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ABSTRACT

This thesis consists of two parts. For the first part, we formulate dynamic fric-
tionless contact problem with an elastic body, based on Signorini’s contact condition,
and consider how to solve this formulation. First, we set up a time-discretization of
this problem, which, for each time-step, is a variational inequality. We also derive the
minimization problem equivalent to the variational inequality for each-step. After the
energy functional for an elastic body is defined, it is shown that the energy functional
is increased or decreased, depending on our numerical scheme. Especially, employing
the implicit Euler method, the convergence for the time-discretization is investigated.
For that numerical method, we obtain an estimate of the magnitude of the normal
contact force in the Sobolev space H~1/2(91), depending on the time step size h. In-
deed, we need more investigation to determine the boundedness of the contact force
and finer regularity properties and conservation of energy, and then implement our
numerical scheme. These will be future works.

For the second part, we set up the dynamic frictionless Euler-Bernoulli equa-
tion with Signorini contact conditions along the length of a thin beam and consider
how to solve this equation. The existence of solutions is shown, based on a penalty
method. While existence of solutions is shown, there are no results on whether energy
is conserved in the limit. We formulate a time-discretization, using the implicit Euler
method for contact conditions and the midpoint rule for the elastic part of the equa-

tions. The energy functional is defined, and convergence for the time-discretization



is investigated. Our time-discretization leads to energy dissipation. Using this time
discretization and the finite element method with B-spline basis functions, we com-
pute numerical solutions. In order to solve the linear complementarity problem that
arises in the numerical method, we use a smoothed guarded Newton method. The
numerical results are guaranteed to be dissipative. We also investigate numerically
the question of whether the numerical solutions converge strongly to their limit, and
if energy is conserved for the limit. Our numerical results give some evidence that

this is so.
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ABSTRACT

This thesis consists of two parts. For the first part, we formulate dynamic fric-
tionless contact problem with an elastic body, based on Signorini’s contact condition,
and consider how to solve this formulation. First, we set up a time-discretization of
this problem, which, for each time-step, is a variational inequality. We also derive the
minimization problem equivalent to the variational inequality for each-step. After the
energy functional for an elastic body is defined, it is shown that the energy functional
is increased or decreased, depending on our numerical scheme. Especially, employing
the implicit Euler method, the convergence for the time-discretization is investigated.
For that numerical method, we obtain an estimate of the magnitude of the normal
contact force in the Sobolev space H~1/2(91), depending on the time step size h. In-
deed, we need more investigation to determine the boundedness of the contact force
and finer regularity properties and conservation of energy, and then implement our
numerical scheme. These will be future works.

For the second part, we set up the dynamic frictionless Euler—Bernoulli equa-
tion with Signorini contact conditions along the length of a thin beam and consider
how to solve this equation. The existence of solutions is shown, based on a penalty
method. While existence of solutions is shown, there are no results on whether energy
is conserved in the limit. We formulate a time-discretization, using the implicit Euler
method for contact conditions and the midpoint rule for the elastic part of the equa-

tions. The energy functional is defined, and convergence for the time-discretization
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is investigated. Our time-discretization leads to energy dissipation. Using this time
discretization and the finite element method with B-spline basis functions, we com-
pute numerical solutions. In order to solve the linear complementarity problem that
arises in the numerical method, we use a smoothed guarded Newton method. The
numerical results are guaranteed to be dissipative. We also investigate numerically
the question of whether the numerical solutions converge strongly to their limit, and
if energy is conserved for the limit. Our numerical results give some evidence that

this is so.
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CHAPTER 1
INTRODUCTION

The contact problem has been an important issue in solid mechanics. After the
foundation of continuum mechanics, whose concepts provide a framework for studying
the behavior of solids was established early in the nineteenth century, contact prob-
lems in solid mechanics began appearing in the literature. See [44]. In fact, friction
problem had been studied before the continuum concept was developed. However,
the use of Coulomb’s law applied point-wise in contact problems with the theory of
elasticity has caused mathematical difficulties. See [46, 12, 18]. Furthermore, when
the frictional contact problem is considered together with dynamic effects, it leads to
extremely complicated physical mechanism and mathematical models.

According to these issues involved with friction, in this thesis we first consider
simpler problem, a dynamic contact problem without friction. However, the current
existence theory is not very satisfactory as it either deals with simplified problems with
special geometry [36, 51, 50] or gives no indication as to whether energy is conserved,
dissipated, or even produced in impact [33]. There has been considerable focus on
problems with Coulomb friction and viscoelastic bodies [9, 13, 12, 14, 30, 31, 32, 38|,
although these too have often involved unrealistic assumptions in order to obtain
existence of solutions (e.g., penalty approximation for contact, non-local friction laws,
“viscous” contact laws). There has also been considerable work investigating static
and quasistatic approximations of contact problems [10, 11, 14, 27, 29, 28, 32].

The study of contact problems in elasticity had started in 1881 by Hertz [26].



At that time he analyzed a static frictionless contact problem of two elastic bodies.
After around half a century, Signorini [52] in 1933 formulated unilaterally the equilib-
rium of an elastic body in contact with frictionless rigid foundation (obstacle), which
has been called Sognorini’s problem.

Signorini’s problem was first solved rigorously by Fichera. He considered a
question of existence and uniqueness of a variational inequality characterizing the
minimization of the total potential energy on convex subsets of Banach spaces. Since
his paper [22] was published, many important contact problems in mechanic and
physics have been formulated in terms of variational inequality. For more on varia-
tional inequalities and their applications, see, for example, [17, 5]. In fact, variational
inequalities have been recognized to play an important role to develop powerful nu-
merical scheme. It turns out that a number of advanced studies of contact problem
in solid mechanic resulted from development of theory of variational inequalities.

A number of papers have discussed the problem of various kinds of dynamic
elastic bodies making contact with rigid foundations. For the case of the wave equa-
tion with frictionless contact at a boundary, there are the results of Kim [33]. The
group of Cocu, Raous and Pratt and their students have carried out the analysis
of many dynamic and quasi-static problems involving viscoelastic bodies in contact
with a frictional rigid foundation (using a non-local frictional law) [10, 13, 14]. Others
working on quasi-static and dynamic contact problems include Han and Sofonea et
al. [25, 7], Jarusek and Eck [30, 31], for contact on a boundary although the boundary

conditions are not always Signorini boundary conditions. Dynamic contact problems



with compliant foundations, where the normal contact force is modeled as being due
to a linear or nonlinear spring at each contact points, have been used since the work
of Oden and Martins [37, 38] and others. However, these models do not address the
question of how to handle truly rigid foundations, or the behavior of the solutions as
the stiffness of the foundation goes to infinity. The question of energy conservation,
or even of a complete accounting for energy, is not addressed in the above work.

In the first part of this thesis, the dynamic contact formulations that we con-
sider are based on Signorini’s formulation. The contact in our mathematical model
is unilaterally occurring between an elastic body and a frictionless rigid foundation.
Also, an elastic body does not penetrate a rigid foundation. Furthermore, if the
body and the foundation do not touch at a point, then there is no contact force at
that point. The actual contact surface on which the body touches the foundation is
unknown in advance.

In the second part of this thesis, we consider a one-dimensional system where
contact (modeled using Signorini conditions) can occur anywhere within the spatial
extent of the system, and not only at its boundaries. The closest system to this that
has been studied in the literature was analyzed by Schatzman [51] which considered
a string which moved according to the one-dimensional wave equation and could
make contact with a rigid concave obstacle. In that case, energy was shown to
be conserved; the analysis was based on the use of characteristics. Recent work
by Shillor et al. has addressed questions relating to contact problems with Euler—

Bernoulli beams. Andrews, Shillor and Wright [2] treats frictional contact with both



compliant and Signorini contact at an end point of the beam. In that paper they show
that for a Euler-Bernoulli beam with a model of Kelvin—Voigt viscoelasticity and
compliant contact, then existence and uniqueness hold (even if there is viscosity). In
the Signorini contact case, existence is shown, but uniqueness is not. In our thesis, we
consider contact that is distributed along the beam. Garcia, Han, Shillor and Sofonea
[23] consider a quasi-static frictional contact problem with an Euler—Bernoulli beam,
but include the effect of wear due to the contact.

Finally, we mention that the emphasis on this thesis is on dynamic aspects of

contact without friction.

1.1 Notation and some basic concepts

Mathematically, physical quantities such as displacement, velocity, strain, and
stress which are used in continuum mechanics are represented by tensors. Then scalar
can be considered as zero-order tensor and vector can be considered as first-order
tensor.

Throughout this thesis, we employ some notations and conventions which are
standard in modern mathematics. The Signorini’s problem and dynamic contact
problems that we deal with are presented in symbolic (vector) notation. However,
sometimes we will express our system in terms of index (indical) notation, instead of
vector notation, since the index notation may give us more clear, concise and useful
expression. Vectors and tensors are generally designated by bold face characters such

as a, b, etc. In the index notation vector a is represented by single subscript, i.e.,



[ai]-
In three-dimensional Euclidean space such as ordinary physical space, vector
[a;] which is denoted by the index notation can be displayed by the form
a1
la;] = (a1, a9,a3) or [a;] = as |- (1.1)
as
Then the first form in (1.1) is the transpose of a denoted by a’. Similarly, a second-
order tensor [A;;| which is denoted by the index notation represents nine components

and is presented as

A A Agg
[Ai] = Ay Agp A
Az Az Ass

The good example of a second-order tensor in continuum mechanics is strain and
stress tensor.

Under the rules of index notation, the summation convention is stated as
follows: when we have a repeated index, called dummy index, in given term, we sum
over all values of the index. Also the unrepeated index, called free index, must appear
in every term in an equation correctly.

We introduce an (inner) product of tensors and the differential vector operator
V with tensors. When we define product of two vectors, we use the single dot and

write

a~b:[ai]-[bi]:Zai~bi.



Note that throughout this thesis, we use the Einstein summation convention, which

omits the summation signs (we sum over repeated indices):
a-b= a; - bz

In this thesis, there is no distinction between a-b and a’ - b. Similarly, when we
define product of two second-order tensors, we use the double dot and write
d
ij=1

For a vector a and tensor A, divergence of those can be written as

‘ A
v'a:a@i:%andV'A:Aij?j:a Y

Z; c%vj ’
where V = (0/0x1,0/0xq,- -+ ,0/0x4). Note that for scalar function ¢, we define a

gradient of ¢ as

Gom (2,20 20

8—x1’ 81'2’ o 8xd
In order to simplify the algebraic expression in the analysis, we present some

special notations:

1. For defined functions f, g, we write f = O(g) ast — to, if there exists a constant

C such that |f(t)] < C'|g(¢)].

2. We write f(t) ~ g(t) if



In general, we will consider certain spaces of functions defined on a bounded
open domain € in R%(1 < d < 3 in application). We will mention function space in
Section 2.2. In application, we consider €2 as an open domain representing an interior
of a deformable elastic material in R? and a connected domain with points on only
one side of a boundary 0f2.

Suppose that a Cartesian coordinate system is established in R and any vector
x in R? is specified by x = (21,79, -+ ,74). We introduce a definition of Lipschitz

domain from which most of basic results will be obtained.

1. Let a boundary 02 cover with a collection {U; Us,--- Uy} of open subsets of

R¢ and 9Q c |, U, such that

00, =U, NN 40, r=1,2,---, M.

2. After an affine change of local coordinates such as translation and rotation,
assume that there are an o > 0 and (8 > 0 such that, locally, the smoothness of
the boundary 02 can be described in terms of hypersurfaces defined by functions

fr on sets S,., where

ST = {YT: (yrlayr27"' 7yrd—1) | ‘yTZ| <, Z:1727 7d_]—}7
0, = U,NoN= {(Yr7 fr(YT)) | yr € ST}7
Ur = U.nQ=A{y |yr €8S, fr(yr) <yra < fr(y:) + 5},

UrJr = Ur_ﬁz{yr | yr € Sey fr(yr) = B <yra < fr(yr)}-



3. Function f, is Lipschitz continuous, which satisfies the estimate

’fT(XT) - fr(yr>’ < CHXr — yrH for X, Yy € Sr,

where || - || denotes the Euclidean norm on R

Then if the above conditions 1, 2, 3 are satisfied, €2 is said to be a Lipschitzian
domain. Under Lipschitzian domain, outward normal vector n(x) on 02 exists almost
everywhere on df). Note that each occurrence, C' denotes a constant (a quantity that
depends only on the data of the problem), which may differ at each occurrence of this
thesis.

We denote by u a displacement vector field on an open domain €2 which
describes the deformation of the elastic body ©Q (u : @ — R?) and denote by f
(f : © — R?) a body force which acts on Q. Also we denote the magnitude of contact
force by N and so Nn is a contact force, which acts only on the boundary 0f2. The
gap function g is used to describe a measure of the “gap” between the elastic body
and rigid foundation. Since we assume that deformation is assumed small, we use the

linearized strain tensor given by

1 Ou; Ou, 1
elu] = eylu] = (5= + 52) = 5w + ), (1.2)
Jj i

where wu; ; = Ou;/0x;. Note that ¢,; = 0¢/0x;.
A elastic solid materials are characterized by constitutive equation which re-

lates the strain tensor and stress tensor on the specific form

oijlu] = Eijuenu] = Eijrug, for 1 <i,j,k 1 <d,



where the above expression is known as the generalized Hooke’s law. Now we assume

that the fourth-order Hooke’s tensor E;;i; satisfies the following conditions:
1. Eij € L*(Q), i.e., there is a constant number A such that

. <
(max | Byl < M,

2. Ejji has the symmetry properties:
Eijkl = Ejikl = Eijlk: = Eklij almost everywhere in Q,

3. There is a constant number m > 0 such that almost everywhere in €2,

Eijricijen = megics;.

Note that g5 = €. Since Fjjp and €5 have these symmetry properties, the stress

tensor o;; Is symmetric.

1.2 The equations of elasticity

The equations of elasticity are given by

Pu
P o

=V.oul+f inQ,
where p is the density of the elastic body; u is a displacement; o is a stress tensor; f
is the body force applied to the elastic body. The boundary conditions that are used

depend on the physical situation. If the boundary is fixed or clamped on I'p C 012,

then
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for some given function k on I'p. If the boundary is not fixed in position, but has a

boundary traction t(x) applied to it over I'p C 052, then
n - ofu|(x) = t(x), x € I'p.

Frictionless Signorini contact conditions for a piece of the boundary I'c C 92 can be

written as
0<ux) n+gx) L N >0 for almost all x € I'¢,
where
n(x) - ofu|(x) = N(x) n(x) for almost all x € I'c.

Note that the condition “0 < a(x) L b(x) > 0 for almost all x € [ means that
a(x), b(x) > 0 for almost all x € I'c and that ch a(x)b(x)dx = 0. Note that

Fcul'puUTl'p = 00.

1.3 The Euler—Bernoulli beam in contact

The Euler-Bernoulli beam equation is an approximate equation for long, slen-
der rods and beams under small deformation in a vertical plane. What is immediately
evident when you try to bend rod or beam is that they are generally much stronger
and stiffer along the rod or beam, while they bend much more easily in the transverse
direction. The Euler—Bernoulli beam equation ignores any deformation in the axial
direction (along the beam), and considers only transverse deformation, since this is
usually much larger. If we consider the forces acting on a cross-section of the beam,

then there are vertical transverse and axial forces. The axial forces arise to counter
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bending of the beam; since the beam is assumed slender, we can take a simple linear
approximation for the axial forces on the cross-section. Since the deformation in axial
direction is assumed negligible, the integral of the axial forces over the cross section
must be zero. Thus the axial forces have the functional form “function(z) - (y — 7)”
where ¥ is the transverse component of the centroid of the cross-section. Since the
axial deformation is negligible, the deformation generating the axial forces is bend-
ing. For small deformations (of any kind), the axial forces have the “function(z)”
above would be proportional to the radius of curvature, or 9*u/dx? plus higher order
terms, where u(x,t) is the vertical displacement of the beam’s centroid. More refined

calculation give the elastic energy in such a beam to be well approximated by

where F is the Young’s modulus of the material and

1:/(y—§)2dwdy
A

is the second moment of area for the cross-section A.
Applying standard variational techniques, we can obtain the equations for the

vertical displacement u of an Euler-Bernoulli beam with constant cross section:

*u Nu
A2 _ gl L
pA— 6x4+f(x’t)’ 0<z<L,

where A is the area of the cross section; f is the body force applied to the beam.

