2λp−1
i

]

= (rh)2p

∞∑
i=1

λi(u
0
i )

2
[
λ

β/2+p−1
i + λp−1

i

]
.
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Similarly, in the second term of (6.20), we have∥∥∥∥∥
∞∑
i=1

v0
i

sin{(l+)χi} − sin(lχi)

λ
1/2
i

φi(x)

∥∥∥∥∥
2

Hβ(0,L)

=
∞∑
i=1

[
v0

i

sin{(l + r)χi} − sin(lχi)

λ
p/2
i

]2
λ

β/2+p−1
i

+
∞∑
i=1

[
v0

i

sin{(l + r)χi} − sin(lχi)

λ
p/2
i

]2
λ−1+p

i

= (rh)2p

[ ∞∑
i=1

(v0
i )

2λ
β/2+p−1
i +

∞∑
i=1

(v0
i )

2λp−1
i

]

= (rh)2p

∞∑
i=1

λi(v
0
i )

2
[
λ

β/2+p−1
i + λp−1

i

]
.

Note that since v0 ∈ L2(0, L), ‖v0‖2L2(0.L) =
∑

i(v
0
i )

2 <∞. Similarly in the third term

of (6.20),

h

∥∥∥∥∫ L

0

[(I)− (II)]dx∗
∥∥∥∥

Hβ(0,L)

≤ h

∫ L

0

‖(I)− (II)‖Hβ(0,L)dx
∗

≤ h

∫ L

0

∥∥∥∥∥
l−1∑
j=0

[wh(·, (l + r − j − 1)h, x∗)− wh(·, (l − j − 1)h, x∗)]N j(x∗)

∥∥∥∥∥
Hβ(0,L)

dx∗

+h

∫ L

0

∥∥∥∥∥
l+k−1∑

j=l

wh(·, (l + r − j − 1)h, x∗)N j(x∗)

∥∥∥∥∥
Hβ(0,L)

dx∗. (6.21)

Recall that wh(·, lh, x∗) =
∑∞

i=1(h cos(lχi)/2 + sin(lχi)/λ
1/2
i )φi(·)φi(x

∗)/(1 + h2λi/4)

and max0≤x≤L |φi(x)| ≤M . Note that λ
1/2
i h/(1+λih

2/4) ≤ 1 and 1/(1+λih
2/4) ≤ 1

for λ
1/2
i h ≥ 0. In the first term of (6.21) for 0 ≤ j ≤ l − 1, we have

‖[wh(·, (l + r − j − 1)χi, x
∗)− wh(·, (l − j − 1)χi, x

∗)]N j(x∗)‖2Hβ(0,L)

≤
∞∑
i=1

(λ
β/2
i + 1)

[
λih

2 · A2
i

4λi(1 + h2λi/4)2
+

AiBi

λi(1 + h2λi/4)2

]
|φi(x

∗)|2|N j(x∗)|2
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+
∞∑
i=1

(λ
β/2
i + 1)

B2
i

λi(1 + h2λi/4)2
|φi(x

∗)|2|N j(x∗)|2

≤ M2

4
|N j(x∗)|2

∞∑
i=1

[
Ai

λ
p/2
i

]2
(λ

β/2+p−1
i + λp−1

i )

+
√

2M2|N j(x∗)|2
∞∑
i=1

[
Bi

λ
p/2
i

]2
(λ

β/2+p−1
i + λp−1

i )

+M2|N j(x∗)|2
∞∑
i=1

[
Bi

λ
p/2
i

]2
(λ

β/2+p−1
i + λp−1

i )

≤ (
5

4
+
√

2)M2|N j(x∗)|2(kh)2p

∞∑
i=1

(λ
β/2+p−1
i + λp−1

i ). (6.22)

where Ai = | cos{(l + r − j − 1)χi} − cos{(l − j − 1)χi}| and Bi = | sin{(l + r − j −

1)χi}− sin{(l− j−1)χi}|. Similarly in the second term of (6.21), for l ≤ j ≤ l+k−1

we have

‖wh(·, (l + k − r − 1)χi, x
∗)N j(x∗)‖2Hβ(0,L)

≤ C(rh)2p
∞∑
i=1

(λ
β/2+p−1
i + λp−1

i ). (6.23)

Note that for sufficiently large i, there exist C > 0 such that λi ≥ Ci4. This was shown

in Lemma 5.2 and by the integral test, the result follows, provided that β/2 + p <

3/4.

Note that the condition of Lemma 6.10 is the same case as for the penalty

method.

Note that the Borel measures Nh on [0, L] × [0, T ] are bounded. By Riesz

Representation Theorem [49, 35], the dual space of C([0, L] × [0, T ]) is isometrically

isomorphic to the space of Borel measures on [0, L]×[0, T ]. Then by Alaoglu’s Theorem

[47, p. 203], there is a subsequence of Nh which is weakly* convergent to N . We wish
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to show a corresponding result for u. As we saw in Lemma 6.10, uh is bounded

in Cp(0, T ;Hβ(0, L)). By the Arzela–Ascoli Theorem [35, pp. 57–59], that space

is compactly imbedded in C([0, L] × [0, T ]). Thus there is a subsequence (of the

subsequence in which Nh ⇀∗ N) in which uh → u in C([0, L]×[0, T ]). Since uh+g ≥ 0

for each h > 0, it follows that u+ g ≥ 0.

We now want to show that the complementarity conditions 0 ≤ N ⊥ u +

g ≥ 0 hold in the weak sense. Now for any continuous Φ ≥ 0 on [0, L] × [0, T ],∫
[0,L]×[0,T ]

ΦNh dx dt ≥ 0 since Nh is a non-negative measure. Since a subsequence

of Nh converges weak* to N ,
∫
[0,L]×[0,T ]

ΦN dxdt ≥ 0. Thus N ≥ 0 in the sense of

Borel measures. The condition that u(x, t) + g(x) ≥ 0 holds as noted in the previous

paragraph, and taking limits in the subsequence gives

0 =

∫ L

0

∫ T

0

Nh(x, t)(uh(x, t) + g(x)) dx dt→
∫ T

0

∫ L

0

N(x, t)(u(x, t) + g(x)) dx dt,

(6.24)

and so the LCP condition holds.

Lemma 6.11. In a certain subsequence with h ↓ 0 the time-discretized functions uh,

vh, and Nh converge to a solution, uh uniformly in C([0, L] × [0, T ]), vh weak* in

L∞(0, T ;L2(0, L)) and Nh weak* in the space of measures on [0, L]× [0, T ].

Proof. By Lemma 6.9, Nh ⇀∗ N as measure. Since Nh ≥ 0, N ≥ 0. Then since

Cp(0, T ;Hβ(0, L)) is compactly imbedded in C([0, L] × [0, T ]), by the Arzela–Ascoli

Theorem [35, pp. 57–59] there exists a suitable subsequence of uh such that uh → u

in C([0, L]× [0, T ]). We also denote this subsequence by uh, and restrict our attention

to this subsequence.
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Since vh is uniformly bounded in L∞(0, T ;L2(0, L)) and L∞(0, T ;L2(0, L))

is identified with the dual space of L1(0, T ;L2(0, L)), by Alaoglu’s theorem there

is a weak* converging subsequence, also denoted vh and restrict attention to this

subsequence.