Note that this is a fourth order rather than a second order equation, as is usual in

elasticity. Initial and boundary conditions need to be included. There must be an
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transverse
direction
(y)

direction axid
of bending direction
(%)

Figure 1.1: Cross-section of a slender beam.

initial configuration, u(z,0) = ug(z), and an initial velocity du/dt(x,0) = vo(x). The
boundary conditions that we use are clamped boundary conditions at z = 0: u(0,t) =
0, Ou/dz(0,t) = 0, and free boundary conditions at x = L: 0*u/0x*(L,t) = 0 and
?u/0x3(L,t) = 0. Note that the free boundary conditions are obtained from the
variational conditions.

If we consider contact that can occur along the beam (rather than just at the

end-points), we have the following version of Signorini’s contact conditions:

0 <wu(z,t)+g(x) L N(x,t)>0,

where N(z,t) is the (vertical) contact force, and the equations of motion need to be

modified to include it:

2 4
pA% :_Ef%+f(%t)+N(:r,t), 0<x<L.

This problem is easier to study both theoretically and numerically as it is a

spatially one-dimensional problem. If we considered only axial deformations and used
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a linear elastic model, we would arrive at the wave equation:

0%u 0*u

The corresponding contact problem:

0%u 0%u

0<u(z,t)+g(z) L N(z,t)>0
has been studied by Schatzman [51], and complete results were obtained (including
conservation of energy). However, the methods used in [51] relied on studying char-
acteristics for the wave equation. The Euler—Bernoulli equation on the other hand
does not have characteristics as it is second order in time and fourth order in space;
waves can travel arbitrarily rapidly. Also, it should be noted that Schatzman [51]
did not consider time-discretization or efficient numerical methods for the solution
of the wave equation with unilateral contact. Andrews, Shillor and Wright [2] only
occurred at one end, not along the length of the beam. The best known of these
are Timoshenko’s beam equations [57, 58]. The Timoshenko equations are a system
of two second order equations which have characteristics, just as the wave equation
has characteristics. The main difference is that there are two characteristic speeds,
which would complicate the analysis in [51]. These equations are a topic for later

investigation.

1.4 Outline
The structure of this thesis is as follows. In Chapter 2, we provide some

preliminaries which are applied throughout this thesis. In Section 2.1, we introduce
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basic concepts of functional analysis and convex analysis. In Section 2.2, we present
the useful notions of space which are relevant to partial differential equations. In
Section 2.3, we review a few theorems. In Section 2.4, we discuss penalty method and
linear complementarity problem.

In Chapter 3, we establish a continuous formulation of dynamic frictionless
contact condition with an elastic body, based on Signorini’s contact condition. From
Section 3.1 to Section 3.2 we see how to derive the dynamic frictionless contact prob-
lem. Employing time discretization, we set up three numerical formulations for the
equations of motion and contact conditions in Section 3.3 and Section 3.4. In Sec-
tion 3.5, we obtain a variational inequality equivalent to our contact problem and also
derive minimization problem equivalent to a variational inequality. This plays an im-
portant role in finding numerical solutions at each time step. Total energy functional
for elastic bodies is defined in Section 3.7.

In Chapter 4, we discuss the convergence of our time discretization. In Sec-
tion 4.1, it is shown that the continuous linear interpolants of velocity and displace-
ment are bounded in appropriate spaces. In Section 4.2, we derive an estimate of
magnitude of contact force at one time step, depending our numerical schemes.

In Chapter 5, we begin considering the Euler—Bernoulli beam equation with
Signorini contact conditions. In Section 5.1, imposing Signorini contact condition
along the Euler-Bernoulli beam, we formulate Euler-Bernoulli beam equation with
Signorini contact conditions. In Section 5.2, the existence of a solution is shown,

based on penalty method.
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In Chapter 6, we set up a time discretization, using the midpoint rule for
the elastic part and the implicit Euler method for contact conditions and investigate
the convergence of time discretization. In Section 6.2, it is shown that our time
discretization leads to energy dissipation. This gives us a crucial step for analyzing the
convergence theory. In Section 6.3, we show that the continuous linear interpolants
of u converge to a solution.

In Chapter 7, we consider how to implement our numerical scheme. In Sec-
tion 7.1, we discuss the Finite Element Method for the Euler—-Bernoulli beam equation
with B-spline basis functions. In Section 7.2, we show that energy is dissipated in
fully discrete case. In Section 7.3, we solve the linear complementarity problem that
arises in the numerical method, using smoothed guarded Newton method. Also the
relevant theory of semi-smooth functions is discussed. In Section 7.4, numerical ev-
idence for strong convergence is presented. In Section 7.6, while numerical results
(simulation) are presented, we discuss our numerical experience and the numerical
results.

Finally we list conclusions and future works in Chapter 8. We discuss the
issues related to elastic bodies in and the Euler—-Bernoulli beam in dynamic frictionless

contact. This thesis is concluded with discussion of future works in Section 8.3.
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CHAPTER 2
PRELIMINARIES

2.1 Linear operators and weak concepts

Let X and Y be real Banach spaces.

Definition 2.1. We say that X is compactly imbedded in Y if

1. X is continuously imbedded in Y, i.e., X C Y and there is a constant C'
with ||z|ly < C||z||x for every z € X,

2. Any bounded sequence in X is precompact, i.e., every bounded sequence

in X has a subsequence that converges in Y.

Also we define a bounded linear operator.

Definition 2.2. A linear operator A : X — Y is bounded if there exists a constant

C such that

|Az|ly < Cllz||x for every z € X.

If no such C exists, the operator is unbounded. Then we call the smallest such

C the norm of A.

Definition 2.3. We denote the set of all bounded linear operators from X to Y by

L(X,Y). We also use the notation £(X) for £(X, X).

Thus if A € £(X,Y), we define the norm of a linear bounded operator A as

Ax
1A = sup KA Ay
[l 70 [E1PS fl=]<1
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Definition 2.4. A bounded linear operator f € £(X,R) is called a bounded linear
functional on X. The space of all bounded linear functionals on X is called the dual

space and denoted by X*.

For space X and the dual space X* we introduce the notation: If x € X and f €
X*, we write (f, ) to denote f(z). So the the symbol (-,-) denote the duality paring
on X* and X.

Let H be a Hilbert space with inner product (-, ).

Definition 2.5. If A € £(H) satisfies (Au,v) = (u, A*v) for all u,v € H, A* is called

its adjoint. Furthermore A is said to be self-adjoint if A* = A.

Indeed for a bounded linear operator A from one Hilbert space H; to another
H,, its adjoint and self-adjoint can be defined. See [41] for the detailed discussion.

As usual, when we solve partial differential equation we involves a sequences of
function which approach to solution. But it not easy to show that they converges in
Banach space. For such difficulty, weak convergence is extremely useful. We introduce

the following definition.

Definition 2.6. A sequence x,, in X is said to converge weakly to x if f(x,) converges
to f(z) for every f € X*. A sequence f, in X* is said to converges weakly* to f if

fn(x) converges to f(x) for every x € X.

In order to distinguish notations, we write x,, — x for strong convergence in

norm, r, — x for weak convergence, and f,, —* f for weak* convergence.
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Let K be a subset of X. Then K is said to be convex if (1 — Az + Ay € K
for x,y € K and 0 < A < 1. Let F be a functional from K to (—oo,00]. Then F' is

said to be convex if

FAx+(1—=Ny) <AF(x)+ (1 —-XN)F(y), forz,ye Kand 0 <\ <1,

Now, we introduce weak semicontinuity and semicontinuity. Let K be a

nonempty closed convex subset of X.

Definition 2.7. A functional F' is said to be weakly lower semicontinuous on K if

for any sequence z,, in K with the property that x,, — = in K, we have

liminf F'(z,) > F(x). (2.1)

n—oo

F' is weakly upper semicontinuous on X if limsup,,_, F'(x,) < F(z). Also F
is said to be lower semicontinuous if for every sequence z,, — x in X and (2.1) holds.
Upper semicontinuous is defined in an analogous way. The detailed arguments can
found in [48, 32].

Finally, we mention the Mazur’s Lemma which is applicable to solving par-
tial differential equations. Mazur’s Lemma asserts that a closed convex subset K is
weakly closed and if F' is convex lower semicontinuous, it is weakly sequentially lower

semicontinuous. See [3, 20]. More generalized Mazur’s Lemma can be found in [35].

2.2 Function spaces
In this section, we introduce some definitions and results related to function

space for later references.



19

2.2.1 Multi-index notation

Generally, the notation of multi-index is very convenient to denote partial
derivatives of function u(x) defined on x € Q C R%. A multi-index is a vector of the

form

o = (a17a27"' ,Oéd),

where each component «; is a nonnegative integer. For any multi-index a, we define

the multi-index order as

]a]:&1+042+~-~+04d.

For any vector x = (z1,x2, -+ ,Zq), W set
X% = atwg? -yt

From now on, we denote the multi-index « instead of . Given a multi-index o, we

define the « partial derivative as

ooy (x)

D~ = .
u(x) 0xi" 0xy” - - - O y?

If k is a nonnegative integer, we define

D*u(x) = {Du(x) | |a| = k},

the set of all partial derivatives of order k.

For vector-valued function u(x) = (u1(x), ug(X), -+, u, (X)), we define

D%u(x) = (D%uy(x), D%us(x), - -, D%Up,(X)).
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Then we have
D*u(x) = {D*u(x) | |a| = k}.
Throughout this thesis, we will use del operator V for the special case k = 1.

2.2.2  Well-known function spaces
For a normed vector space X, we denote its norm by || - || x. If X is a Hilbert
space, its inner product and associated norm are denoted by (-,+)x and || -||x, respec-

tively. First given u € C(Q2), we define its support as a closed set

supp(u) = {x € Q[ u(x) # 0}

Let U be an open subset of R?. Then we write U cC Qif U Cc U C Q and U is
compact set.
We make an introduction of the well-known (scalar) function spaces used very

often in partial differential equation.

1. C*(Q) is the space of functions u with continuous derivatives D®u on € for all

multi-index «, |of < k.
2. C>(Q) = N,C*(Q).
3. CE(R) is the space of functions in C*(Q) with compact support.
4. D(Q) = C*(Q) is the space of test functions defined on (.

5. D'(Q) is the space of distributions, i.e., the topological dual space of D(f2).
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6. LP(2) is the space of Lebesgue measurable functions u for which the norm

1/p
el o= | [ P as| <o
Q
where 1 < p < 0o and dx = dx; dxs - - - dxg.

7. L*>(Q) is the space of Lebesgue measurable function u for which norm
||| o () := ess supxeq|u(x)| < oco.
We extend those space to some Banach spaces consisting of mappings
u:[0,T] — X,

where X is a real Banach space, with the norm || - || x. See [20]. Now we list some of

those space.

1. LP(0,T; X) is the space of all measurable functions u : [0,7] — X with the

norm

T 1/p
HUHLP(O,T;X) = (/ l|lu(t)]% dt) <oo forl<p<oo
0

and L>(0,7; X) is the space of measurable u : [0,7] — X with the norm
[l 0,7:x) == ess supo<i<r|u()]|x-
2. C(0,T; X) is the continuous functions u : [0,7] — X with the norm

lulleqorix = max Jlu()llx < oo.
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Similarly we will present the Sobolev spaces WP(0,T; X) in the next Subsection.
A function f defined on  is called a test function if f € C*°(Q2) and there
exists a compact set K C  such that the support of f lies in K. A distribution

is a linear mapping ¢ — (f,¢) from D(2) — R such that if ¢, — ¢ in D(2), then

(f7¢n)_>(f7¢) as n — oQ.

2.2.3 Holder spaces
It turns out to be useful to consider Holder continuous functions. We present
the definition of Holder continuous function. Let U be a subset of R%. Let X be a

Banach space.

Definition 2.8. Let 0 <p < 1. u: U — R is said to be Holder continuous function

with exponent p if there is a constant C' such that
ju(x) —u(y)| < Clz —y[" forz,yel.

We also define Hélder space CP(0,T; X) which consists of all functions with

the norm
u(ta) — u(t
wllero,rx) = ||ullcorx) + sup [[u(ts) — uf I)HX‘
t17t2 |to — t1|P
In fact, we can use other norms instead of || - ||c(o,r;x). Note that the Holder space

C?(0,T; X) is a Banach space.

2.2.4 Sobolev spaces
Sobolev spaces provide an elegant and systematic mathematical framework

such as regularity. Partial differential equations are analyzed naturally not only in
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terms of properties of the function spaces, but also of their derivatives. These deriva-
tives are defined in the weak sense (in the sense of distributions). Thus after we define
the weak derivative, we will define the Sobolev spaces W*P(2). In this section, Q will

be a open and locally measurable set on R

Definition 2.9. Let 1 < p < co. We say u € L1 (), i.e., u is locally p-integrable, if

loc

for x € Q there is an open neighborhood U of x such that U CC Q with v € LP(U).
Under the assumption, we can define the weak derivative.

Definition 2.10. Suppose that u,w € L _(2) locally and « is a multi-index. Then

loc

we say that w is the ath-weak partial derivative of u, denoted by D“u = w, provided

/Qu(x)Da¢(x) dx = (=1)l / w(x)p(x) dz for all ¢ € D(R).

Q

Let 1 < p < oo and k£ be a nonnegative integer.

Definition 2.11. The Sobolev space W*P(Q) consists of all functions u € L .(Q)

loc

such that for each multi-index a with |a| < k, D% exists and D%u € LP((2).
If w € WkP(Q), its norm is defined as

1/p
<Z|a\gk Jo | Dul? dx) , if 1 <p < oo,
[ullwrr@) =

max|q|<k || DU () if p = 0.
The fact is well-known that W*?(Q) is Banach space. We also mention about the

seminorm of the Sobolev space W#?(Q), which is defined as

1/
<Z‘a|:k Jo | Dl dx) p, if 1 <p<oo

|uly.p
max|q|=r || DUl (0, if p = oo.
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Since the function space C§°(Q) is not dense in W*P(Q) in general, we denote by
WEP(Q) the closure of C2°(Q) in WH?. We interpret W, (€2) as the space of function
u € WHEP(Q) such that D% = 0 on 99 for all |a] < k — 1.

For the special case p = 2, we usually write H*(Q) = W*2(Q) and H}(Q) =
Wy 2(Q). Note that HL(Q) is a subspace H'(€) and is defined in terms of trace zero

function, i.e.,
Hy(Q) ={ue H(Q) | u=0on 0Q}.
Then H*(Q) is Hilbert space equipped with inner product

(u, w) gr() = Z / Du(x)D*w(x) dz  for u,w € H*(Q).
laj<k /¢
For negative integer, we define the Sobolev space which is dual space of order k. We
denote by H~*(Q) the dual space of HY(£2). However since the dual space of H*(()
is subspace of the dual space of HY (), it is frequently useful to denote H*(Q) as

the dual space of H*(2). For order k = 1, assume that f € H~1(2). Then we define

its norm as

, W
Il = sup [{frw |
weH(Q) HwHHl(Q)

This norm can equivalently be expressed by

£ 1220 = sup{{f,w) | w € HY(Q), [w] 1) < 1}.

On the Banach space L'(0,T; X), we give the definition of a weak derivative

in the following way.
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Definition 2.12. Let v € L'(0,7; X). The function w € L'(0,T; X) is said to be

the weak derivative of u, if

T
/ &' (t)u( / o(t)w(t)dt for ¢ € C5°(0,T).
0
Then we write w = ;.

The integrals which is used in Definition 2.12 are called Bochner integrals.
See the details in [59]. Then Sobolev space W'P(0,T; X) is space of all measurable
u € LP(0,T; X) such that u,; exists in the weak sense and u, € L?(0,7T'; X), equipped

with norm

1/p
(U6 @5 + Nty %) ) for 1 <p < oo
HUHWLP(O,T;X) =
ess supo<i<r ([lue(t)[[x + u(®)llx)  for p = oo.
We also consider the function space of vector function. If for vector valued

function u, each component u; is in the Sobolev space H*(Q) we write u € H*(Q) =
(Hk(Q))d; its inner product has the form
d
(0, W)ak) = Z/ Z D%u; D*w;dx
i=1 la| <k

and the associated norm is

1/2

[all o) = Z/ Z | Dw,|*dz ;

la| <k
where (H’“(Q))d = {(u1,ug, - ,uq) | u; € H¥(Q),1 < i < d}. In the case of Hilbert

space of the vector-valued function that we will mainly deal with, we will use the
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notation

H'/2(00) = (H*00)",
H'200) = (H2(00)°,

L@ = (@)
Note that L?(Q2) = H(Q). Similarly the inner product of L*(Q) is defined as

d
(u, W) = Z/ u;vid
i=1 7/

and the associate norm is

d 1/2
i=1

2.2.5 Sobolev spaces on R? and Fourier transform

Before we present the definition of Sobolev space H*(R4) for all s € R, we need
to talk about the tempered distribution. In particular case 2 = R%, the requirement
of test function with compact support is naturally replaced by rapidly decreasing
function at infinity. So this assertion makes us to consider the following definition.
See the detail in [47].

Let S(R?) be the space of all functions on R¢ which are smooth and such
that |z|*|D%¢(z)| is bounded for every k € N and every muti index a. A tempered
distribution on R? is a linear mapping ¢ —— (f,¢) from S(RY) to R such that
(f, dn) — (f, 9) if ¢, — ¢ in S(R?). The set of all tempered distribution is denoted

by S&'(R9).
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Now we introduce the Fourier transform which provides extremely powerful

tool for converting certain linear PDE into algebraic equations.

Definition 2.13. For every u € L'(R¢), the Fourier transform of g is defined by

Fl(©) = gy | ¢ € s

The inverse Fourier transform of u is defined by

Ful(w) = i [ eSulge

Using the tempered distribution and Fourier transform, we can produce a

definition of Sobolev space H*(R9) for all s € R. Refer to the book [56].

Definition 2.14. For any s € R, we define
H*(RY) = {u € S'(RY) | (£)" F[u] € L*(R)},

where (€) = (1+[£]*)"/? and [£]” = [&1]* + €3] + - + |&al”.

2.2.6  Sobolev spaces on manifolds

If 0€) is smooth, it is useful to define Sobolev space on manifold. Let X, Y be
subsets of R%. A smooth map f : X — Y is called diffeomorphism if f is bijective and
the inverse map f~!:Y — X is also smooth. X an Y are called diffeomorphic if such
a map exists. Then X is a d—dimensional manifold if x € X has open neighborhood
V in X which is diffeomorphic to open set U C R?. See the details in [24]. So
diffeomorphisms provide a tool to make local changes of coordinates, i.e., ) can be
transformed to a coordinate surface by diffeomorphisms. This local considerations

are achieved by partition of unity which is the useful device to prove PDEs.
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Definition 2.15. Let S be a closed subset in R%and let collection {U;} be a covering
of S such that U; are open subsets in R? (not in S). A partition of unity subordinate
to covering {U;} is a set of test function ¢; € D(R?) such that

1.0<¢; <1,

2. supp ¢; C Uj,

3. Zj ¢; = 1 in a open neighborhood.

2.3 Review of some theorems
In this section, we present important theorems which are applied throughout
this paper.
First, Plancherel’s Theorem and some properties related to Fourier transform

are presented in the next two theorem. The details argument can found in [20].

Theorem 2.1. (Plancherel’s Theorem) Assume thatu € L*(R?) (N L*(RY). Then

Flu], F~u] € L*(R?) and
[ Fulll2mey = [IF ulll 2mey = [Jull2me)-
Theorem 2.2. Assume that Flu], F~'[v] € L*(R%), Then
1. F[D%u](x) = (ix)*F[u] for multi-index a and x € R,
2. Fluxv] = (2m)¥2F[u] F[v], where * is the convolution of two functions,
3. Flu] = v if and only if u = F~{v].

The Riesz representation theorem enables us to see how a measure is associated

to a functional on Cy(X). When we consider the Riesz representation theorem, it is



29

natural to deal with functions in Cy(X) on a locally compact space. In fact, we note

that this theorem is expressed in several different versions.

Theorem 2.3. (Riesz representation theorem) Let X be a locally compact Haus-
dorff space. Then to each positive bounded linear functional f on Co(X), there exists

a Borel measure v determined by f such that

f(u):/XudV for v € Cy(X).

From the Riesz representation theorem, we can also see that the dual space of
Co(X) is identified to (isometrically isomorphic to) the space of all Borel measures
on X with the norm defined by ||v|| = |v|(X). See [35, 49] for the details.

The Banach fixed theorem is one of the most important method for analyzing
the solvability for nonlinear operator equations. See the details in [3]. Let X be a

Banach space with norm || - ||x and K C X.

Definition 2.16. An operator T': K — X is said to be a contraction with contrac-

tivity constant o € [0,1) if
[Tz — Ty|x < allr —y|x forall z,y € K.
Based on contraction maps, then the Banach fixed theorem is introduced.

Theorem 2.4. (Banach fized theorem) Assume that K is a nonempty closed
subset of X and an operator T : K — K is a contraction mapping with 0 < o < 1.

Then there exists a unique x € K such that

x=T(z).
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The Arzela—Ascoli theorem and Alaoglu’s theorem are useful to show the ex-
istence of solutions. To state the Arzela-Ascoli theorem, we need the following defi-
nition.

Definition 2.17. Let (f,) be a sequence of real-valued functions defined in D C R?

and x € D. The sequence (f,) is said to be equicontinuous at x if for every ¢ > 0

there exists a 0 > 0, independent of n, such that
|fu(y) — fu(x)| <€ fory e D with |y —x| < 0.

Theorem 2.5. (Arzela—Ascoli theorem) Let (f,) be a sequence of real-valued
functions defined on a compact set S C R?. Assume that there is a constant C
such that | fn(x)| < C for every n € N and every x € S and (f,) is equicontinuous

at every x € S. Then there exists a subsequence which converges uniformly on S.

Next we introduce Alaoglu’s theorem, recalling the definition of weak-* con-

vergence.

Theorem 2.6. (Alaoglu’s theorem) Let X be a separable Banach space and (f,)
be a bounded sequence in X*. Then the sequence (f,) has a weakly* convergent sub-

sequence.

The trace theorem is presented below. The detailed arguments can founded

in [32].

Theorem 2.7. (Trace theorem) Let ) be a Lipschitzian domain and let tr be the

operator defined by

tr(w) = wlapq  for w € C(Q).
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Then tr can be extended to a bounded linear surjective operator, also denoted tr, from

HY() onto HY2(99).

The operator tr is called the trace operator. The important property of oper-
ator tr is that tr is surjective map from H'(2) onto H'/2(9Q). Thus the operator tr
has bounded right inverse. See the details in [47].

Korn’s inequalities are crucial in the investigation of the existence of solutions
to variational problems. One of Korn’s inequalities is introduced below. See [32] for

the details.

Theorem 2.8. Let Q be a bounded Lipschitzian domain in RY. Then there is a

positive constant, independent of w, such that

/Q |wi7jwi7j|p/2dx S C (/Q |€Z‘j[W]€ij[W]|p/2dI’ + /Q |U}sz|p/2dl‘)

for every w € WHP(Q) and 1 < p < .

The implicit function theorem provides many important results on local con-
vergence theory of optimization techniques. We present a brief outline based on the

discussion in Lang [34].

Theorem 2.9. (Implicit Function Theorem) Assume that F : R" x R™ — R"
a function such that

1. F(x0,0) =0 for xy € R",

2. The function F(-,-) is a Lipschitz continuously differentiable in some neigh-

borhood of (xg,0),
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3. ViF(x,y) is non-singular at (Xx,y) = (X0, 0).
Then the function x : R™ — R™ defined implicitly by F(x(y),y) = 0 is well

defined and Lipschitz continuous for y € R™ in some neighborhood of the origin.

2.4 Some methods and definitions
2.4.1 Penalty methods
Penalty methods provide an alternative approach to constrained problems.
These remove the constraint of the original problem and leads to an unconstrained
problem. It also avoids the necessity of introducing additional unknowns in the form
of Lagrange multipliers. See [32] for the detailed arguments.
Let V be a Banach space and K be a closed convex subset of V. Then penalty

functional P : V — R satisfies the following conditions
1. P:V — R is weakly lower semicontinuous,
2. P(v) > 0and P(v) =0 if and only if v € K.

Condition 2 implies that if solution v violate constraint, P(v) > 0. Otherwise, P(v) =

0. Now we introduce the notation which is used in penalty formulation:

sy = max(s,0) in L*(Q), ie.,
s(x) if s(z) >0,
se(z) =
0 if s(x) < 0.

The penalty method plays a crucial role in showing existence of solutions to

the Euler—-Bernoulli beam equation, as we shall see later on.
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2.4.2 Linear complementarity problems
Definition 2.18. Given a vector q € R"™ and a matrix M € R™*", the linear com-

plementarity problems (LCP) is to find a vector z € R™ such that

q+MZ > 07

z' - (q+Mz) = 0

or to show that no such vector z exists.

We mention a notation related to linear complementarity problem: in general,
for vectors aand b, 0 < a 1 b > 0 means that a, b > 0 component-wise and
a’ - b = 0. In special case that a, b are scalar, @ L b means that both are non-
negative and either a or b is zero.

This problem is the subject of a number of books, including the encyclopedic
reference [16]. Indeed, LCP has been applied to many fields in applied sciences and
technology since it was proposed in the mid 1960’s. We shall see how our contact

problem leads to LCPs.

2.4.3 Semi-smooth functions
We introduce the definition of semi-smooth function. The detailed argument

can found in [21].

Definition 2.19. Let G : Q2 C R" — R™ be a locally Lipschitz continuous function

on (), where 2 is open. Then G is said to be semi-smooth at a point X if G is



34

directional differentiable near X and there exist a neighborhood 2 C € of X and
function f : (0,00) — [0,00) with lim,|o f(¢) = 0, such that for any x € Q' different

from X, we have
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CHAPTER 3
ELASTIC BODIES : CONTINUOUS FORMULATION OF DYNAMIC
FRICTIONLESS CONTACT

3.1 Contact conditions

In this Section, we will derive contact conditions for our formulation, based on
Signorini’s contact condition. Let n(x) = (n1,ng,n3) be the outward normal vector
at x to the material surface 02. Note that we consider three dimension case, i.e.,
Q CR3.

Since we want to focus on dynamic frictionless contact, for our dynamic contact
problem we set I'r = I'p = (). Thus I'. becomes the whole boundary 9. Note that
there may occur a contact force on some parts of 02, or not on other parts.

For a stress tensor o, we denote by o, and o the normal and tangential

components of o, respectively, and define

on = oyyning and (or); = oyn; — opn;.

Since the kinematic contact condition must be compatible with stress on 0f2, we can
have the following contact condition: if a contact force Nn is applied on surface 052,

the stress vector must satisfy

Oighy = NTLZ on Of).

Then due to Newton’s third law (action and reaction), the contact force is a opposite
to the direction that a elastic body moves downward. So in the physical situation,

we regard the downward direction as negative.
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For other contact conditions, Signorini’s problem has a contact constraint
which will induce a convex closed subset in a Banach space X in terms of the math-

ematical framework:

u-n+g>0.

From the physical point of view, Signorini contact conditions can be inter-
preted as the following way: when the elastic body does not reach to the rigid foun-
dation, i.e., u-n+g > 0, the contact force Nn must be equal to zero, since no contact
occurs and when there is a contact force, i.e., N > 0, the elastic body touches to the
rigid foundation, i.e., u-n+ g = 0. Thus Signorini contact conditions result in linear

complementary boundary conditions

0<u-n+g L N >0on0f.

In order to see frictionless contact condition, from the contact condtion o;;n; =

Nn; on 0f) we have
(o) = oyn; — onny
= NTLZ — 03N NyNy = NTLZ — (Nnjn])nz =0.

Thus the tangential components o7 of stress tensor o must be equal to zero. This

implies that we arrive at frictionless contact condtions.

3.2 Dynamic frictionless contact problem
The dynamic contact problem comes from the following physical situation. See

the Figure 3.1 for the illustration.
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ELASTIC BODY
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Figure 3.1: Dynamic frictionless contact problem with elastic body.

In order to derive the dynamic contact continuous formulation, we need to
consider a equation of motion inside a elastic body 2. From the physical point of
view, this equation is obtained, by applying linear momentum principles based on
Newton’s second law and Newton’s third law. This equation of motion is expressed
by

Pu
P or

=V .ofu/+f in Q.

The above expression has the form of a hyperbolic second order equation.
Indeed, a hyperbolic equation is naturally a generalized expression of a wave equation.
Therefore it may sometimes be helpful to interpret this dynamic contact formulation

in comparison with wave equation.

Before we present the dynamic contact continuous formulation, we introduce
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the notations: we write u(x,t) as u and f(x) as f and N(x,t) as N, and g(x) as g,
for the purpose of a simplified notation.
Finally we formulate the dynamic contact continuous formulation for time

interval [0, T):

0*u :
p=— = V-oful+f inQx(0,7], (3.1)
ot?
ou-n = N-n ondQ x(0,7T], (3.2)
0<u-n+g L N>0 ondQx(0,T], (3.3)
ux,0) = u’ inQ, (3.4)
u(x,0) = v’ inQ, (3.5)

where u(x,0) = 0du/0t(x,0) = v(x,0). We denote the velocity v(x,t) by v. Equa-
tions (3.5) and (3.5) are called the initial values for the displacement and velocity,
respectively. We also assume that u’ € H'(Q), v € L?*(Q). Throughout this thesis,
we assume that £ and g do not depend on time ¢ and that f € L*(Q), g € C*>(09).
In the next chapter, we will discuss how we approach the continuous dynamic
contact formulation. Variational inequalities and time discretizations will play an

important role in solving the dynamic contact problem.

3.3 Time discretization
For a dynamical problem, time discretization is one of the most useful numer-

ical methods. First, we partition time [0, T:

O=ty<ti<te<---<{ <ty <---<T,
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where T is the end of time. Then we partition time space so that we establish
numerical formulations for dynamic continuous contact problem.

We denote by u! approximate displacement u(x,t;) and by v! approximate
velocity v(x, ;) at each instant time t;, respectively. Also N(x,t;) is denoted by N'.
Then we have the same time step size h = t;4; — t; for [ > 0 and so | = T'/h.

The dynamic contact continuous problem will be replaced with the following

approximation formulas:

e Acceleration relation

Pu 1
w = E(VlJrl — Vl) (36)
e Velocity relation
Lo l Lo l
E(u —u)zi(v +v). (3.7)

3.4 Numerical formulas
Using the different numerical methods, we set up numerical formulations for

motion equation. Thus

1. If we use the midpoint rule,

1
%w“—vﬁzv-ﬂ?d“+um+ﬂ in Q, (3.8)

2. If we use the implicit Euler method,

%W“—vﬁzv-ﬂdﬂhﬁlinﬁ (3.9)



3. If we use the explicit Euler method,

h
For contact conditions, we consider implicit Euler method
ou™'] = N'mn on0Q,

0<N 1L u™-n+¢g>0 onoQ
or explicit Euler method

o] = N"'n on0Q,

O0<N* 1 u-n+4+g¢g>0 ondQ.

From (3.7), we have

Vil — %(UZH —ul) -

B(VIJrl —v)=V.ou]+f inQ.
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(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Using (3.15), we can better express the numerical formulation of the equations of

motion.
1. For the midpoint rule

h2

41 _
4p

2. For the implicit Euler method

h2

+1
2p

3. For the explicit Euler method

h2 2

h
ut = —V.ou]+u + v+ 2—f in Q.