We want to show that for such N and u, (6.24) is satisfied. Since uh(·, t) is

an interpolant of uh(·, lh) and uh(·, (l + 1)h), and Nh(x, t) = h
∑�T/h�−1

j=0 δ(t − (j +

1)h)N j(x) for t ∈ [lh, (l + 1)h], we have

∫ T

0

∫ L

0

Nh(x, t)(uh(x, t) + g(x)) dx dt

= h

∫ T

0

∫ L

0

�T/h�−1∑
j=0

δ(t− (j + 1)h)N j(x)

 (uh(x, t) + g(x)) dxdt

= h

∫ L

0

�T/h�−1∑
j=0

∫ T

0

δ(t− (j + 1)h)(uh(x, t) + g(x)) dt

N j(x) dx

= h

∫ L

0

�T/h�−1∑
j=0

N j(x)(uj+1(x) + g(x)) dx = 0.

So we obtain

0 =

∫ T

0

∫ L

0

Nh(x, t)(uh(x, t) + g(x)) dxdt→
∫ T

0

∫ L

0

N(x, t)(u(x, t) + g(x)) dxdt = 0.

The proof is completed.

6.3.2 Do the discrete-time solutions converge strongly?

While we cannot fully answer this question at this time, we will lay the ground-

work in this Subsection for the numerical evidence to be presented later for strong

convergence.
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We recall the numerical solution ul(x) at each discretized time tl:

ul(x) =

∞∑
i=1

ûl
iφi(x). (6.25)

In this Section we want to use ûl
i to indicate coefficients of the eigenfunctions, in

contrast to ul
i which indicates coefficients of the FEM basis functions (which will be

described in Section 7.1). Similarly we can write the velocity as vl(x) =
∑∞

i=1 v̂
l
iφi(x),

and also force f(x) =
∑∞

i=1 f̂iφi(x).Note that we write ûl;h
i and v̂l;h

i instead of ûl
i and v̂l

i,

respectively, in order to show the dependence on h > 0 more explicitly. Then

we consider numerical trajectories uh(x, t) by piecewise continuous linear interpo-

lation of uh(x, tl) = ul;h(x) and vh(x, t) by piecewise continuous linear interpolation

of vh(x, tl) = vl;h(x) for each l ≥ 0. So we express these as

uh(x, t) =
∞∑
i=1

ûh
i (t)φi(x) and vh(x, t) =

∞∑
i=1

v̂h
i (t)φi(x).

Then the value of ûh
i (t) is the linear interpolant of ûh

i (lh) = ûl;h
i and ûh

i ((l + 1)h) =

ûl+1;h
i for t ∈ [lh, (l + 1)h].

Let ul;h = (ûl;h
1 , û

l;h
2 , ûl;h

3 , · · · ) and vl;h = (v̂l;h
1 , v̂l;h

2 , v̂l;h
3 , · · · ) and f = (f̂1, f̂2, f̂3, · · · )

and ωl;h = (ωl;h
1 , ωl;h

2 , ωl;h
3 , · · · ), where ωl;h

i = λ
1/2
i ûl;h

i for i ≥ 1. We use notation �2 as

the Hilbert space of sequences x = (x1, x2, x3, · · · ), where ‖x‖�2 =
√∑∞

i |xi|2 <∞.

Lemma 6.12. The energy is expressed in the discrete form:

E(ul, vl) =

∞∑
i=1

((
v̂l;h

i

)2
+ λi

(
ûl;h

i

)2
− fiû

l;h
i

)
. (6.26)

Furthermore, ωl;h, vl;h ∈ �2 and those are uniformly bounded in �2.



125

Proof. Recalling the energy (6.4), we have the energy functional

E(ul, vl) =
1

2

∫ L

0

(|vl|2 + |ul
xx|2 − f · ul

)
dx.

Then the kinetic energy becomes

1

2

∫ L

0

|vl|2dx =
1

2

∫ L

0

[ ∞∑
i=1

v̂l;h
i φi(x)

∞∑
j=1

v̂l;h
j φj(x)

]
dx =

1

2

∞∑
i=1

(
v̂l;h

i

)2
.

Using integration by parts and the boundary condition and recalling decomposition

into eigenfunctions, the elastic energy becomes

1

2

∫ L

0

|ul
xx|2dx =

1

2

∫ L

0

[ ∞∑
i=1

ûl;h
i φ

′′
i (x)

∞∑
j=1

ûl;h
j φ

′′
j (x)

]
dx =

1

2

∞∑
i=1

λi

(
ûl;h

i

)2
.

Similarly, we have the potential energy∫ l

0

f · ul dx =
∞∑
i=1

f̂iû
l;h
i .

Thus (6.26) is obtained. Since the initial energy is bounded and f ∈ L2(0, L),

ωl;h, vl;h ∈ �2 for l ≥ 1 and those are uniformly bounded in �2.

Now suppose that we do not consider body force f in the energy function.

Since for tl ≤ t ≤ tl+1, uh(x, t) is the interpolant of ûl;h and ûl+1;h and vh(x, t) is the

interpolant of v̂l;h and v̂l+1;h, by the energy boundness we have

∞∑
i=1

λi

(
ûh

i (t)
)2

and

∞∑
i=1

(
v̂h

i (t)
)2
<∞.

So ωh, vh ∈ �2 and are uniformly bounded in �2, where ωh = (ωh
1 (t), ωh

2 (t), ωh
3 (t), · · · )

for ωh
i (t) = λiû

h(t) and vh = (v̂h
1 (t), v̂h

2 (t), v̂h
3 (t), · · · ). Thus there are a subsequence

of vh and a subsequence of ωh which are convergent to v(t) and ω(t), respectively in

�2, as h ↓ 0. These facts induce the next Lemma 6.13.
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By inspection of the eigenfunctions, the frequency of oscillation is proportional

on λ1/4. So high frequency modes correspond to large eigenvalues and low frequency

modes correspond to small eigenvalues. Also, only the elastic energy defines the

modes, since they are eigenfunctions of the fourth order operator K = ∂4/∂x4 in the

in the continuous case or eigenvectors of M−1K in the fully discretized case, which

will be considered in the Section 7.4. In the next Lemma, it is shown that the amount

of energy in the high frequency modes is almost zero under the assumption of the

strong convergence. In the physical point of view, this implies that high frequency

modes would be converted to heat. In the Section 7.5, Lemma 6.13 will be supported

by numerical evidence. The detailed arguments will be presented in the Section 7.5.