2p p

h2
u — (V- out +ou]) +u —|—hvl+2—f in Q.
p

h2
™ = V. .ou™] +u +hvi+ 2—f in Q.
p

(3.16)

(3.17)

(3.18)
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3.5 Existence of a solution for one time step

Employing the implicit Euler method for equation of motion and contact con-
dition, we show existence of solution for the time stepping problem in this Section.
Now we impose a constraint condition on the next step solution so that the variational
inequality equivalent to the numerical formulas (3.17), (3.11), and (3.12) is derived.

Suppose that w - n|sq is well defined for w € (H*(€2))?. We define the set of
admissible displacements as K = {w € (H'(Q))? | w-n+g > 0 a.e.on Q}. Indeed,
if we (HY(Q)4 w-n = tr(w;) - n; a.e. on 99, where tr is a trace operator from

HY(Q) onto HY2(99Q).

Lemma 3.1. Let ®' = Z—Zfl + %Vl +ul. The next step solution u'*! satisfies (3.17),
(3.11), and (3.12) if and only if u' is a sufficiently smooth solution of the variational

inequality: find u'*' € K such that
h2
/ (u“rl (w—uth) + 2—0’[ul+1] :V(w — ul+1)) dr > /<I>l (w—u'""hdz Yw € K.
Q P
(3.19)

Proof. Suppose that the next step solution u'*! € K of (3.17), (3.11), and (3.12) is a

sufficiently smooth. From (3.17),
u™ - —V.out = o (3.20)
p

Choose w € K. Multiplying both sides of (3.20) by w — u'*! gives

2
/ u ™ (w—ut) de — h—/ V-ou™ - (w—ut)dz = / o' (w—u) da.
Q 2p Jo Q

Using integration by parts, we obtain

h2
/ utt e (w—u"t de + — / o™ V(w—u™)dr
Q 2p Ja
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h2
= / o (w—u™Mdr+— [ nT out] (w—uT)ds.
Q 2p Joa

By the boundary condition (3.11) and symmetry of stress tensor o[u'*1],

h2
/ utt e (w—ut de + — / ou™: V(w—u™)dr
Q 2p Jo
h2
= / o (w—u™)dr+— [ Nn-(w-u')ds.
0 2p Joq

On the boundary 02, we have
N'n-(w—u"™)=N(w-n+g)— N(u"™ n+yg).
Thus by the linear complementary boundary conditions (3.12),

2
/ u ™ (w—u) de + h / o™ V(w—u™)dr
Q 2p Jo

:/<I>l-(w—ul+1)dx+h—2 N'(w - n + g) ds.
Q 2p Joa
Since N' > 0and w -n + ¢ > 0, u'™! is a solution which satisfies the variational
inequality (3.19).

Suppose that u't! € K satisfies variational inequality (3.19). First, we claim
that u'*! satisfies (3.17). Notice that (HJ(2))? C K, since that gap function g > 0.

We choose w = u'*! 4 z with arbitrary z € (H(€))?. From variational inequality

(3.19),
h2
+ (/ ut . zdr + — a[ul+1]:V~zdx—/<I>l~zdx) > 0.
Q 2p Jo Q
So we have

h2
/ul“~zdx+— a[ul+1]:V~zdx—/<I>l~de=0-
Q 2p Jo Q
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Using integration by parts,

2 2
/ul+1-zdm—|—h_ n’ - o] g ds - (V-a[ul+1])-de—/q)l-zdxz().
Q 2p Jaq PJa @

Since z|spq = 0,

2
/(uz+1 _ ;’_pv o[ut] - @) zdr =0 Vaze (HHQ))?
Q

Therefore, we obtain the numerical formulation (3.17). Next, we claim that the
boundary conditions (3.11-3.12) are satisfied. We first want to show that o[u'™!]-n =

N'n and N* > 0 on 9. Let K; be a subset of K such that
K, ={zec (H'(Q)’]|z -n>0on o0}

In the variational inequality (3.19), we choose w = u'*! + z with arbitrary z € K;

and obtain
h2
/ul+1.zdm+—/a[ul+1] :V-zdm—/@l-zdxzo.
Using integration by parts,
h? h?
/ utl o zde + — n" o zds— /(—V o't + @) - zde > 0.
) 2p Jaq Q 2p

By (3.17), we have
/ n’ . o't zds > 0. (3.21)
20

Now, we claim that n” - o[u™']-n > 0 on 9Q . Assume that n” -o[u’™']-n < 0. Let

z = an with o > 0. Then

/ n’ . ou't] - zds < 0.
o0
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This contradicts (3.21). So we have
n’ . o[u]-n >0 on 0. (3.22)

Applying (3.22), we want to show that o[u'*!] - n = N'n and N' > 0. Pick any
tangent vector y on 0f). Then y -n = 0. So the set K; can contain any tangent

vector on 0f2. Let z = ay with a # 0. From (3.21),

/ n’ ot zds = / an® - o[u'] - yds > 0.
0 0

Assume that n? - o[u™!] -y > 0 on 9Q. For a < 0,

/ on” - g[ut] - yds < 0.
00

This contradicts (3.21). Assume that n - o[u/™!] .y < 0. For a > 0,

/ on” - g[u™] - yds < 0.
00

This contradicts (3.21). So nT - [u!™!] -y = 0 on 09, which means that o[u'™!] - n
must be represented as Nn with some scalar function N. However, from (3.22)
n”-ou™] -n=Nn-n=N'>0on .

Secondly, we want to show that N'(u/™!-n+ g) = 0 on 9Q. Pick any z € K;
so that z = (! - n + g)n on Q. We choose w = u'™! —z. So w = u'tt — (u't!.
n+g)non dQ. Then w-n+g=u*-n—(u* -n+g)+g=0on JQ. This implies

that w € K. Therefore using integration by parts, from (3.19) we have

h2
0 < / (ul+1 (w—u") + 2—0’[ul+1] V- (w— ul+1)) dr — / &' (w—utde
Q p Q

2
= / n’ - out] - (w—u't)ds +/ (uJrl Iy, o't - ‘191) (w—u)da
o0 Q 2p
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= N(w-n+g—u™.n—g)ds
o9

= — [ N +g)ds.
00

Therefore

., N n+g)ds <0. (3.23)

Suppose that N' > 0. Then u/*!'-n + g = 0, since if u*' - n + ¢ > 0 it contradicts

(3.23). Similarly, if u** - n + g > 0, then N' = 0. Thus we have
N'(u"™ - n+ g) =0 on 09,
as required. O

I+1

In order to see that there is a unique solution u'™" to the variational inequality

(3.19), we generalize it to abstract setting.

Definition 3.1. Define the functional

1 h?
F(w) :/ (5’“"2 + Q—U[W] : e[w]) dx — / ® - wdr forweK.
Q P Q

In this case
h2
a(w,w) = / |w* + —ow] : e[w]dx
Q p
and

flw) = /Q<I'l-wda:.
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Note that this functional is different from total energy functional. We can
easily see that a(-,-) is symmetric and V-elliptic and bounded using the properties of
Hooke’s tensor E;ji;. As we shall see in the next Section, the total energy functional
is decreased, if we use the implicit Euler method. Thus the initial conditions and
f € L?(Q) imply that u' € HY(Q) and v! € L?(Q2) for all [ > 1 and h > 0. So f(w)
is bounded linear functional. From definition 3.1 we set (3.19) into the generalized

variational inequality:

Findue K:a(u,w—u) > f(w—u) VwekK. (3.24)

It has been known that (3.24) is equivalent to minimization problem:

Findue K: F(u) < F(w) VYw e K.

Also these are uniquely solvable. See [32] for the details. Therefore we can conclude

that there exists the next step solution u'*! of (3.19) uniquely.

3.6 Discussion of the implementation
We consider numerical methods to obtain the approximated solution. Accord-
ing to numerical analysis, the solution of the implicit Euler method is stable. So
this is another reason that the implicit Euler method is employed to implement a
numerical results. In order to obtain the next solution u'*!, we use minimization

problem:

Fu™) < F(w) VwecK.
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From the minimization problem, we would obtain solution u‘*!

, by using Finite El-
ement Method and Karush-Kuhn-Tucker condition, called KKT condition. See the
details in [3] and [43]. The actual and detailed implementation of the elastic body
with frictionless dynamic contact condition will be a future work. It is expected
that the procedure to implement numerical results would be very complicated. How-

ever, we intrinsically need the boundedness of the contact force and finer regularity

properties, before we start computing numerical solutions.

3.7 Total energy functional
We define the total energy functional of dynamic contact continuous prob-
lem, which plays a fundamental role in showing the boundedness of the approximate

solutions.

Definition 3.2. For u, v total energy functional is defined by

E(u,v) = %/Q (p|v]* + o[u] : e[u]) dz — / f ude.

Q

In Definition 3.2, the first term is the kinetic energy, the second term is the

elastic energy, and the last term is the potential energy.

Lemma 3.2. Suppose that f does not depend on time t and contact does not occur.

If the midpoint rule is applied to equations of motion, we have
Eu'™ vt = B, vY)  for any 1> 0.
Proof. Using (3.8) and (3.15),

1 1
L /(Vz+1 —v) - (v v de = - /(V co[z(Wtt +d)) 4+ f) - (0t =) da
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Applying integration by parts,

%/ (‘vl+1‘2 _ ’Vzﬁ) dr = % n? . (o.[ulJrl] + a.[ul]) . (ul“ . ul) ds
@ o0
_ % ) (a'[ulH] + O'[UZD LV - (ul+1 _ ul) dx

1
+ E/f (ul“ — lll) dz.
Q

Since o[u™!]: V- [u'] = g[u'] : V- [u""!] and contact force is zero,

1
_/ (p’VlJrl‘Q —i—a'[ulﬂ] "V - ul+1) dr — / f. ul+1 dr
2 Q Q

_ [%/ﬂ(pyvqua[ul]:v.ul)dx—/ﬂf.uldx] —0.

Note that ou] : V - [u] = o[u] : €[u]. By Definition 3.2,
Eu™ vt = B(ul,v!)  for any [ > 0.
U

From Lemma 3.2, using the midpoint rule for motion equation enables the
numerical formulation to satisfy the conservation law when contact force does not

apply to elastic body.

Lemma 3.3. Suppose that f does not depend on time t and implicit Euler method is

used in equation of motion and on boundary condition. Then
Eu™ v < B, VY forl>0.

Proof. Using (3.9) and by the same argument as Lemma 3.2,

1
L (VT = v (VI v de = —/ (Vo™ +£) - ("' =) du.



So we have
% : (’VHI‘Q _ ’Vl’2) dr —

Since o[u!™]-n = N'n on 99,

g/ (|Vl+1|2 _ ‘VZ‘2> dr — N'n - (ul+1 _ ul) ds _/
Q

o0N

+/f- (U™ —u') dx
0

1
h
1
— _/ nT . o_[ulJrl] . (ul+1 o ul) ds —
h o0
1
h

1
/a’[ulH]:V~(ul“—u1)dx+—/f-
Q h Ja

49

/ V- o_[ulJrl] . (ul+1 o ul) + f. (ul+1 . ul) dr
Q

(ut! —u') da.

ou™): V- (u —u))de

o0

— /89[Nln.(ul+l_ul)+Nl(g_g)]d8+/f,(ul+l_ul)dx

Q

1

— —/ o™ +u]: V- (Wt —u)de
2 Ja
1

— —/ o™ —u]: V. W™ -u)dr
2 Ja

= N - n+g)ds—
o9 )

+ / f.(u't —u')da.
Q

Since 0 <u*'-n+g L N' >0 on 99,

1

B/ (’Vl+1’2_‘vl‘2) dr < __/a.[ul+1+ul]:v_(ul+1
2 Ja 2 Ja

N'(u'-n+g)ds

— —/ o™ +u']: V- (u —u)dr
Q

— —/ o™ —u]: V- (™ -u)dr
2 Ja

—u')dr —

1
5 / o_[ulJrl . ul] AV (ul+1 . ul) dx + / f. (ul+1 o ul) dr.
Q

From the condition of Hooke’s tensor Ejjj,

1
B/ (VPR = V) de < __/U[ulJrl tul] v [t
2 Jo 2 Jq

Q

—ul]dx—i—/
Q

f. (ul+1 o ul) dx
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%/Q (cu™']: V- [t —o]: V- [u]) dz

+ / f.(u't —u)da.
Q

Therefore we obtain

1
_/ (p‘VlJrl’Q—l—O'[qu] . €[ul+1]) d:z:—/f~ul“ dr
2 Q Q

1
— [5/9 (pIV'|* + o[u'] : e[u]) dz — /Qf : uldx] <0.
By Definition 3.2,
Eu™ v < B(ul,v!) for any [ > 0.

O

If we employ the implicit Euler method for the equations of motion and the
contact conditions, energy is dissipated. From the initial conditions, the initial energy
is finite. This enables us to show the boundedness of u!, v! at each time ¢; for any

[>1.

Lemma 3.4. Suppose that f does not depend on time t and the explicit Euler method

1s used in equation of motion and on boundary condition. Then
E™ v > B, v for any 1 > 0.

Proof. By (3.10) and the same argument as Lemma 3.3,

1
L /(VH—I — v (v V) de = —/ (Vo] +f) - (u" —u) da.
2h J, A



Since o[u!] -n = N"'n

B/ (’Vl+1’2_‘vl‘2) d
2 Jq
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on 0f),

= / N, . (ul+1 _ ul) ds — / U[ul] V- (ul+1 _ ul) dr
o0 o0
+/ f.o(u™ —u)de
Q

- / [Nl (0" —u') + N (g — g)]ds
o0

+/f~(u“rl —u)dx
0

= / Nl+1(ul+1-n+g)ds—/ N (' - n+g)ds
9 0
1
——/a’[ul+1+ul] V- (W — o) da
2 Jo
1

— = / ou™ —u]: V. (u™—-u)dr
2 Ja

+ / f.(u't —u)da.
Q

Since 0 <u'-n+g L N* >0 on 09, we have

1
g/ (WP = v')?) de > —= / o™ +u]: V- (U™ —u)dr
0 0

2
1

+3 / o™ —u]: V- (™ —-u)dr
Q

+ / f.(u't —u')da.
Q

By the properties of Hooke’s tensor Ejjx,

2

1

B/ (VPP = V) de > —= / o™ +ul]: V. @t —u)dx
0 Q

2
—l—/f~ (W — u') dx
0

/Q (o™ : V- u""' —o]: V-u) dz

+ / f-(u™ —u)de.
Q

DN —
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Therefore we have

1
5/ (p‘VlJrl’Q—G—O'[qu] . €[ul+1]) dr —
Q

5 [ P+ o) o)) o -

f-utde

S— 35—

f-uldx] > 0.

By Definition 3.2,
Eu™ v > B!, v!) for any [ > 0.

O

Compared to the result of Lemma 3.3, the explicit Euler method is not suitable
to obtain boundedness and would not be reasonable in terms of a physical point of

view. Due to these reasons, we will avoid considering the explicit Euler method in

this thesis.
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CHAPTER 4
ELASTIC BODIES : COVERGENCE

4.1 Standard results for frictionless contact
We recall that if we use the implicit Euler method in equation of motion and

on boundary condition, total energy is dissipated, i.e.,
E(ul+1,vl+1) S E(ul,vl).

In this Section, we require the numerical formulation of motion equation and bound-
ary (contact) condition made by the implicit Euler method. Since the total initial

energy functional is finite,
B, v) < E(u’,v’) < oo foranyl>1.

According to bound of total energy for discrete time t;, we will see that the numerical
solutions u', v! are bounded in some spaces, independent of the time step size h. In
order to show this result, we begin with a discrete nonlinear version of the Grownall
Lemma. See the detail in [53].

l l

In this Section, instead of notations u', v!, we write those as u*"

, v to show
the dependence of h more explicitly. We recall the partition of time [0, 7] used in
Section 3.3. Then 0 < [ < T'/h and t, = lh for t; € [0,T]. Also we note that as h | 0,

Ilh —tel0,T].
Lemma 4.1. Suppose that y*" = y° >0 for all h > 0 and

yn+1:h < yn:h + hG(yn:h, h>’ n = O’ 1, 2’ S (41)
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where G(y, h) is nonnegative, locally Lipschitz continuous and monotone increasing in
y with Lipschitz constant independent of h and G(-,h) — g(-) uniformly on compact

sets as h — 0. Suppose also that the initial value problem

has a unique solution. Then

limsup y*" < k(t) for allt >0 and somel > 1,
h10

where k(t) < 400 and t = lh.

Applying Lemma 4.1, we will derive the bound of virtual work by external

forces, not depending on h.

Lemma 4.2. Assume that £ does not depend on time and neither E(u° v°) nor
fo ~ubhdx is not zero for any 1 > 0. Then as h — 0, we have a function k(t)

such that

limsup/ f-udr <k(t) fortel0,T].
Q

R10,lh—t

Proof. For any [ > 1 we put

l:h

Yyt = . (4.2)

/ £ uhdx
Q

Obviously, ¢y > 0 for 0 <1 < T/h. Now we need this form

lerl:h S yl:h 4 hG(yl:h,h).



From (4.2), for A > 0 we have

I+1:h I:h
y T —yth <

/ f-(u™ —u)de
Q

h
/ f. (v vhde|.
0

2

From the total energy functional and the property of Hooke’s tensor Fjjj,

. . 1 . . . .
E(ubh, vihy = 5/ (p|vl’h\2—|—a[ul’h]:s[ul’h]) dm—/f-ul’hdm
Q Q
1 } )
> épHvl’hHig(Q)—/f-ul’hd:z;.
Q
Thus
Lh 2 Lh Lk Lk
V"2 < /= | E(ubh, vEr) + [ - ubhde

P Q
2

<

—\/E(uo,vo) + / f-ubhde.
P Q

Simply, we put E(u’,v") = E. Then we have

. 2
HVl’hHLz(Q) < \/;\/W,
. 2
HVl+1’h||L2(Q) S \/; /EO + yl—i-l:h'

Thus by (4.3),

yH—l'h . yl.h < EHfHLQ(Q) (Hvl"t‘17h||L2(Q) + Hvl,hHL?(Q))
h
< = lfllue) (VE + 5 VED )
V2p ()

So we obtain

I+1:h

h
VE +y ik <yt |2 0) vV EO + yth.
5 fllezco

g
Yy \/% L2(Q)

55

(4.3)
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Let
Pyt h) =y - \/LQ—[)HfH(LQ(Q))dV EO + yitth (4.4)
and
Dy h) =yt \/—HfHL2 oV E® 4yt (4.5)
Thus
oyt By < Wyt ). (4.6)

Consider continuous function in terms of only y. Then

o(y,h) =y — —HfHLQ(Q VE°+1y for any y > 0.

Putting h > 0 be sufficiently small, we have

Doy, h
Sp(y )_1__HfHL2 @ (E0+y) 1/2'

dy 2v/2

Then (-, h) is strictly increasing for the fixed h > 0. So inverse function o~'(-, h)

—1 on both side in

exists and is strictly increasing. Now taking inverse function ¢
(4.6), we have y™t" < 7 ((y"", h), h). Let o~ (¥ (y™", h), h) = y"" + hG(y"™", h).
Then,

W R )
/ .

Gy h) =7 (4.7)

First, we claim that G(y, h) > 0 and is monotonically increasing in y. In order
to show that G(y%", h) is monotonically increasing in y, it is sufficient to show that

0G /0y > 0. Now take a derivative with respect to only y. Then we have

9G(y,h) 1 (9~ (¢(y, h),h)
—5 =% ( 2 — 1) . (4.8)
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By implicit function theorem, we can simplify ¢! (¢(y, h), h) into ¢~ (y*, h), where
y* = 1Y(y,0) for some y* > 0 and y* = ¥(y, h) is well defined in some neighborhood

of h = 0. Thus from (4.8)

aG(y,h) 1 (390‘1@*,/1) B 1) '

dy  h oy

Since D~ (y, h) /By = [0p(y, h)/dy] ", for sufficiently small h > 0 we obtain

%{;ﬁjh) - [1 - %Hf“m(g)u@o + y*)l/ﬂ -1
— [1- s e+ )]
Therefore
oGy, h) 1

Kb E([1—%%HfHL%m(EOer(y,h))1/2]_ —1)

1£]lL2(0)/ v/8p(E® + 9 (y, h))
1= h|[fllL2()//8p(E° + 4(y, h))

> 0. (4.9)

Next , we want to show that G(0,h) > 0. From (4.7) we obtain

G(0,h) = wl(thHL%Q)h\/ﬁ/\/%, h)'

Since ¢1(0,h) > 0 and ¢! is strictly increasing, G(0,h) > 0.

From(4.9), 0G(y, h)/0y is bounded for y < co. Since ¢(y, h) and ¥ (y, h) are
continuous in y > 0, G(y, h) is locally Lipschitz continuous.

We want to find g(y) such that G(y,h) — ¢(y) uniformly on compact set as

h — 0. By implicit function theorem,

—1 *
: ey k) —y
e =



o8

Since ¢(y,0) =y and ¢~ '(y,0) =y,

i Gy ) — iy &0 7 00)

h—0 h—0 h (4.10)

Notice that ¥ (y*,0) = y* from (4.5) and recall that we put (y,0) = y*. Note that

for any h > 0

31#(9: h) h 0
=1+ —||f]|y2 E° 4+

Since 1 (y, h) is bijective in y, y* = y(0) by implicit function theorem. Therefore from

)71/2 > 0.

(4.10),

—1/,,% -1/, %
. eyt h) = (Y, 0)
lim G(y, k) = lim 2

Ot

Since ¢~ (¢(y, h), h), =y, taking p(y, h) = z,

Op~'(2,h)
Oh

dp~Y(z,h) 0z N 0o~ (2, h)
0z oh oh '

Then putting h = 0,

¢~ (y,0) dp(y,0) N oo~ (y,0)
Jy oh oh
¢(y,0) +(9<P’1(y,0)
oh on

(4.11)

Therefore using (4.11),

. e (TN )
MGy h) = =
dp(y*,0)

Oh

1
—%Hfﬂw(m VE?+y*
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1
\/—2—prHL2(Q) E° +(y,0)

1
7§ﬂﬂﬂm>lw+y

So we have

1
9(y) = \/—2—prH(L2(Q))d\/ E+y ash—0.

We claim that the initial value problem

dk

- = 9(k) VEO +k,  k(0) =y

1
= \/—2—prHL2(Q)

has unique solution. This ordinary differential equation has unique solution

1/t 2
k(t) =~ | —=|If|lr2@ + 2(E° +y")*) — E°.
=1 (Sl + 25+ ")

Therefore by Lemma 4.1, the result follows. O

Before we verify the next Lemma 4.3, we mention a continuous linear interpolant,
denoted by u”(x,t). The value u(x,t) is the continuous linear interpolant of u'" =
u”(x,1h) and utth = u"(x, (I + 1)h) for t € [lh, (I + 1)h]. Similarly let v"(x,t) be
a continuous linear interpolant of v = v(x,(h) and v/*5h = vh(x, (I + 1)h) for

t € [lh, (I 4 1)h].
Lemma 4.3. Suppose that

limsup/ f-u(x,t)de < k(t), Vtel[o,T].
Q

h10,lh—t

Then v are uniformly bounded in L>(0,T;L*(Q)) and u" are uniformly bounded in

Whee(0,T;L3(Q)) and L>(0,T;H (Q)), as h — 0,lh — t.
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Proof. Since E(u',v') < E(u° v?) for any [ > 1,

5 [ O 4 ot efu®) do— [ £t do < BW00)
@ Q

Then by our assumption, we have

5 | (9P + ol eful™]) do < B, ) + k().

From the property of Hooke’s tensor Ejjj;, there exists a constant m > 0 such that

%/ﬂ (p|V"")? + m|e[u™"]]?) dx < E(u®,0°) + k(t). (4.12)

Thus we have

limsup ||[v5"||p2@) < 0o for any [ > 1. (4.13)
h10,lh—t

Since v"(x,t) are the linear continuous interpolant, v are uniformly bounded in
L>(0,T;L3(%)).
Next, we claim that u” are uniformly bounded in W1>(0,T; L2(£2)). Now we

consider
t
u(x,t;) = u(x,0) +/ v(x,7)dr for any [ > 1.
0

Then we obtain

t
a2y < !\UO\!L2(9)+/O [V(T) L2 dr
T
S HuOHLQ(Q) -+ max HV(T)HLQ(Q) dT
o<r<T
T
S HUOHLQ(Q) —|—/ k(T) d7'.
0
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Since u’ € H'(Q2) and k(t) is bounded,

lim sup [|u""|r2(q) < oc. (4.14)
h10,Ih—0

Since v"(x,t) and u”(x, t) are the linear continuous interpolants, by (4.13) and (4.14),

[ ()l 0.miw2(0)) = ess supoi<r (V" (8) 2@ + ([0 (8)[[ra@) < oo.

Also we claim that u" are uniformly bounded in L*(0,7;H!(2)). Using

Korn’s inequality (Theorem 2.8) with (4.12) and by (4.14), we obtain

0" ()] o= 0,701 (@) < 00,
as required. =

Note that a continuous function k(t) used in the Lemma 4.3 may be different
for each occurrence. In order to achieve the boundedness of N' in the Sobolev space
H=/2(09), we could need nicer spaces for u” and v". In the next Section we will see
how to derive an estimate of N! which is depending on time step size h, using Fourier
transform and Extension operators. Basically we will use the spaces discussed in the

previous Lemma, in order to do so.

4.2 Sharper estimate for frictionless contact
In this Section, we obtain a uniform estimate of the contact force N! in the
Sobolev space H~/2(0Q) at each time ;, employing the implicit Euler method. We
note that the linear complementarity problem condition will not be used to derive
the estimate. Other numerical schemes with the linear complementarity problem

condition would be employed to obtain better estimates.
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4.2.1 Implicit Euler method
We recall the numerical formulation of motion and the boundary condition

applied by the implicit Euler method:

Gt = h_2v colut] + h—2f + hv! +u (4.15)
2 2p ’ '
ou™'] = N'n onoQ. (4.16)

In this Section our aim is to derive an estimate of N' on H~/2(92), based on (4.15)

and (4.16).

4.2.2  Extension operators exty : HY/2(9Q) — H'(Q)
According to Trace theorem 2.7, there is a continuous linear operator tr from
HY() onto H/2(9). Then the operator tr has bounded right inverse. See, for
example, [47]. In the next Subsection, we will construct a family of the bounded
right inverse operators exty, : H'/?(8) — H(Q), i.e., tr o exty = I;1/2(50), where [

is identity map and k is a positive number.

4.2.3 Results on the half space R%
We start by obtaining estimates for the geometrically simple case 2 = Ri =
R%! x Ry. Since 92 = R4 x {0} can be identified with R4 we write x =
(X, z4) for any x € R? so that Q = {(X,z4) | 74 > 0} and 9Q = {(X,74) | x4 = 0}.
Now we want to construct the concrete extension operator of the form exty(w) = wu.
Before doing this, we introduce some useful functions; let i : R — R be a test

function of class C§° whose compact support is B = {X |x € R | x [< 1}, p >0
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and ||pl|1ma-1y = 1. For any o > 0, let po(X) = (1/a’ Hu(a™'X). When we
derive the estimate, we will have a natural choice of a(z4) = x4. As we shall see in
Lemma 4.7, a(z4) = (x4)" for n < 1 will turn out to be inappropriate in the process
of deriving estimates.

For w € HY2(0Q) and u € H'(S2), we want to use the extension operator

exty(w) = v which has the form

W) = [ w& = Fpote §)d5 - (1= k) (4.17)

where ¥ = (y1,92," -+ ,Ya—1) and dy = dy1dys - - - dyg—1. This idea is based on Lars-

Erik Andersson’s paper [1].
Lemma 4.4. Iflim,, o a(zy) = 0, then lim,, o u(X, z4) = w(X).

Proof. From (4.17), the Fourier transform of w is

Flu] (E, Id) = (2m) @ D(1 - kxd)+/

[ R Do) 85| i
Rd-1 Rd-1
Using substitution Z = a~'y and putting B = (27) "4 (1 — kxg),,

=7 . .1
/ e ¢ / w(X —y)
Rd-1 Rd-1 [0

L (a15) dy] i

Sy

Flu) (E, xd> =

/ e %E / w(X — a(zg)z) dlflu(z)ad—l d%} dx
Rd-1 Rd-1 Q

Il
v

e ale)d) |

Rd-1

I
Sy
T

1(Z) d%} 4%,
Ri-1 |

Recalling that ||| ;1 ge-1) = 1, we have

Flu] (E, xd> = (2m)" @D (1 — kay), / e e (X — alrg)Z) dX.

Rd-1
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Thus if lim,, |0 a(zq) = 0, Flu] <E, xd) = Flw] (E) Therefore if lim, |0 a(zq) = 0,

lim u(X, z4) = w(),(v)
zql0

0
Lemma 4.5. From (4.17), we have Fourier transform
Flul(€ wa) = 2m) (1 = ka)s - Flw)(€)Fptaga) (€)-
Proof. Putting B = (27)~@=Y/2(1 — kay),,
F@ed = B[ [ [ oG S @) i
Rd-1 Rd—1
= B/' eﬁﬁww@—yﬁkL/ eiﬁu@mmdﬂ.
Rd-1 Rd-1
Using substitution X —y = z,
A€z = B[ @i [ o, @)
Rd-1 Rd-1
= (@m) YR = kza)s - Flw)(€) Flitaa) (€).
O

Lemma 4.6. From the definition of jia(z,),

Flua)(€) = Flu)(af).

Proof. The Fourier transformation of ji(,,) has

Flual(€) = (27)(d1)/204(d1)/ e’ig';‘u(&’li) dx.
Rd—1



65

Using substitute a™'x =y,

Flual(€) = <2w><d””@(d”/ e ()N dy
Rd-1

= en R [ )

= Flul(af).
U
Lemma 4.7. From (4.17), we obtain a estimate
‘U‘Hl(ﬂ) < C\/H—kHwHHl/Q(z?Q)
Proof. The H'(€)) semi norm is written as
[ul2ps ) = /d / [ 3 aug;xd) %x’fd) 2] day dX. (4.18)

Let |Vzu(X, 74)|* = 3200 [0u(X, 24)/0x;[*. In first term of the right side (4.18), by

Plancherel’s Theorem (2.1), Theorem 2.2, and Lemma 4.5,

/ Viu(®, zg)2dR = / & |Flu)E )| i@ (4.19)
Rd—-1 Rd-1
= 5[ [{ ]Fu@] [Fhca @] & @20
Rd-1
where B = (2m)471|1 — kxy4|?. Note that
OF[u] <§, xd) oul ~
e, {axd} (&, za). (4.21)

In the second term of the right side (4.18), by Plancherel’s Theorem and (4.21), we
have

Ju(X, xa) Qd;(:/ M ng (4.22)

al'd

o

8:1:d
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Using Lemmas 4.5, 4.6 and chain rile, for 0 < x4 < 1/k we have

OF[u](€, z4)

al'd

= (2m)F Flu] (€) me (atwa)€) + (1 - fmTN]

= (2m)F Flu] (€) Ey (alwa)€) + (1= ko) ¢ ]

= ) Flul (&) |-kl (alw€) + (1~ ke 557 (&) VFla(eB)|.