Lemma 6.13. Let t ∈ [lh, (l + 1)h] for any l ≥ 1. Suppose that ωl;h → ω(t) and

vl;h → v(t) (strongly) in �2, as h ↓ 0, lh→ t. Then we have

lim
c→∞

lim sup
h↓0

1

2

∑
i;i≥c

(
|v̂l;h

i |2 + λi|ûl;h
i |2
)

= 0.

Proof. For the fixed l ≥ 1 and any c ≥ 1, we obtain( ∞∑
i=c

|ωl;h
i |2
)1/2

=

( ∞∑
i=c

|ωl;h
i − ωi(t) + ωi(t)|2

)1/2

≤
( ∞∑

i=c

|ωl;h
i − ωi(t)|2

)1/2

+

( ∞∑
i=c

|ωi(t)|2
)1/2

.

Since ‖ωl;h − ω(t)‖�2 → 0 as h ↓ 0, lh→ t,

lim sup
h↓0

( ∞∑
i=c

|ωl;h
i |2
)1/2

≤ lim sup
h↓0

( ∞∑
i=c

|ωl;h
i − ωi(t)|2

)1/2

+

( ∞∑
i=c

|ωi(t)|2
)1/2


= lim sup
h↓0

( ∞∑
i=c

|ωi(t)|2
)1/2

. (6.27)
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Since
∑∞

i=c |ωi(t)|2 = ‖ω(t)‖2�2 −
∑c−1

i=1 |ωi(t)|2, we have

lim
c→∞

∞∑
i=c

|ωi(t)|2 = ‖ω(t)‖2�2 − lim
c→∞

c−1∑
i=1

|ωi(t)|2 = ‖ω(t)‖2�2− − ‖ω(t)‖2�2 = 0. (6.28)

Thus combining (6.27) with (6.28),

lim
c→∞

lim sup
h↓0

( ∞∑
i=c

|ωl;h
i |2
)1/2

≤ 0.

Since |ωl;h
i |2 = λi|ûl;h

i |2 ≥ 0 for each i ≥ 1, we have for elastic energy

lim
c→∞

lim sup
h↓0

∑
i;i≥c

|ωl;h
i |2 = lim

c→∞
lim sup

h↓0

∑
i;i≥c

λi|ûl;h
i |2 = 0.

Similar to the above argument, we have for kinetic energy

lim
c→∞

lim sup
h↓0

∑
i;i≥c

|v̂l;h
i |2 = 0.

Therefore the result follows.

We note that in general, ul ⇀ u in �p with 1 < p < ∞ if and only if

liml→∞ ul
i = ui, for i ≥ 1 and sup1≤l<∞ ‖ul‖�p <∞.
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CHAPTER 7
EULER–BERNOULLI BEAM IN DYNAMIC CONTACT :

DISCRETIZATION IN TIME AND SPACE

7.1 Finite element method with B-splines

The Finite Element Method is one of the most popular numerical methods for

solving a static elliptic boundary value problems. So we will approximate the solution

in the spatial domain [0, L], using the Finite Element Method [6, 19]. We partition

the domain [0, L] into

0 = x0 < x1 < x2 < x3 < x4 < · · · < xm+1 = L.

We denote k = xi+1 − xi as size of subinterval [xi+1, xi] for i ≥ 1. Let

V = Hcf(0, L) = {u ∈ H2(0, L) | u(0) = u′(0) = 0},

where Hcf(0, L) is a subset of Sobolev space H2(0, L), using the same norm. We

choose B-spline functions ψi(x), 1 ≤ i ≤ m+ 1 for the basis functions. The B-spline

will be a cubic spline [4, pp. 166–176] with nodes xi, i = 1, 2, 3, . . . , m + 1. Note

that unlike the usual piecewise continuous linear basis function, we need m+ 1 basis

functions from the construction of B-spline. Thus the finite element space becomes

Vk = span{ψi | 1 ≤ i ≤ m+ 1 }.

These basis function will need to be in H2. Thus we can construct the standard

B-spline function B(s), according to the property of B-splines and the condition that
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B(0) = 1, B(s) = B(−s), and B′(0) = 0:

B(s) =
2

3


1 + 3

4
|s|3 − 3

2
|s|2 if |s| ≤ 1,

1
4
(2− |s|)3 if 1 ≤ |s| ≤ 2,

0 if |s| ≥ 2.

Thus B(s) is piecewise cubic on interval [i, i+1] for i ∈ Z. We set each basis function,

based on shifted B-splines, to be:

ψi(x) = B(
x− xi

k
),

where xi = i k, 1 ≤ i ≤ m + 1. Especially, in order to satisfy essential boundary

condition, we need to change the first basis function into

ψ1(x) = 2{B(
x

k
+ 1) +B(

x

k
− 1)} −B(

x

k
).

For other basis functions i = 2, 3, · · · , m+ 1, we use usual shifted B-splines:

ψi(x) = B(
x

k
− i).

See Figure 7.1 for the construction of basis functions with B-splines.

Employing the finite element method, we write a approximate solution ul, vl

as

ul(x) =
m+1∑
i=1

ul
iψi(x) and vl(x) =

m+1∑
i=1

vl
iψi(x). (7.1)

Using (6.2), we have numerical motion equation

2

h2
ul+1 +

1

2
ul+1

xxxx =
2

h2
ul − 1

2
ul

xxxx +
2

h
vl + f(x) +N l. (7.2)
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Figure 7.1: Construction of basis functions with B-splines.

Then we will put approximate solutions ul =
∑m+1

j=1 u
l
jψj(x), v

l =
∑m+1

j=1 v
l
jψj(x),

N l =
∑m+1

j=1 N l
jψj(x). First multiplying by basis function ψi(x) on both side of (7.2)

and by integration by part, we have

2

h2

m+1∑
j=1

ul+1
j

∫ L

0

ψiψj dx+
1

2

m+1∑
j=1

ul+1
j

∫ L

0

ψ′′
jψ

′′
j dx

=
2

h2

m+1∑
j=1

ul
j

∫ L

0

ψiψj dx− 1

2

m+1∑
j=1

ul
j

∫ L

0

ψ′′
jψ

′′
j dx

− 2

h

m+1∑
j=1

vl
j

∫ L

0

ψiψj dx+

∫ L

0

fψidx+
m+1∑
j=1

N l
j

∫ L

0

ψiψj dx.

Therefore we obtain a linear system for one time step:

(
M +

h2

4
K

)
ul+1 =

(
M− h2

4
K

)
ul + hMvl +

h2

2

(
f + MNl

)
, (7.3)

vl+1 =
2

h
(ul+1 − ul)− v,
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where mass and stiffness matrix have the following forms, respectively:

Mij =

∫ L

0

ψiψj dx and Kij =

∫ L

0

ψ′′
i ψ

′′
j dx.