Thus using (4.22), and applying Cauchy—Schwartz inequality and the fact that (a —

b)? < 2(a® + b?) for a, b € R, we obtain

/ L‘fj’ )|’ (4.23)
Rd-1 Ld
<20 | 1 [ (1l (&) 6] |9 (ate0€)| i
20m 0 [ {F(l (8) ][l (atwf)|
Note that since 0 < z4 < 1/k, |1 — kx4| < 1, the first term of right side will be
2(27r)d! % 2 (1 — kxy)? /Rd1 Flw] (E) i 52 VF|u (&(xd)g> QdE
< omy 122D ) (&) fe |91 (o) &

Since p € Cg°(RY!) has compact support, F[u](€) goes to zero faster than any
rational function of ’E) Also note that since V.F[u] (E) = iXu(X), VF[u)(€) decays

faster than any rational function of

E’ . So we can choose m to be a sufficiently large

—m

integer and choose a constant C' so that ‘]: (1] <E> ) :

o (€)= 1+ )
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Therefore from (4.20) and the first term of inequality (4.23),

2

2 -
3

Flo)@)| | Flttal @

2

(2m)* (1 — kxd)Q/

¢
Rd-1
da(zq)

2
dl‘d /Rdl

do(zg)
dl‘d

+2(2m)¢! W

(@)

N @
Mo G

1 + Od(xd)2 E

VFlu] (a(za)E)

< (2n)*C (1 + 2

Then integrating the above inequality with respect to x4,

2

e [ 1= ey e @) e @ €]

vatam [ o [ e (&) €[ (9t (atwaE) [ ] v
2 9 e 142 da(;j) _

scl;lq\ﬂM@ﬂ A <F+Mm;ajmmudé

Suppose that a(xzg) = (xg)". If n < 1, %ﬁd) is unbounded as x4 | 0. So let n > 1.

1/n ]
, we consider

Now taking substitution s = x4 )E

~11/n
1/k gl /k
// dry _ ‘a_l/n/‘ | ds
0 (

1+ (za)? |€ 2)m 0 (14 s2m)™
-1/ > ds
< & /0 T e (4.24)

provided that 2nm > 1. In (4.24), we can take the natural choice n = 1 so that the

integrand is bounded. So since m is sufficiently large, we have

/(Lm%mmg/)u+ﬁ1@:f
0 0 2
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Thus taking n = 1 so that a(zy) = x4, we have

en | R [ |, [ @] ]ﬂuamﬂ(éﬁd’é] dz

ooy [ 2 o [ e (&) | €] (9t (otwaE) [ ] v
<c | |g [Fmie) e

< C/Rdl Flu) (€) i (1 + ]E 2)1/2 dE

= Cllwl /sy (4.25)

Finally in the second term of inequality (4.23), using Lemma 4.6 and the fact that

F1u] (8)] < Il mary = 1, we have

(2m)d- 124 /R N
< 2k? /R | (5))2d2dxd

< 242 /Rd_l Fluw] (E) i (1 n )E 2) v dE dz,

= 2k?||w|F/2mat) (4.26)

2

Flu) (alea)E)| dE e,

Flu (€)

Therefore combining (4.25) with (4.26), we have
|U|§{1(Ri) < C||wH12LIl/2(Rd—1) + 2k||w”12ql/2(3d—1)'
Taking C; = max{C, 2}, we obtain
‘uﬁ{l(Ri) < Ci 1+ E) w2 a1y

as required. O

Note that C used in the Lemma 4.7 is independent of w € HY/2(R*!) and k.
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Lemma 4.8. For all w € HY*((Q),

1
Jeats(w) ey < O lwlsm)

Proof. There is a w € HY2(98) such that exty(w) = u for any u € H'(Q) C L*(Q).

Using Plancherel’s Theorem and Lemma 4.5,

HUH%Q(Q) = H}—[U]H%%Q)

= (2m)@D /Ol/k(1 — kxg)? [/Rd_l
- " /|, 7€)
< C/Ol/k /Rd_l Flu] (Z)‘Q (1+ )Zf)m dédr,

1 2
= CEHU}HHW(@Q)‘

Flul (&) |Fbroceo] (€) €]

2 ~
dﬁdl’d

Therefore the result follows. O
Lemma 4.9. From Lemmas 4.7 and 4.8, we obtain
lesti(w) @) < CVRIwl o2(on

Proof. By Lemmas 4.7 and 4.8,

Heth(w)Hfm/z(aQ) = Julfg) + ull2)
1
< C(1+ k)HwH?{UQ(aﬂ) + CEH“’H?{U%@Q)

< CkllwllF200),

as required. O
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GENERAL DOMAIN  Q

v

W,
X Rd-l

Figure 4.1: The diffeomorphism V¥, : U, — V.

4.2.4 General domain 2

Consider a bounded domain 2 C R? with smooth boundary. In fact, it is
enough that the boundary is C'. For any x € 91, we can have diffeomorphism
v, : U, — V., where U, is neighborhood of x and V, is neighborhood of 0 in Ri.
See Figure 4.1 for the illustration. In V,, we find a set W, C R4 x {0} which is
containing origin and relatively open in R4~ x {0}. Consider the closure of {(x, z4) |
0 <d(z,W,) < x4, 0 < x4 <1/k} which is subset of V,,. Then for sufficiently small
1/k, we can find such a set W,.. Let ;1 (W,) = Z, C 9Q so that Z, contains z and is
relatively open in 0€2. Thus Z, is open covering of 0f). Since 0f) is compact, there is
a finite subcovering {Z,,, Z,,,- -+, Z,,}. Use the partition of unity {¢1, ¢2, -+, dp}
subordinate to this finite covering. Choose a sufficiently large number £ > 0 such

that the closure of {(7,z4) | 0 < d(z,W,,) < x4 < 1/k} C V,,, for 1 < j < p. Now
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for w € H'/2(0Q), define

eth,j(’LU) = eth(¢jw ° w;ﬁ) © wxd'

Note that ¢,w € H'/2(0S2). Then by partition of unity, we can set

P
exty(w) = Zextkvj(w).

j=1
Lemma 4.10. ezt is right inverse of trace operator tr: H'(Q) — H'Y2(9Q).

Proof. For any w € H'2(9), we claim that tr o exty(w) = w.

—_—

troexty(w) = tr(exty(w))

= Ztr(extkﬁj(w))

= Z tr(exty (¢ w o 1%_]1) © tha;)

J=1
P

= S (pwourt) oy,

7j=1
P
= Z djw = w.
j=1

Therefore tr o é}?f;(w) = I2090)- O

Lemma 4.11. For general bounded domain Q C RY with Lipschitz boundary, we

have

ledt(w)llmey < CVEw]aon md (4.27)

— 1
| exti(w)|| 2@ < CﬁHwHHl/Q(aﬂ) for all w € HY?(0Q). (4.28)
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Proof. For general bounded domain 2 C R¢,

p
lexti(w)llm@ = 1) extij(w)llm @
j=1

IN

p
D llexti; (W)l o)
j=1
p
= D llexti((@wo vy o )l o).
j=1

Then for finite open covering {Z, |1 < j < p}, take U,, D Z,, such that Q = (JU,,,

and let ¢; be associate partition of unity. Thus for (;u corresponding to ¢;w, we have

P
lexti(w) || gy < ZHCJ"UHHl(Q)
j=1

p

< ZHCJ‘UHHl(Ri)
j=1
p

= ZC\/E’|¢jw||H1/2(Rd*1)
j=1
p

= Y OVElwlma,
j=1
p

= ZC\/EH%WHHU%Q)
j=1

< C\/%H¢ijH1/2(BQ).

Therefore
et ()l sy < CVEllwllogony-
Similarly, we have

— 1
lexti(w)][r2(0) < Cﬁ [wl| 1250 -
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Now using the estimates (4.27), (4.28), we derive estimate of the contact force

N'in H712(9Q) at each time t;.

Remark 4.12. We have dealt with the trace operator tr and extension operators ext,
on scalar functions. We can extend these on vector functions; we use the notation of
the trace operator as tr : HY(Q) — HY2(0Q) and extension operators as exty(w) :
HY2(0Q) — HY(Q). Indeed, for vector valued functions w € HY?(08) the trace
theorem has to be replaced by the decomposed trace theorem. See [32]. However,
notice that we do not consider the tangential components due to frictionless contact

conditions.

Lemma 4.13. For general bounded domain Q@ C R® with Lipschitzian domain, we

have

1

IN{|g1-1/2(00) = O (ﬁ) , as h — 0. (4.29)

Proof. We apply the extension operator e/:)?c/k described in Remark 4.12. There is a
w € HY2(99) such that exty(w) = w for w € H'(2). Then take the dot product of

w with (4.15). Then

h2
— [ (Vo)) wdz = /(<I>l —u™) . wdr inQ, (4.30)
2p Jo Q

where ®' = (h?/2p)f + hv! + u'. Recall that we used the implicit method for the

contact condition. By integration by parts on the left side of (4.30),

h2
— [/ n’ . ou-wds — / ou™]: Vw dx] = /(<I>l —u™) - wd.
2p [Joa Q Q



Thus we have

h2 h?
o Nn-wds = — [ o[u"™]: Vwdr + /((I)l —u) . wdx
2p Jaq 2p Ja Q
h? I+1 h?
= — [ ou"™]:Vwder+ — [ f - wdx

+h/vl~wdx—/(ul“—ul)-wdx.
Q 0

So using (3.7),

N'n-wds = /a’[ul+1]:dex+/f-wdx
Q Q

2
—|——p/vl-wdx—g/(vl+1+vl)-wdx.
h Ja h Ja

= /a[ul+1]:dex+/f-wdx
Q

Q

/ (Vl — VHl) -wdzx.
0

o0N

+

>

Therefore, we have

N'n-wds
a0

< +

/ ou™): Vwdx
Q

l
“h

/f-wdx
Q

/ (Vl — VH—I) -wdx
0

Since o[u™!] : Vw = Ejjpult'w; ;, we obtain

N'n-wds| < Cllu"™uiollexts(w)|[e ) + Il o)llexti(w)]|Lao)

o0N

p —
+s (V' ez + IV l2@)) llexte(w)|r2(q)-
By Lemma 4.11,

N'n-wds| < Ckm”‘ll“HHl(Q)HWHHW(aQ)+C/ffl/QHfHLQ(Q)HWHH1/2(aQ)

o0

kfl/Q kfl/Q
+ (CEE Wl + I s ) Il

74
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Therefore,
sup N'm-wds| < CEY2|[u"™ gy + Ck||f||L20
||W||H1/2(8Q)S1 o0
k_1/2 k_1/2
+C h HVlHLz(Q) + C 3 HVl-i-lHLQ(Q).

Put k = 1/h. Then we have

1
HNIHH*UQ(@Q) S CﬁHulJrlHHl(Q) + C\/EHfHLQ(Q)

1 1
OV iz + OV o

Thus by Lemma 4.3, we have

1
HNIHH*1/2(BQ) =0 (ﬁ) , ash—0.
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CHAPTER 5
EULER-BERNOULLI BEAM IN DYNAMIC CONTACT : PENALTY
METHOD

5.1 Formulation of Euler—-Bernoulli beam
with Signorini’s contact condition

We recall Section 1.3. Then the function f(x,t) is the body force applied to
the rod; and time ¢ is in between initial time and some fixed time 7. We will assume
that p, A, and E and I are constants. Note that we use the right end z = [ instead
of x = L in this Chapter.

The Euler-Bernoulli equation with Signorini’s contact condition comes from
the following physical situation illustrated in Figure 5.1.

If we impose frictionless Signorini’s contact conditions along the length of the

rod, we represent the equation of motion

0*u *u

where the magnitude of the vertical contact forces (pressures), N(z,t) satisfies the

linear complementary condition

0< N(xz,t) L wu(z,t)+g(x)>0. (5.2)

Note that g(x), called the gap function, displays a measure of the “the initial normal-
ized gap” between the rod and the rigid foundation. We assume that applied body
force f(x,t) = f(z). So body force f and gap function g do not depend on time t.

We also assume that the gap function g(x) > 0. Note that we can scale ¢ and z to



x=0

x=1

A

ROD

RIGID OBSTACLE

VAN

Figure 5.1: Euler-Bernoulli beam with frictionless contact.
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get pA =1 and EI = 1. (However, we cannot simultaneously scale [ = 1.) From the

physical point of view, LCP condition can be interpreted as the same way as contact

conditions of elastic body.

Thus we are lead to consider solving the following PDE:

0 < N(z,1)
(0, 1)
Uag (1, 1)
u(z, 0)

u(z,0)

—Uggze + f(I’) + N(I,t) in (07 l) X (O7T]7

u+g(x) >0 1in (0,1) x (0,77,

u.(0,¢) =0 on (0,7,

Uzze(l, 1) =0 on (0,71,

u(z) in (0,1),

v'(x)

in (0,1).

(5.3)
(5.4)
(5.5)
(5.6)
(5.7)

(5.8)

We assume that f € L*(0,1), u® € H2;(0,1), v* € L*(0,1). Indeed this implies that we
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can assume that the initial energy is finite. We also assume that g € C'*°[0,], and
g(0) > 0. Equation (5.5) gives the essential boundary conditions for the clamped end
at © = 0, while (5.6) gives the natural boundary conditions for a free end at x = .
Note that the last two equations (5.7, 5.8) are the initial conditions. The solution u
that we seek is in the space L>(0,T; HZ:(0,1)) "Wh*°(0,T; L*(0,1)) N C([0,1] x [0, T])
where H7;(0,1) is the subset of H?(0,1) which satisfies the clamped end conditions at
x =0 (u(0) =0, «/(0) = 0) with the same norm. Note that the subscript “c” denotes
“clamped” and “f” denotes “free”. Let HZ;(0,l) denote the subspace of H®(0,!)
that is the closure in H® of the set of all C'°[0,[] functions satisfying the clamped
end conditions at x = 0. The normal contact force N(x,t) is a Borel measure on
[0,1] x [0,T].

Note that to interpret (5.4), we require that /N is a non-negative measure on

0,1] x [0,T], u(x,t) + g(x) > 0 for all (x,t) € [0,1] x [0,T], and that

/0 /0 N(z,t) [ulz, £) + g(x)] de dt = 0. (5.9)

We will set up an approximate penalty formulation with a penalty parameter ¢ >
0. Then we will show that the approximate solution u. exists for a fixed penalty
parameter €, and that this solution conserves energy (including the energy associated
with the penalty). Furthermore, the integral of the normal contact force over space
and time fOT f(f N (x,t) dx dt will be shown to be uniformly bounded as € | 0, and
so there is a weakly™ convergent subsequence in the space of measures. However, to
establish convergence of a subsequence we need still more regularity; we will prove a

uniform bound on u, in C?(0,T; H'/?>*7(0,1)) for suitable values of p, o > 0.
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5.2 Existence theory

The existence theory that we develop here is based on eigenfunction decom-
positions for the homogeneous Euler—Bernoulli equations which are studied in Sub-
section 5.2.1. A penalty approximation is then described in Subsection 5.2.2 where it
is shown that wu, exist for penalty approximation via fundamental solutions. Energy
conservation is shown for the penalty approximation in Subsection 5.2.3, which is
used to obtain uniform bounds on the H? norm of u. and the L? norm of 7, in space.
In Subsection 5.2.4, bounds are obtained for the integral of the normal contact force
over both space and time; this is used to uniformly bound the normal contact force NN,
in the space of measures. In this Section, it is shown that any limit of u. must satisfy
the constraint u + g > 0 mentioned above. To complete the proof, we need stronger
regularity that can be obtained from energy bounds. This is done in Subsection 5.2.5.

Finally, the proof of existence is completed.

5.2.1 Decomposition into eigenfunctions
Since the fourth order differential operator K = 9*/0z* is an elliptic self-
adjoint operator with our boundary conditions, we have a sequence of real eigenvalues
0< A <A< A3 <---and lim;_ o A\; = oo, and the eigenfunctions ¢; are orthonor-
mal basis in L?(0,1) with 9*¢;/0xz* = \;¢;. Then for the penalized PDE system, we

can write

ue(, t) = Y _ue(t)oi(x). (5.10)
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Before we solve the PDE (5.25)-(5.29), we first will need to consider the fundamental
solution w for Linear operator 9?/9t* + K, where K is the above operator. We will

solve the equation

Wy = —Wyaee + 0(f) - §(z — ")  for a fixed point 2™ € (0,1) (5.11)

with the initial conditions (w(z,0) = 0, wy(xz,07) = §(x — 2*)) and the the same
boundary conditions as (5.26) and (5.27): w(0,t) = w,(0,t) = 0 and w,,(l,t) =
Wy (l,t) = 0. The solution w(z,t) can be solved by means of the eigenfunctions ¢;.