At each discretized time tl, we will obtain numerical solutions ul = (ul
1, u

l
2, · · · , ul

m+1),

vl = (vl
1, v

l
2, · · · , vl

m+1) and Nl = (N l
1, N

l
2, · · · , N l

m+1). Also note that f = (b1, b2, · · · , bm+1)

is load vector, where bi =
∫ l

0
f(x)ψi(x) dx. Recalling that each basis function is

ψi(x) = B((x−xi)/k), the mass and stiffness matrices are banded matrix with 3 sub-

diagonals and 3 super-diagonals. Note that these matrices are symmetric positive

definite:

M =
4

9
k



1647
560

283
280

239
2240

1
1120

283
280

151
140

1191
2240

3
56

1
2240

239
2240

1191
2240

151
140

1191
2240

3
56

. . .

1
1120

3
56

1191
2240

151
140

1191
2240

. . .
. . .

1
2240

3
56

1191
2240

151
140

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . 151
140

1191
2240

3
56

1
2240

. . .
. . . 1191

2240
151
140

1191
2240

3
56

1
2240

. . . 3
56

1191
2240

599
500

531
1120

3
112

1
2240

3
56

531
120

151
280

129
2240

1
2240

3
112

129
2240

1
112


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K =
4

9k3



81
2
−6 −3

8
3
4

−6 6 −27
8

0 3
8

−3
8
−27

8
6 −27

8
0

. . .

3
4

0 −27
8

6 −27
8

. . .
. . .

3
8

0 −27
8

6
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . 6 −27
8

0 3
8

. . .
. . . −27

8
6 −27

8
0 3

8

. . . 0 −27
8

21
4
−9

4
0

3
8

0 −9
4

3 −9
8

3
8

0 −9
8

3
4


7.2 Energy dissipation in fully-discrete case

If the fully-discrete scheme has the same linear complementary condition as

semi-discrete case, energy dissipation can fail to hold. This was indeed observed in

some preliminary computations. So in the fully-discrete case, we need to modify the

LCP condition in order to guarantee energy dissipation. Following the definition of

energy functional (6.4) and (7.1), we can define energy functional in the fully-discrete

case:

E(ul,vl) =
1

2

(
(vl)TMvl + (ul)TKul

)− f · ul. (7.4)
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Lemma 7.1. If we have LCP condition

0 ≤MNl ⊥ ul+1 + g ≥ 0, (7.5)

where g = (g1, g2, · · · , gm+1) and gi = g(xi), then energy is dissipated.

Proof. Using numerical formulation (6.1–6.2) and (7.1), we have

1

2h

(
m+1∑
i=1

vl+1
i ψi(x)−

m+1∑
i=1

vl
iψi(x)

)(
m+1∑
j=1

vl+1
j ψj(x) +

m+1∑
j=1

vl
iψj(x)

)

= − 1

2h

(
m+1∑
i=1

ul+1
i ψ

′′′′
i (x) +

m+1∑
i=1

ul
iψ

′′′′
i (x)

)(
m+1∑
j=1

ul+1
j ψj(x)−

m+1∑
j=1

ul
jψj(x)

)

+
1

h

m+1∑
i=1

fiψi(x)

(
m+1∑
j=1

ul+1
j ψj(x)−

m+1∑
j=1

ul
jψj(x)

)

+
1

h

m+1∑
i=1

Niψi(x)

(
m+1∑
j=1

ul+1
j ψj(x)−

m+1∑
j=1

ul
jψj(x)

)
.

Then taking integral with respect to x and using integration by parts,

1

2

(∑
i,j

vl+1
i

∫ L

0

ψiψj dx · vl+1
j −
∑
i,j

vl
i

∫ L

0

ψiψj dx · vl
j

)

= −1

2

(∑
i,j

ul+1
i

∫ L

0

ψiψj dx · ul+1
j −
∑
i,j

ul
i

∫ L

0

ψiψj dx · ul
j

)

+
∑
i,j

fi

∫ L

0

ψi dx · (ul+1
j − ul

j) +
∑
i,j

N l
i

∫ L

0

ψiψj dx · (ul+1
j − ul

j).

Using Mij =
∫ L

0
ψiψj dx, and Kij =

∫ L

0
ψ′′

i ψ
′′
j dx,

1

2

(
(vl+1)TMvl − (vl)TMvl

)
= −1

2

(
(ul+1)TKul+1 − (ul)TKul

)
+ fT (ul+1 − ul) + (Nl)TM(ul+1 − ul)

= −1

2
((ul+1)TKul+1 − (ul)TKul)

+ fT (ul+1 − ul) + (Nl)TM(ul+1 + g − ul − g).
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By the LCP condition (7.5), we have

1

2

(
(vl+1)TMvl − (vl)TMvl

) ≤ −1

2

(
(ul+1)TKul+1 − (ul)TKul

)
+ fT (ul+1 − ul).

Thus

1

2

(
(vl+1)TMvl + (ul+1)TKul+1

)− fT · ul+1

≤ 1

2

(
(vl)TMvl+1 + (ul)TKul

)− fT · ul.

Therefore we have

E(ul+1,vl+1) ≤ E(ul,vl),

as required.

Notice that we apply the LCP condition in Lemma 7.1, when we compute

numerical solutions.

7.3 Solution techniques for

the linear complementarity problems

7.3.1 Non-smooth Newton method

To solve the linear system (7.3) for one time step with the linear complemen-

tarity condition (7.5), we consider using the non-smooth Newton method (see [45] for

details). In order to find the next step solution ul+1 from the linear system (7.3) and

the LCP condition (7.5), we consider the mapping F : Rm+1 → Rm+1:

F : ul+1 �→ min(MNl,ul+1 + g). (7.6)



135

Note that min(a,b) is meant component-wise for vectors a and b, and so min(a,b) =

0 is equivalent to 0 ≤ a ⊥ b ≥ 0. Thus the LCP condition (7.5) is equivalent to

F(ul+1) = 0. Since MNl is implicitly a function of ul+1 via the linear system (7.3),

we can express MNl as:

MNl =
2

h2

[(
M +

h2

4
K

)
ul+1 −

(
M− h2

4
K

)
ul − hMvl

]
− f . (7.7)

So for each i we have two cases:

1.
∑

j MijN
l
j ≤ ul+1

i + gi so Fi(u
l+1) =
∑

j MijN
l
j,

2.
∑

j MijN
l
j ≥ ul+1

i + gi so Fi(u
l+1) = ul+1

i + gi.

We can find the next step solution ul+1, using the non-smooth Newton method:

ul+1
n+1 = ul+1

n −∇F(ul+1
n )−1F (ul+1

n ) for n ≥ 0.

This is Newton method for solving the nonlinear system F(ul+1) = 0. Even though F

is a non-smooth function [8], Newton method still converges super-linearly since F is

a semi-smooth function [40, 39]. This is because max, and min are semi-smooth func-

tions and Newton method method for semi-smooth function still converges locally at

super-linear rate provided F is “BD regular” [45]. That is, it converges superlinearly

provided ∂F(u) := { limj→∞∇F(uj) | limj→∞ uj = u } does not contain any singular

matrices.

In practice, in order to obtain computation, we use a smooth function θα(a, b),

instead of min(a, b)

θα(a, b) =
1

2
((a + b)− hα(a− b) + α) ,
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where hα(y) =
√
y2 + α2−α is an approximation to |y|. The number α > 0 is called

a smoothing parameter. Clearly, as α→ 0, we have

θα(a, b)→ min(a, b). (7.8)

Applying (7.8), we have for each i, j, 1 ≤ i, j ≤ m+ 1,

θα(
∑

j

MijN
l
j , u

l+1
i + gi)→ min(

∑
j

MijN
l
j, u

l+1
i + gi), as α→ 0.

So let Fi(u
l+1
j ) =
(∑

j MijN
l
j + (ul+1

i + gi)−
√

(
∑

j MijN l
j − ul+1

i − gi)2 + α2 + α
)
/2.

Then from the numerical formulation (7.3),

∑
j

MijN
l
j =
∑

j

(
2

h2
Mij +

1

2
Kij)u

l+1
j +
∑

j

(
1

2
Kij − 2

h2
Mij)u

l
j −

2

h

∑
j

Mijv
l
j. (7.9)

When we want to find the (n + 1)× (n + 1) Jacobian matrix of F, we will put (7.9)

into vector function Fi(u
l+1
j ). The elements of Jacobian matrix ∇F has a different

form, depending on i, j. If i = j, we have

∂Fi

∂ul+1
j

=
1

2

 2

h2
Mij +

1

2
Kij + 1− (

∑
j MijN

l
j − ul+1

i − gi)(2Mij/h
2 +Kij/2− 1)√

(
∑

j MijN l
j − ul+1

i − gi)2 + α2

 .
Otherwise, i.e, i �= j, we have

∂Fi

∂ul+1
j

=
1

2

 2

h2
Mij +

1

2
Kij −

(
∑

j MijN
l
j − ul+1

i − gi)(2Mij/h
2 +Kij/2)√

(
∑

j MijN
l
j − ul+1

i − gi)2 + α2

 .
Note that this Jacobian matrix ∇F is not symmetric, i.e., ∂Fi/∂u

l+1
j �= ∂Fj/∂u

l+1
i , in

general.

7.3.2 The smoothed guarded Newton method

In this Subsection, we present in detail how we solve F(ul+1) = 0. First we

introduce the guarded Newton method; that is, Newton method combined with back-
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tracking line search. Since the vector function F is smooth enough, F is assumed to

be continuously differentiable. Let p(x) = 1
2
‖F(x)‖22 for x ∈ Rm+1. Each iteration of

line search method is given by

xn+1 = xn + ρndn,

where ρn is called step length and dn is called the direction. Most line search requires

ρn to be descent direction. So we take the direction

dn = −{∇F(xn)}−1F(xn). (7.10)

Then we have

dT
n · ∇p(x) = − ({∇F(xn)}−1F(xn)

)T {∇F(xn)}F(xn)

= −F(xn)T
({∇F(xn)}−1

)T {∇F(xn)}F(xn).

If Jacobian matrix ∇F(xn) is symmetric,

dT
n · ∇p(xn) = −F(xn)T · F(xn) < 0.

So p can be reduced along this direction dn. However since our Jacobian matrix ∇F

is not symmetric, p may not be reduced. So we want to employ another condition

that imposes on the step length ρn. The condition is to provide reduction in p, i.e.,

p(xn + ρndn) < p(xn).

Indeed, this condition is not quite the sufficient decrease criterion used in

optimization [42]. But in practice our strategy seems to work well. This is supported
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Table 7.1: Average number of linear system solved per step

h \ k k = 1/5 k = 1/25 k = 1/50 k = 1/500

h = 1/10 20.48 28.08 29.36 35.79

h = 1/20 19.68 25.95 26.99 27.23

h = 1/50 19.20 23.36 23.96 18.28

h = 1/100 19.19 22.79 23.01 19.14

h = 1/1000 19.28 22.87 19.87 14.60

by Table 7.1. From (7.10), we do not take inverse matrix of Jacobian matrix ∇F(xn)

in the actual computation. Instead, we solve the linear system ∇F(xn)·dn = −F(xn),

using LU factorization. This is more efficient in computation. The initial step length

ρ0 is chosen to be 1 in the guarded Newton method. Note that solving F(x) = 0 is

equivalent to solving minx p(x) = 0. This gives us Algorithm 7.2 which is called the

guarded Newton method.

Algorithm 7.2. Choose the initial next step solution u0 of (7.3).

repeat until ‖F(u)‖2 < ε

d← {∇F(u)}−1F(u)

ρ← 1

repeat until ‖F(u + ρd)‖2 < ‖F(u)‖2

ρ← ρ/2

end(repeat)
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u← u + ρd

end(repeat)

A potential disadvantage of the method is that when the initial point is remote

from a solution, the method might not be converge or may converge very slowly. To

resolve those shortcomings, we will consider a better algorithm. We add a smoothing

parameter α. In practical computation, the initial parameter α is chosen to be a

large number. Now combining the guarded Newton method, we have the following

Algorithm 7.3 which is called the smoothed guarded Newton method.

Algorithm 7.3. Choose a large number α0 for α.

repeat until α < ε

try the guarded Newton method

if the guarded Newton method succeed

α← α/10

end(if)

else

α← 2α

end(else)

end(repeat)

7.4 Numerical evidence for strong convergence

In this Section, we present the numerical evidence that our numerical solutions

converge strongly (via Lemma 6.13) of obtaining and assessing this evidence. Let φi
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be the ith eigenvector with eigenvalue λi of the generalized eigenproblem (7.11). Then

we have

φT
i Mφi = 1 and Kφi = λiMφi, (7.11)

where φi = ((φi)1, (φi)2, (φi)3, · · · (φi)m+1). Note that this is the Galerkin discretiza-

tion of the eigenfunction problem

∂4φi(x)

∂x4
= λiφi(x),

∫ L

0

φi(x)
2 = 1

with the usual boundary conditions. Also note that M−1K is self-adjoint with re-

spect to the inner products (z, w)M = zTMw and (z, w)K = zTKw. So for any

given function ϑ : R → R we can define ϑ(M−1K) via ϑ(M−1K)φi = ϑ(λi)φi. In

particular, let κ∗(λ) = 1 if λ ≤ λc and κ∗(λ) = 0 otherwise. The κ∗(M−1K)z is the

projection onto span{φ� | i = 1, 2, . . . , and λi ≤ λc } that is orthogonal with respect

to both (·, ·)M and (·, ·)K. The elastic energy in the modes i with λi ≤ λc is therefore

1
2
(κ∗(M−1K)u)TK κ∗(M−1K)u and the kinetic energy is 1

2
(κ∗(M−1K)v)TMκ∗(M−1K)v.

Since κ∗(M−1K) is not easily computable without performing an complete (and ex-

pensive) eigenvalue/eigenvector decomposition of M−1K , we will instead construct

a rational approximation to it.