Thus suppose that

¢ = N, (5.12)
$i(0) = ¢;(0) =0, (5.13)
o;(l) = ¢'()=0. (5.14)

Then we can write

w(z, t) = Y wilt)gilx). (5.15)

Since for t > 0, wy(z,t) = =Wy (x,t) from (5.11), using (5.12) and (5.15)

Z(wi>tt(t>¢i(x) = - Z w;(t)(Pi)zzza(T) = — Z Aiw;(t)di().

Thus we obtain

(w)u(t) = —Nw;(t) for t > 0. (5.16)

We can also extend w(z,t;z*) = 0 for ¢ < 0.
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Lemma 5.1. The fundamental solution of equation (5.11) can be represented in

terms of the eigenfunctions as

. 51n()\1/2t) . o
w(z, t; ") = Z T@(z)@(m ) for the fized point x* € (0,1).

=1 7

Proof. From the ordinary differential equation (ODE) (5.16), we have

A;sin(\, / t) + B, cos )\1/215
w;(t) =
1/2,

By the initial condition w(z,0) = 0, B; = 0 for all ¢ > 1, and thus w;(t) = A;sin \;

From (5.15),

= ZAZ-)\il/2 cos(A*t)gi(z)  for t > 0.

=1

Applying the initial condition wy(z,0%) = 6(z — z*),
(z,0) = Z AN di(x) = 6(z — ). (5.17)

Multiplying by ¢, for each j > 1 and taking a integral over (0,1) on the both of last

two equations of (5.17),

/OZAMi/Qd)i(x)abj(x)dx:/o 5z — )¢, (x)dz.

Thus we find A; = A;lﬂqﬁj(m*) for each j > 1. Therefore from (5.15), we have

oo . 1/2
w(z, t; ") = Z m;\#ﬂgbz(x)qﬁz(x*) for t > 0.

i=1 i
0

Lemma 5.2. Under the assumption (5.12)-(5.14), we have a constant M such that

< > 1.
g?;?i{l‘d)z( )| <M < oo foreachi>1
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Proof. From ODE (5.12), we have the solution
oi(x) = Aie’\;/% + Bie_kg/% + sin()\i/4x) + D; cos(/\;/%) for each i > 1.
Using the clamped boundary conditions (5.13), we have better form of the solution
¢i(x) = —D;[cosh(A/*z) — cos(\*z)] — Ci[sinh(\*z) — sin(A*2)].  (5.18)

Using the boundary condition (5.14), we have a homogeneous linear system
cosh(A*1) + cos(A\[/*1)  sinh(A)/*1) + sin(AM47) D; 0

- . (5.19)
sinh()\;/4l) - sin()\i/lll) cosh()\i/lll) + COS()\Z-IMZ) C; 0

In order to obtain no trivial solutions C;, D;, the determinant of system (5.19) has
to be zero:

[cosh( A1) + cos(A*1)]? — [sinh?(A\)*1) — sin?(A/*1)] = 0.
That is,

COSh2()\§/4l) +2 cosh()\zmll) Cos()\i/lll) + COS2()\§/4Z) — sinhQ()\g/Lll) + sin2()\il/41) = 0.
Using the well-known facts that cosh? z — sinh? z = 1 and cos® z + sin? z = 1 we get
242 Cosh()\ylll) cos()\g/4l) = 0. So the eigenvalues \; satisfy the equation

—1/ cosh(A*1) = cos(A*1). (5.20)

1

Note that as i becomes large, A /4 o (2¢ + 1) /2l. From the homogeneous system

(5.19), let —D; = c[sinh()\il/4l) + sin()\il/4l)] and — C; = —c[cosh()\i/zll) + COS()\Z-l/4l)].
Then plugging C; and D; into (5.18), we have eigenfunction
oi(z) = c[sinh()\z-l/4l) + sin()\il/4l)][cosh()\y4x) - Cos()\;/4x)]

- c[cosh()\;/lll) + Cos()\i/zll)] [sinh()\il/%) - sin()\i/zlx)]. (5.21)
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So using the orthonormal property of the eigenfunction ¢; (||¢il|z2 = 1), we can find
1/4
c. Put \;"" = a and ¢; = ¢. Then

2
c . .
9]l z200) = 1 {[al + cos*(al) — 3sin(al) cos(al)]e**

+ [4al sin(al) — 6 sin(al) — cos(al)]e™
+ [2al — 4al cos*(al) — 6 sin(al) cos(al)]
I

— [4al sin(al) + 6 sin(al) + 6 cos(al)]e™

+ [al — 3sin(al) cos(al) — 3 cos*(al)]e "} . (5.22)

For sufficiently large al (\; > [7%), the last three terms of (5.22) are bounded. So

focusing on the dominant term, we have

al

4@62(11 4 O(eal)] — 62€2al [(l/4) 4 O(efal)]

L= [6lBe0p = & [

Taking the positive sign, ¢ ~ [(2/1"/2)e= + O(e~2*!)]. Plugging this into (5.21) we
obtain

e—al
b(z) ~ 2;1/2 {[sinh(al) + sin(al)][cosh(az) — cos(az)]

— [cosh(al) + cos(al)][sinh(ax) — sin(ax)]}

2€fal 6al eal

= iz {[7 + O(1)][cosh(az) — cos(az)] — [? + O(1)][sinh(az) — sin(ax)]}

= ll% {[1 + O(e™™)][cosh(azx) — cos(ax)] — [1 + O(e~™)][sinh(az) — sin((m:)]} )

Since e~ cosh(ar) < e=**) < 1 and e~ sinh(az) < e~*=% /2 4 O(1) = O(1), we

have

1
oi(x) ~ —[cosh(/\<1/4x) - sinh(/\1/4x) +O(1)] = 0(1), for sufficiently large A;.
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Since coshz — sinhz < 1 for z > 0, max, sup, |¢;(z)| is bounded and the result

follows. O

The next Proposition is useful to prove Lemma 5.16.

Proposition 5.3. Assume that w € Hé;+1/2)/4(0,l) for any o > 0. Then for the
elliptic self-adjoint fourth order partial differential operator K = 9*/0xz*, the norms

1
w i ||w|| go+1/204) and w (HK("H/Q)/‘%UH%Q(OJ) + [lwll22 l)> are equivalent.

5.2.2 Penalty method
As an alternative to the original Euler—-Bernoulli equation with the Signorini’s
condition, we consider a penalty formulation which provides a more satisfactory in-
formation for an approximate solution wu.. See the details in [32] for the detailed
arguments. We define the sequence of contact force, N, as a penalty function for the
constraint u 4+ g > 0,
N, = %cp o(—g—1u), €>0, (5.23)
where

o(s) =14 (s1)?—1, with s, = max(s,0).

Note that ¢ is C' with bounded 2nd derivatives everywhere except at zero. Now
taking the penalty functional N, in (5.1) instead of the contact force N, we obtain

the penalty formulation

(e = ~(e)ases + F(2) + Zp(—g — ) for e >0, (5.24)
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We have approximated the linear complementary condition (5.4) with a penalty term.
Now that we have the penalty formulation, we will begin with solving the penalized

boundary value problem:

(Wa = ~(uess + (@) + o0 (g —u) i (0,0) x (0,T], (5.25)
ue(0,t) = (uc).(0,¢) =0 on (0,7, (5.26)
(el 1) = (0)aasll, ) =0 0n (0.7], (5:27)
u(z,0) = w(z) in(0,1), (5.28)
(w)e(2,0) = wi(z) in (0,1). (5.29)

We will assume that f € L*(0,1), uy € H2;(0,1), and v; € L*(0,1). Note that by
scaling x and t appropriately we can put pA = EI = 1 in order to simplify our
computations. In Lemma 5.5, we will show that the approximate solution u. exists

using the Banach fixed-point theorem.

Lemma 5.4. The homogeneous system (ue)y + (Ue)pzze = 0 has a solution

! !
Ue hom (T, 1) = / w(z, t; %) vy (2*) da* —I—/ 38_1:(%15; x)uq (") dx”.
0 0

Proof. Since ¢}"(z) = \i¢;(z) for each i > 1, using (5.10) we have ODE:

O*ul(t)

52 T Nul(t) = 0. (5.30)

Thus the solution of (5.30) is ui(t) = Asin()\i/Qt) + Bcos()\il/Qt) for each i > 1. So

o0

uc(z,t) =Y _[Asin(\[*t) + Bcos(\*t)]gi (). (5.31)

)
i=1
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From the initial condition (5.28), we have

ue(z,0) =Y " Béi(x) = uy(x).

i=1

Similarly, for z* € [0, (] we obtain

Since ||¢;|lr200 = 1, B = fo uy (x*)¢;(x*) do*. From the initial condition (5.29), we

have

ZAA%Z = vi(z).

Similarly, we can obtain A = )\;1/2 fol vi(x*)p(z*) dx*. Therefore plugging A, B into
(5.31),
ue,hom(xat) = Z

=1

: sin( /2
- [ st

/Zcos AP t)pi(x)ug ()i (x™)dx
I l
= /Ow(x,t;x*)vl(x*)dx*—i-/o aa—zf(x,t;x*)ul(x*)dx*,

sin(\/? t . I
[%/{) m(:ic*)@(x*)dx*chos()\/ t)/o ul(x*)@(x*)dx*] oi(x)

2

[e=]

as required. O

Lemma 5.5. There exists a unique solution u. of the penalty equations (5.25)-(5.29).

Proof. In order to show that the solution wu, satisfying (5.25), (5.28), (5.29) is a

solution of the integral equation, we first need to solve the homogeneous system of
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(5.25), i.e, (te)u + (te)zzze = 0. By Lemma 5.4, we have a solution u pem of the

homogeneous system:

1 l
Uehom (T, 1) = / w(z, t; ")y (x*)dz” +/ aa—f(x, t; " uy (2*) dz”.
0 0

In the inhomogeneous system (u)y + (te)zaae = f(x) + %(p o (—ue — g), the particular

solution e pqr is given by the integral equation:

vl 8= [ [ wtot = 00) [ 1)+ ottt ) - oo .

So the penalized solution is given by

ow

! !
uc(x,t) = /Ow(x,t;x*)vl(x*)dx*+/o E(x,t;x*)ul(x*)dx*—l—

/Ot /Ozw(:z:,t — s5;07) {f(x*) + %P(—ue(x*,s) _ g(x*))] d*ds(5.32)

Let the first two terms of (5.32) be

! !
r(z,t) = /0 w(z, t; 2" vy (z7)dz” +/0 %—?(z,t;x*)ul(x*)dx* in C(0,T; L*(0,1)).

1/2
Note that [ul|co,.r;L2(0.)) = SUPsejoy {fol |u(, t)]de} . Now we define a nonlinear

integral operator T' : C'(0,7T; L*(0,1)) — C(0,T; L?(0,1)) by

Tu(z, 1) = /Ot/olw(x,t—s;x*) lf(x*)—i—%(p(—u(x*,s)—g(x*))} do*ds.  (5.33)

We claim that T is a contraction mapping on C(0,T; L*(0,1)) for sufficiently
small T'. First we define the bounded operator as £; : L*(0,1) — L*(0,1) for the fixed

t€[0,7]

(Etz(-,t))(x):/o w(z, t;x")z(z", t) dz”. (5.34)
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If we express z(z,t) as z(z,t) = > o, zi(t)¢i(x), by Lemma 5.1 and (5.34), we

obtain

@l = [ [Z S““i?ﬂ) Dola’) -3 (06

i=1 % 7=1

= sin()\iﬂt)
= 2 g aa@leilixe

=1 7
sm()\l/ t
T)Zi(t)@(f)‘
=1 AZ

Now, we define the norm of a bounded operator as

L.z
T el Vo
etz 1220 el =1

Notice that > 57, z(t)? = 1, since ||z(-, ¢ = 1. This leads us to the estimate:

) HLQ(O,Z)

1Le2(-, t)”%?(o,z) = ))LQ(O,l)
1/2t)

( (
=, sin(\/? — sin(},
_ (Z . ”zi(m(.),Z%wm(-))

J=1 J

2 2
> 51n()\1/2t) 9 sm()\ll/Qt)

- T s [
i=1 i

. i>1
i 2z

EtZ(', t), EtZ ‘,t

L2(0,0)

Therefore the norm || £;]| of the operator £; : L*(0,1) — L*(0,1) is

1Ll = sup [[Lez]lr20)
2l L2 =1
< D] smul/?t)'
> i>1 )\;/2 —)\2)\1 /\1/2
= t{sup gggéifzz'::t sup nd
aoan | AV 0>\ 4

IN

. 1 o\ —1/2
¢t min <m, 1) =min(\; /7, t).
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From (5.33), take G(z, w) = f(z)+1¢ (—w — g(z)) for w € R. Note that G(-, u(-,t)) €
L?(0,1). Then operator w(-) — G(-,w(+)) is a Lipschitz operator on L?(0,1) with con-
stant 1/, i.e., for the fixed € > 0

1
1G (-, ui(-, 1) — G(ua(-, 1)) | 2200y < ;||U1('7t) — up(+, )| 220,

From (5.33) we have

Fue(-,t):/o L s(G(-, ue(+, 5))) ds.

Thus for (uc)1, (ue)2 € C(0,T; L*(0,1)),

1)1 (2, £) — D(ue)a(e )20
< / 1L lIGC (s (- 8)) — G (o, )|z onyds
< / min(\ " 1~ 5) 2|

Ll 0 [ (ue)1(+,8) — (Ue)2('75)“L2(0,l)d3

(ue)1 (v 8) = (ue)2(+s 8) || 200y ds

Therefore

sup [|T(ue)1(+, 1) — Tue)2 (5 1) | 20,
te[0,7

< 7 sup [(w)a () = (ue)a (5 8) |2 0)-
Ay T€ tefo,T)

So if T is small enough that Afl/QT < € for fixed € > 0, u — I'u + r is a contrac-
tion mapping on C(0,T; L?*(0,1)), for r € C(0,T;L?*(0,1)). By the Banach Fixed
point theorem (see, e.g., [55, Ex. 3.19, p. 113]), there exist a unique solution wu.(-,t)

of the penalty formulation for ¢ € [0,7]. By using continuation arguments as for
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ordinary differential equations [15, §4, pp. 13-15], there is a unique solution wu. in

C(0,T; L*0,1)) for any T > 0. O

5.2.3 Conservation of energy and energy bounds
In order to establish conservation of energy, we need to establish some stronger

regularity results.

Lemma 5.6. If vy € H2(0,1), uy € H(0,1), and f € H*(0,1), then the solution u,

of the penalty equations (5.25), (5.26), (5.27) is in C*(0,T; HZ(0,1)).

Proof. Since we have established that we have a solution u, € C(0,T; L?(0,1)) from

the previous Section, we note that the penalty equation can be written as

(ue)tt + (ue)axz:m: = f + %90 © (_ue - g)

and the right-hand side is in C'(0,7T; L?*(0,1)). We can then apply standard regular-
ity theory for linear hyperbolic PDEs (e.g., [47, Thm. 10.8]) to conclude that u, €
CH(0,T; L*(0,1))NC(0, T H2;(0,1)). This means that o(—u.—g) € C(0,T; HZ(0,1)).
Putting f; = f+po(—u.—g) and expanding in terms of eigenfunctions, the solution
can be written as u.(z,t) = >, uei(t) ¢i(x) where

Uei(t) = cos(A*t) ()i + AP sin(A2E) (vr); + / t A sin(NP (- 7)) foi(r) dr.
0

We can easily see that

e g(t) = =M sin(A2) (ur); + cos(A%t) (v1); + / t cos(A2(t — 7)) foa(r) dr

0

and using the equivalence of the norms, u. € C*(0, T} Hff((), 1)) as desired. O
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For the penalty approximation, we define the energy functional as

1
E.fu] = / Buuemu%[(uemu}Do(—g—ue)—f<x>-ue dr,  (535)

where ®(s f 0

Lemma 5.7. Suppose that the approximate solution u. satisfies (5.25), (5.26), (5.27).