Choosing λc > 0 for any cut-off c ≥ 1, we have

1

λc

M−1Kφi =
λi

λc

φi.

Thus for any large integer p > 0(
I + (

1

λc
M−1K)2p

)−1

φi =
1

1 + (λi/λc)2p
φi.
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λ
c

1

κ(λ)

κ*(λ)

Figure 7.2: The construction of map κ.

Then we fix a continuous map κ of λ

κ(λ) =
1

(1 + (λ/λc)2p)
and then κ(M−1K) =

(
I + (

1

λc
M−1K)2p

)−1

. (7.12)

Now we have

κ(M−1K)φi = κ(λ)φi.

Lemma 7.4. At each time step l ≥ 1, the energy in the fully-discrete case with no

body force is

1

2

(
(vl)TMvl + (ul)TKul

)
=

1

2

m+1∑
i=1

(
|v̂l;h

i |2 + λi|ûl;h
i |2
)
.

Proof. Using (7.11), we have

1

2

(
(vl)TMvl + (ul)TKul

)
=

1

2

(
m+1∑
i=1

v̂l;h
i φi ·M ·

m+1∑
j=1

v̂l;h
j φj +

m+1∑
i=1

ûl;h
i φi · K ·

m+1∑
j=1

ûl;h
j φj

)
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=
1

2

(
m+1∑
i=1

|v̂l;h
i |2 +

m+1∑
i=1

ûl;h
i φi ·M ·

m+1∑
j=1

λj û
l;h
j

φj

)

=
1

2

m+1∑
i=1

(
|v̂l;h

i |2 + λi|ûl;h
i |2
)
.

Using Lemma 7.4, we can demonstrate numerical evidence using Lemma 6.13

that the convergence is strong. The ratio

(κ∗(M−1K)ul)TK κ∗(M−1K)ul + (κ∗(M−1K)vl)TMκ∗(M−1K)vl

(ul)TKul + (vl)TMvl

is the ratio of the elastic and kinetic energy in the modes with λi ≤ λc to the to-

tal elastic and kinetic energy for the numerical solution at time-step tl. Following

Lemma 6.13, this should go to one as λc ↑ ∞, uniformly in the numerical parameters

h > 0, l and k > 0. Of course, for fixed k > 0, this will happen as λc ↑ ∞ anyway. So

we need to first fix λc and then compute these ratios for k and h becoming small; from

the apparent limits of the energy ratios for several fixed λc, we observe the overall

trend as λc ↑ ∞. This will be done in the following Section.

7.5 Computing κ(M−1K)z

In this Section, we discuss how to efficiently compute κ(M−1K)z. Note that

we do not compute κ∗(M−1K) directly using an eigendecomposition of M−1K, as this

is computationally expensive. So we choose a rational function κ(λ) to approximate

the step function κ∗(λ). We can then efficiently compute κ(M−1K)z for any vector
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z. For simplicity we choose

κ(λ) =
1

1 + (λ/λc)2p
for p moderately large.

In fact, we implement this function for p = 5. The key to efficient computation

of κ(M−1K)z is the factorization of κ(λ). The zeros of the denominator (7.12) are

solutions of (λj/λc)
2p = −1. The solutions of this equation are

λj/λc = ζj := exp((2j + 1)πi/2p), j = 0, 1, 2, · · · , 2p− 1, where i =
√−1.

Thus we have

κ(λ) = (λ/λc − ζ0)−1(λ/λc − ζ1)−1 · · · (λ/λc − ζ2p−1)
−1

= λ2p
c (λ− λcζ0)

−1(λ− λcζ1)
−1 · · · (λ− λcζ2p−1)

−1.

Therefore

κ(M−1K)

= λ2p
c (M−1K− λcζ0I)

−1(M−1K− λcζ1I)
−1 · · · (M−1K− λcζ2p−1I)

−1

= λ2p
c

(
M−1(K− λcζ0M)

)−1 (
M−1(K− λcζ1M)

)−1 · · · (M−1(K− λcζ2p−1M)
)−1

= λ2p
c (K− λcζ0M)−1M(K− λcζ1M)−1 · · ·M(K− λcζ2p−1M)−1M.

This gives us Algorithm 7.5 for computing κ(M−1K)z.

Algorithm 7.5. Computing κ(M−1K)z

for j = 0, 1, 2, · · · , 2p− 1

w←Mz

solve (K− λcζjM)z = w for z
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end(for)

z← λ2p
c z

In Algorithm 7.5, (K− λcζjM)z = w has matrices over the complex numbers

C. In order to compute those matrices, we consider the following linear system:

(A + iB)(x + iy) = (u + iv), (7.13)

where A, B are real matrices and x, y, u, v are real vectors. The system (7.13) is

equivalent to the following linear system: A −B

B A


 x

y

 =

 Ax−By

Bx + Ay

 =

 u

v

 , (7.14)

since (A+ iB)(x+ iy) = (Ax−By)+ i(Ay+Bx). We can change the linear system

(7.14) so that we have equivalent real banded matrix with double the bandwidth.

Thus the linear system (K−λcζjM)z = w can be solved as a banded system with an

upper and lower bandwidth of six, which can be done in O(m+1) time. The matrix-

vector products Mz can also be computed in O(m + 1) time. Thus Algorithm 7.5

can be executed in just O(pm+ p) time.

The ratios contained in Table 7.2 are obtained as follows: let E(ul,vl) be

the total energy in actual computation and let Ec(u
l,vl) be the energy in the low

frequency modes. Then the ratio that we use is

τ =

∑�T/h�
l=0 Ec(u

l,vl)∑�T/h�
l=0 E(ul,vl)

.

Looking across the rows of Table 7.2 we note that there does seem to be some slow

convergence of the ration as h goes to zero, and this ratio increases as m + 1 (the
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Table 7.2: The ratio of energy Ec to total energy E

The number of nodes c h = 1/10 h = 1/50 h = 1/100

10 0.650153 0.407755 0.380260

500 30 0.910487 0.812236 0.777214

100 0.997099 0.986641 0.972011

300 0.999846 0.999166 0.997870

10 0.653481 0.412869 0.378693

1000 30 0.917148 0.855211 0.755536

100 0.997575 0.981944 0.968371

300 0.999846 0.998196 0.997980

number of grid nodes) increases; this limit seems to be very close to one for large

λc; picking c = 100, for the lowest 100 out of 500 or 1000 possible modes, we can

account for about 97% of the total kinetic and elastic energy. This implies that we can

account for almost all the energy in the bottom 100 frequency modes, and account

for about 75% of the total energy in the bottom 30 modes. So Table 7.2 presents

substantial numerical evidence of the applicability of Lemma 6.13 and therefore of

strong convergence of the numerical solutions.

7.6 Numerical experiments and results

The package that we used for handling the matrices and vectors is Meschach

[54], which uses the C programming language. We took particular advantage of the
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banded matrix routines in that package. Our numerical experiments were performed

on a Hewlett–Packard Visualize B2000.

In this Section, we show our numerical simulation results. In our computation,

we take the length of rod to be L = 20 and the initial displacement u0(x) = x2/4

which is consistent with the essential boundary condition and the initial velocity

v0(x) = −2 · x and gap function g(x) = (x − 12)2, and the end time T = 10. We

assume that the rod is moving downward, negative direction in simulation. The gap

function g indicates the distance between the rigid foundation and the initial position

where the rod is located vertically. Note that the potential energy is not included in

our computation, since the body force f(x) is zero.

From the energy functional in (7.4) in the fully-discrete case, we obtain four

graphs for the total energy in Figure 7.3. According to those graphs, our numerical

implementation supports the energy dissipation that we anticipated theoretically.

The first graph shows that the energy function using 100 nodes is erratic. Indeed,

we anticipated that the smaller time step size h we used, the higher the energy.

This appears to be true for all cases except for k = 0.2 and for h = 0.01 and for

h = 0.001. We would conjecture that the reason is that the approximations are not

sufficiently refined for this value of k. On the other hand, other graphs show that

energy conservation is expected as step size h becomes smaller and smaller.

In Figure 7.4, the motion of the rod is presented. Each curve is the profile of

the rod at given time. In this simulation, we used k = 1/50 in space and a time step

of h = 1/100. According to our numerical experiments, that case brings the most
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Table 7.3: Computation time(u:user time, s:system time)

h \ k 2× 10−1 4× 10−2 2× 10−2 2× 10−3

1× 10−1 0.783u 6.460u 19.892u 1083.158u

0.007s 0.041s 0.035s 2.931s

5× 10−2 1.503u 11.082u 37.642u 1295.474u

0.003s 0.044s 0.113s 3.453s

2× 10−2 3.632u 25.968u 81.783u 1633.937u

0.011s 0.033s 0.158s 3.597s

1× 10−2 7.283u 47.621u 151.851u 3852.925u

0.039s 0.179s 0.255s 7.367s

1× 10−3 73.242u 477.255u 1220.408u 29675.837u

0.390s 1.234s 2.054s 65.416s
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comfortable and solid result. An interesting point is that the end of the rod touches

rigid foundation at some time step, and oscillates very rapidly. See the pictures at

the right of the top and the left of the bottom of Figure 7.4.

Figures 7.5 and 7.6 present the velocity of the rod. So we would guess the

phenomenon that the rate of deformation of the rod is very fast in some time steps.

Figure 7.5 shows the velocity after the rod bounces away form the rigid foundation.

Finally we have 3-dimensional picture showing the contact force in Figure 7.7.

According to those picture, when the end of rod touches rigid foundation, it seems

that its contact force is the largest among other contact positions. Even though the

number of nodes in the two pictures are different and they show different magnitudes

for the contact force, the graphs have a similar shape.

Table 7.1 and Table 7.3 are presented to show the speed of the computations.

Note that in the case k = 1/500 we use different convergence ‖F(u)‖2 < ε. This

was necessary because of difficulties with roundoff and ill-conditioning in the stiffness

matrix K particularly. So we instead used ‖∇F(u)−1F(u)‖2 < ε to avoid these

numerical difficulties. So in the Table 7.3, we can see that the ratio of times differs

from the other cases.
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CHAPTER 8
CONCLUSIONS

8.1 Elastic bodies in dynamic contact

It has been shown that continuous piecewise linear interpolant uh is uni-

formly bounded in space W 1,∞(0, T ;L2(Ω)) and L∞(0, T ;H1(Ω)), and vh is uniformly

bounded in L∞(0, T ;L2(Ω)). Indeed we could need a nicer space where uh, vh are

uniformly bounded. Consequently, our final goal for this part is to show that

‖N l‖H−1/2(Ω) = O(1).

To extend this program, we would need to develop a bound of the form

T/h∑
l=0

‖N l‖H−1/2(∂Ω) ≤ C.

Then we could apply Alaoglu’s theorem to obtain a weak* convergent subsequence of

the time-discretized normal contact forces Nh(x, t) =
∑∞

l=0N
l(x) δ(t− tl). The limit

would belong to the space of H−1/2(∂Ω)-valued measures.

However, there are a number of obstacles to this program. First, there are

reasons to believe that the estimate

‖N l‖H−1/2(∂Ω) = O(h−1/2)

is sharp if we only assume that the initial energy is bounded. For example, in one

spatial dimension (where N l is just a scalar), consider the following solution of the
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wave equation uxx = utt:

u(x, t) =


(x+ t)−1/2+ε, x+ t > 0,

0, x+ t ≤ 0,

with ε > 0. This wave has finite energy on any finite interval. If we consider this

solution on Ω = (0,∞) with Signorini conditions at zero, then N(t) ∼ const t−1/2+ε

for small t > 0.

On the other hand, if we restrict the initial conditions so that u0 ∈ H3/2(Ω)

and v0 ∈ H1/2(Ω), then it can be shown that ul and vl also belong to these spaces

and

‖N l‖H−1/2(∂Ω) = O

(
ln

1

h

)
.

Further work would need to be done to obtain a stronger convergence theory sufficient

to establish strong convergence in H1(Ω) for the defomation u and in L2(Ω) for

velocity v, or to get conservation of energy in the limit.

Numerical methods can also be developed based on the time-stepping approach

described here and the Finite Element Method. However, we still need the finer

regularity properties.

8.2 The Euler–Bernoulli beam in contact

The existence of sequence uε has been shown, based on penalty method. Also

we proved boundness of uε in Cp(0, T ;H1/2+σ). Since Cp(0, T ;H1/2+σ) is compactly

imbedded in C([0, l]× [0, T ]), there is a subsequence of uε that converges to u strongly

in C([0, l]× [0, T ]). This plays important role to show the existence of solution.
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Lemma 5.18 implies that N and u + g satisfy the linear complementarity

conditions a.e. by the weak* convergence of Nε and the uniform convergence of uε.

Thus our limits N and u satisfy the desired system of conditions (5.3–5.8), and

solutions exist.

Note that our theory does not say anything about uniqueness or about con-

servation of energy. Indeed it can be easily shown that uniqueness does not hold

for the system of conditions (5.3–5.8). Consider the problem with initial conditions

u0(x) = φ1(x) and v0(x) = 0 for all x and the gap function is g(x) = 0 for all

x. Then since φ1(x) ≥ 0 for all x ∈ [0, l], the solution is u(x, t) = cos(ω1t)φ1(x)

for a suitable constant ω1 > 0 until the impact time ω1t = π/2. After impact any

upward velocity proportional to φ1 is possible according to (5.3–5.8): put u(x, t) =

−γ cos(ω1t)φ1(x) for π/2 ≤ ω1t ≤ π with γ > 0. Then the normal contact force is

(1 + γ)ω1φ1(x) δ(t− π/(2ω1)) in the neighborhood of t = π/(2ω1).

In this respect the system of equations and conditions (5.3–5.8) describes a

system much like the bouncing of a simple particle where the coefficient of restitution

is not specified. But such a solution as described in the previous paragraph with

γ > 1 cannot be a limit of solutions of the penalty problem as ε ↓ 0 because of

conservation of energy in the penalty equations. However, more subtle difficulties

may arise. Because the convergence theory developed here deals with a weak notion

of convergence, we cannot get convergence inH2(0, l) spatially. Thus it is theoretically

possible for the solution of the penalty equations uε to generate higher and higher

frequency components as ε ↓ 0 so that the limiting solution (converging only weakly
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in H2(0, l)) may actually be dissipative (that is, losing energy). In physical terms this

would correspond to elastic energy being converted into heat. Note that heat can be

considered as elastic vibrations with a length scale comparable to the inter-atomic or

inter-molecular distances in the material.

Another difficulty that could potentially arise is that as the penalty equations

are reversible, the “dissipativity” could occur going backwards in time. This would

mean that the initial conditions for the penalty problem would actually be dependent

on the penalty parameter: u0, ε(x) where u0, ε converges weakly but not strongly in

H2(0, l) to u0. In physical terms, this would correspond to heat being converted into

(useful) elastic energy. As such it would violate the Second Law of Thermodynamics.

As we should realize, the Second Law of Thermodynamics is a consequence of analysis

of statistical systems and is a result that holds with extremely high probability, rather

than a certain result for deterministic systems.

This line of thinking leads in several different directions: One is to consider the

idea of explicitly incorporating the idea of “coefficient of restitution” into the system

of conditions (5.3–5.8) for the beam in contact. This seems a rather problematic task

since to do this we would need to separate the post-impact normal velocity at a point

due to the impact force from the post-impact normal velocity due to elastic waves.

Since we can only guarantee that the velocity is spatially in L2(0, l), this is not likely

to be easy.

Another line of thinking is to consider replacing the Euler–Bernoulli model of a

beam with a more realistic model, such as the Timoshenko beam model [57, 58]. This
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model consists of two coupled 2nd order PDEs, and combining this with a suitable

version of the Signorini contact conditions results in a system that bears a number of

strong resemblance with the case of a one-dimensional vibrating string (which satisfies

the wave equation and the Signorini contact conditions) as analyzed by Schatzman

[51].

A numerical method was obtained by first discretizing with respect to time,

and then with respect to space. Convergence theory has been developed with respect

to the time-discretization. The full discretization has been implemented and numer-

ical results obtained. These numerical results seem to suggest that conservation of

energy may hold for generic initial conditions.

We consider semi-discrete and fully discrete approximations to the motion of

an Euler–Bernoulli beam with frictionless contact. For the semi-discrete approxima-

tion, we are able to show that there is a subsequence of the discrete time approxima-

tions that converges (albeit in a sufficiently weak sense) to a (weak) solution of the

PDE and the Signorini contact conditions. From there we go on to develop a fully dis-

crete approximation by using the Finite Element Method using B-splines to construct

the basis functions. This scheme was implemented, and the Linear Complementarity

Problems (LCPs) that arise at each time step were solved using a smoothed guarded

Newton method applied to a reformulation of the LCP as a nonsmooth equation.

These methods turn out to be quite efficient, especially since the one-dimensional

structure of the problem results in banded matrices when handled properly. Further-

more, the number of linear solves carried out per time-step seems not to grow as the
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discretization parameters (h in time and k in space) go to zero.

Of particular interest in this thesis is the question of strong convergence of the

solutions, sufficient to determine if the limiting solution conserves energy or not. A

numerical scheme is devised in this thesis to test this question in a computationally

efficient manner. The results from the computation give evidence that the numerical

solutions for our problem do indeed converge strongly, and that even though the time-

discretization is dissipative, the limit solution also conserves energy. No analytical

demonstration of energy conservation is given; it can be demonstrated to be false in

general, but may be true generically.

8.3 Open questions and future works

Our numerical results give strong evidence of the conservation of energy. How-

ever, the question of whether there can be conservation of energy for Signorini contact

conditions is an open one. Our future work is to investigate this open problem and

complete the dynamic problem with elastic body in the first part of this thesis.

More refined tools are needed for this analysis. Amongst the tools that we

would likely need to carry out this analysis, pseudo-differential operators and other

Fourier transform based techniques for the analysis of PDEs would be included.

Regarding the work on Euler–Bernoulli beams, it would be interesting to in-

vestigate the Timoshenko beam. This work would probably more closely resemble the

work of Schatzman on the one spatial dimension wave equation with contact along

its length. These problems are a little different from elastic body problems because
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contact can occur in the interior of the domain for the beam problems, while for

elastic bodies, contact can occur only on the boundary. This may be very significant

in the study of conservation and dissipation of energy in impacts.

Even though friction has not been considered in this thesis, frictional contact

problems with dynamic effects will be our future work.
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Acad. Sci. Paris Sér. I Math., 320(11):1413–1417, 1995.

[11] Marius Cocu, Elaine Pratt, and Michel Raous. Formulation and approximation
of quasistatic frictional contact. Internat. J. Eng. Science, 34(7):783–798, 1996.

[12] Marius Cocu and Jean-Marc Ricaud. Existence results for a class of implicit
evolution inequalities and applications to dynamic unilateral contact problems
with friction. C. R. Acad. Sci. Paris, Sér. I, 329:839–844, 1999.



162

[13] Marius Cocu and Jean-Marc Ricaud. Analysis of a class of implicit evolution
inequalities associated to viscoelastic dynamic contact problems with friction.
Internat. J. Engrg. Sci., 38(14):1535–1552, 2000.

[14] Marius Cocu and Rémi Rocca. Existence results for unilateral quasistatic con-
tact problems with friction and adhesion. M2AN Math. Model. Numer. Anal.,
34(5):981–1001, 2000.

[15] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations.
Tata–McGraw Hill, New Delhi, 1972. Orignally published by McGraw Hill, 1955.

[16] Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone. The Linear Com-
plementarity Problem. Computer Science and Scientific Computing. Academic
Press, 1992.

[17] G. Duvaut and J.-L. Lions. Inequalities in Mechanics and Physics, volume 219
of Grundlehren der mathematischen Wissenschaften. Springer Verlag, Berlin,
Heidelberg, New York, 1976. Orig. in French: “Les inéquations en mécanique et
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[50] Michelle Schatzman. Le système différentiel (d2u/dt2) + ∂ϕ(u) � f avec condi-
tions initiales. C. R. Acad. Sci. Paris Sér. A-B, 284(11):A603–A606, 1977.

[51] Michelle Schatzman. A hyperbolic problem of second order with unilateral con-
straints: the vibrating string with a concave obstacle. J. Math. Anal. Appl.,
73(1):138–191, 1980.



165

[52] A. Signorini. Sopra alcune questioni di elastostatica. Atti della Soc. Ital. per il
Progresso Scienze, 1933.

[53] D. E. Stewart. Convergence of a time-stepping scheme for rigid-body dynamics
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