Then energy is conserved for u.. That is, E[uc(-,t)] is independent of t.

Proof. We first assume that u, v; and f are all as smooth as required for Lemma 5.6.

We claim that for any 0 < t; <t < T and fixed ¢ > 0,
[ |3t + Gt + 10(g(o) — o) — o) ot da
-/ 020+ o)+ 20(g) — o 2) — F0) el
o 120 20 o a

From the penalized formulation (5.25),

0 = |:(ue)tt + (ue>x:t:t:t - %90(_9 - ue) - f:| (ue)t
— ;515{( 07+ (uo)2, ( —ue)—2f.ue}
d d
d —((Ue)zwa(tic)e) — dr ——((Ue)z (Ue) 1) -
Thus,
%% (UE)? + (ue)?cac - %@(—g - ue) - 2f : ue:| - %((ue):m(ue)tx) - %((ue)xacx(ue)t)

(5.36)

For any 0 < t; <ty < T, taking an integration over the rectangle (z,t) € [0,1] x [t1, t2]

on the both side of (5.36),

/ / ot [“ “e)iﬁg@(—g—ue)—zf-ue] dx dt
/ / o (dani) = 3 () ean)| .
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So we have

5 | 1003 t2) = (o) + (il ) = (02 d

+1/0 [(I)(—g(x) — ue(.flf,tQ)) - @(—g(:ﬂ) - ue(x, tl))] dx

€

—/0 [f(2)ue(z, to)dx — f(x)u(z,t1)] dz
= / 2 [(Ue)ea(ly 1) - (ue)ia(l,t) — (Ue)az(0,8) - ()i (0,2)] dt

t1

+/ 2 [(uﬁ)xacac(lvt) ’ (ue)t(lvt) - (ue):m:v(ov t) ) (ue)t(ovt)] dt.

t1

From the boundary conditions (5.26), (5.27),
(ue)e(0,8) = 0 and (ue)(0,1) = (ue)2(0,¢) = 0.

Therefore the result follows for sufficiently smooth uq, v; and f.
For the general case, we note that if uf — u; in H2;(0,1), vf — vy in L*(0,1),

and f* — fin L*(0,1), then the corresponding solution u¥ — u. in C(0,T; H2;(0,1))N

CY(0,T; L*(0,1)) and we obtain energy conservation in the limit. O

Proposition 5.8. Assume that Y (t,-) is monotone increasing and Lipschitz continu-
ous for all t. If dy(t)/dt <Y (t,y(t)) and dz(t)/dt =Y (t,2(t)) and y(0) = z(0) = yo,

then y(t) < z(t) for all t.

Now we will assume that the initial energy is finite in terms of the physical
point of view. In Lemma 5.9, it is shown that f(f f(z)uc(x,t)dx is bounded by a

function of time ¢ only.
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Lemma 5.9. For any time t € [0,T], we have

< C(b).

x)ue(z, t)dz

Proof. Since f does not depend on time ¢,

/f uextdx—/f wiles O < | lzon @ )e®llzon.  (5.37)

Let (ue)(t) be a velocity function v(t). Define the energy function as

E(t) = ge[ue('v t)]

l
= /O B(ue)?(x,t) + ;(Ue) o@,t) + 1@( ue(z,t) — g(x)) — f(x) -ue(x,t)] do.

By the conservation of energy in the penalized formulation, we have
h ) 1
|5 |0+ (0 + La(-uot) - oo s
0
!
= E(0) +/ f(x) - ue(x, t)de.
0
Thus since we put (ue).(-,t) = v(-,t) for any t € [0, 77,

[o( Dl 200 < \/2 (E(O) +/0 /() 'ue(xat)dl’)- (5.38)

From (5.37), we obtain

d l
& | r@udenie < 1 lealo®lso

< HfHLz<o,l>\/2 (E(o) + /Ol flx) ~u€(a:,t)d:zc>.

Take y(t fo T)u(z,t)dz and

A

Y(t,y) = [ fllr20nv2 (E(0) +y),
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we have dy/dt < Y (t,y). Thus by Proposition 5.8, the result follows where C()

solves the differential equation dC/dt = | f|lz200+/2 (E(0)+ C(t)) and C(0) =
fo x) dz, provided E(0) > 0.

Note that we have a continuous function C(¢) of time only ¢:

o) = 3 { [lan ¢+ VEEG+00)] - 50}
0

Lemma 5.10. The approzimate solutions u. are bounded in L>(0,T; H*(0,1)), as

e — 0.

Proof. By the conservation of energy, for any ¢ € [0,7] we have
"1 ) 2
E(0) = 3 (i (@, ) + (ue)zu (@, t) + =®(=g(x) = uclx, 1)) | dz

/f - ue(z, t)d

Using Lemma 5.7,

wl»—‘

{ U+ (e, 1) 2 B( () — ulo t))] iz
B0 / F(@) - (e, da < B(0) + C(8). (5.39)
Thus we obtain

/Ol(ue)ix(x, t)dx < 2(E(0) +C(t)), for each e > 0. (5.40)

Using the Dirichlet boundary conditions (5.26), indefinite integrals and Hélder’s in-

equality, we can show that

! !
/ (uc)2(x,t)dx and / (u¢)*(x,t)dx are both bounded by function of time only.
0 0
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Therefore for any ¢ € [0, T, ||ue(t)| g2,y < 0o. This means that as e — 0,
HUGHLOO(O,T;HQ(O,I)) = Sup Hue(t)HHQ(O,l) < 0.
0<t<T
0

Lemma 5.11. The approzimate solutions u. are bounded in W>°(0,T; L*(0,1)), as

e — 0.

Proof. From (5.39), we have
!
/ (ue)?(z,t)dz < 2(E(0) + C(t)) for each e > 0.
0
Since for any ¢ € [0, T, |Juc(-,t)||m2(0,4) is bounded by a continuous function of ¢ only,

sup {[ue(t)llz20) + [1(u)e(t) 2200 } < 00
0<t<T

Therefore u, is bounded in W1°(0, T, L?(0,1)), as € — 0. O

5.2.4 Bounds on the contact force
and constraint violation
In this Section we will first bound the integral of the normal contact force NV,
over space and time (which uniformly bounds N, in the space of measures), and then

bound a measure of the constraint violation: fol ®o(—u. —g)dr.

Lemma 5.12. fOT fol N, dx dt is bounded as € — Q0.

Proof. We multiply by z?/2 on both side of (5.25) and take an integral over [0,[] x
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[0,7]. Then we have

Tl Tl Tl
/ /E(ue)ttdxdt = —/0 /03(u6>mmdxdt+/o /OEf(x)dxdt
o Tl

—i—/o /OENedxdt. (5.41)

Changing the order of integration on the left side (5.41) and using integration by

part, and applying the boundary condition (5.26), (5.27),

/ol 2 (T) ~ (0 (0))d
-~ lxz(“)}— [+ <u5>m] it
//_f dxd”// LN, du dt
:/[‘r uelsalo //Uemdxdt
//% dfd”// TN, dxdt.

/ / Ue mdxdt+/ /—f ) dx dt
+/ /—Nedxdt.
o Jo 2

By (5.38) and Lemmas 5.9 and 5.11, fOT fol 2 N, dz dt is bounded. Now since g(0) > 0,

using the energy bound on ||u||g2(,) and as u(0,t) = du./0x(0,t) = 0, we can show
that there is an 7 > 0 (independent of € > 0) where u (z,t) > —g(z) for all x € [0, n].
This implies that there is no contact force between rod and rigid obstacle in [0, n].

Thus for 0 <z <1, N, =0. Since N, > 0 and 2?/2 > n?/2 > 0 in [n, ], we have

T I 2 T 2 2 T ! 2 T l
/ /x—Nedxdt:/ /x—Nedxdtzn—/ /Nedxdt:n—/ /Nedxdt
o Jo 2 0o Jn 2 2 Jo Jy 2 Jo Jo

Therefore the result follows. O
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Proposition 5.13. Weak* convergence in L>(0,T; H) implies weak convergence in

L*(0,T; H), where H is a separable real Hilbert space.

The next Lemma 5.14 indicates that the solution u satisfies the constraint

u—+g>0.

Lemma 5.14. If u, — w in L*(0,T; L*(0,1)) in some subsequence (and there are

converging subsequences), then v+ g > 0.

Proof. From (5.39), for all 0 < ¢ < T we have

!
/o O(—ue(z,t) — g(x))de < C -e.

Then ||® o (uc(-,t) — g)||L1 0y — 0, as € — 0. Thus we obtain

Tl
/ /CDO(—ue—g)dxdtHO.
o Jo

According to Lemma 5.11, there exists u such that u. —* u in a subsequence in
L>(0,T, L*(0,1)). By Proposition 5.13, we have the solution u such that u. — w in
L*(0,T, L*(0,1)). Define the functional F[u] := fOT fol ® o (—u — g)drdt. Then Flu]
is a convex lower semicontinuous function. So F'[u] is a weakly lower semicontinuous

by Mazur’s Lemma [35, Thm. IV.2.1]. Thus we have
T
OSF[u]glimian[uE]:/ /<I)O(—u€—g)dxdt—>0 as € — 0
o Jo

in the subsequence. This implies that ||®o(—u—g)|| 110, = 0 and so Po(—u—g) =0
a.e. By the definition of ®, v+ g > 0 a.e. Since u and g are in C(0,T; H*(0,1)) it

follows that w + g > 0 everywhere on [0,(] x [0,7]. O
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5.2.5 Holder regularity of the penalty solution
and convergence
We will show that the solution u, is uniformly Holder continuous with exponent
p from [0, 7] into H'/>*?(0, 1), and then u, is uniformly bounded in C?(0, T'; H'/>*(0, 1))
for some p,o > 0, where 0/2 4+ p < 1/2. This combined with the weak* convergence

of N, in the space of measures will establish the complementarity conditions for the

limit as h | 0.

Lemma 5.15. Define f,(t) = sin(at)/a? and g,(t) = cos(at)/aP witha > 0 and 0 <
p < 1. Then f, and g, are Hélder continuous with exponent p with a Holder constant

that is independent of .

Proof. We want to show that for all ¢;, ¢,

’fa(tQ) - fa(tl)‘ < Cp‘tQ - tl’pa

where C, depends only on p and not on a. By the definition of f,(¢), we have

fult) = fult)] = —|sin(ats) — sin(at)| = —

o )
sin (M)' < % “in (M) ’ (5.42)

2

oP

IN

Note that

(A ) ot [ (ot

Therefore from (5.42), we obtain

p

falts) = alt)] <

 |sin (a(t22— tl))
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< ['t2_t1/ (t2_t1))dx
Sl

3 [t2 — tl’pap

aP 2p

T

= 2P|ty — 11 |P = Cplta — 1],

where C), = 277, So the result follows for f,.
The result for g, follows since g,(t) = cos(at)/aP = sin(at + 7/2)/aP =

fa(t+7/(2ar)). O

Lemma 5.16. The fundamental solution t — w(-,t; x*) is Holder continuous from
[0, 7] into H°TY/2(0,1) with exponent 0 < p < 1 and 0 > 0, where 6/2 +p < 1/2

uniformly in x*.

Proof. Applying Lemma 5.1,

ILETY2D 0] T,
oo . oo /2
sm()\1 t) | (o+1/2)/4 sin(\;/*t) o 4 *
— (Z TA( +1/2)/ di() i (), ZT;Q)\E +1/2)/ 0;(-)p;(x%)
i=1 i j=1 j

Z )\(U+1/2)/2¢ ( *)2'

We claim that ||w(ty) — w(tl)HiIUH/Q(w) < C|tg — t1]P for some constant C'. By

Proposition 5.3, we have

[w(t2) — w(t1) H12L[a+1/2(0 )

sin(\,/*t2) — sin(A )2 | (oa1/2)2
Z¢Z s Ai

sm()\l»/QtQ) — sin(A)%t,)]?

+Z¢j ! y
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_ = Siﬂ()\iﬂb) - Sin(/\z'l/2t1) o/241/4—1+p —14p
= 73 A + A .
im1 (AP

We claim that |Jw(ty) — w(t1)||§{,,+1/2(07l) < Cltg — t1]P for some constant.

lw (- s ™) = w(s t1; 2 [For120p < CN o — | <)\;7/2—3/4+p n )\i—l+p)
i=1

< Clty—t*) <A§/2‘3/4+” -+ /\;1”()5.43)

i=1
Applying (5.20), for large A;, we have /\Z-l/4 ~ (2i 4+ 1)m/(2l). Thus for sufficiently
large i, A\; ~ Ci*. This implies that we can choose another C' > 0 such that \; > C*

for sufficiently large i.

Since the exponents of \; satisfy 0/2—3/4+p > —1+p, from (5.43), we have

Hw(.7 t27 x*> - w(.7 tl) x*)Hza-ﬁ-l/Q(oJ)

<Clta =t |30 (W) 4 CHER A;””)]
Li=1 i=m-+1

< Clty — t4]* Z ()\;’/2_3/4“’ i /\i—1+p) 19 Z <)\;7/2—3/4+p)]
Li=1 i=m+1

< Clty — | Z ()\;7/2—3/4+p + /\i—Hp) +20 Z (i4(0/2—3/4+p))] . (5.44)
Li=1 i=m+1

where m is an appropriate large number. So we have

lw (- ta; %) — w(-, b5 27) | o120,

< Clty — t4]? Z ()\?/273/4+p + )\;ler) + 920 Z (14(0/2=3/4+p)) (5.45)
1=1 t=m+1

By the integral test, the second term of inside of square root of (5.45) will be bounded
if 4(c/2—3/4+p) < —1. Therefore the fundamental solution w is Hélder continuous

with exponent 0 < p <1 for some o > 0, where /2 +p < 1/2. O
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We define the space of Hélder continuous functions CP(0, T'; H/?+7(0,1)) with

the norm

{ Ju(ty) — w(ta)|| ga/zee o } |

[ullero,rimvesey = llullz2oriz200) + sup ty — 17

tlgﬁtg

Lemma 5.17. The approzimate solution u. is uniformly bounded in C?(0,T; H'/?+7(0,1)).

Proof. Recall that the solution u,. can be expressed as the integral equation (5.32)

with N, = p o (u. — g)/e

uc(x,t) = /l (x,t; 2" )vy (2¥) dx™ +/ s (@, t; 2" )ug () do”
/ / ) [f(x") + N(z*, s)] dz* ds. (5.46)

So to bound |[[uc(+,t2) — we(:; 1) gr1/2+0 (o) We bound the corresponding differences of
each of the terms in (5.46). Suppose t; < t,.

In the first term of right side of (5.24), applying Lemma 5.16,

l

!
w(-,tQ;x*)vl(x*)dx*—/ w(-, ty; vy () dx”
0

H1/2+”(0,l)
l

< [t = etz e on (5 lds*
0

< Clty — ta|P||v1]| 2200y < Clta — ],

since v; € L%*(0,1). In the second term of right side of (5.46), we want to obtain a
bound Clty — t1[P on [Juc(+, ta) — ue(-, t1) || gr/2eo(ory. Let ui(-) = 32, (u1)ii(-). Since

U € H2(O,l),

w20y = > Nilwr)F < 00 (5.47)
=1
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Using Lemma 5.16,

P ow o P ow
i 2 (e u(e") d T

ow ow
= —(y toyx*) — —(-, ¢t ,x*)) uy (2*)da*
/ ( ot ot 1 H1/2+‘T(0 1)

_ /Z cos(\ 1) = cos(\[/*11)) 61(-)n(x Zm o5
7j=1

— (-t 2 )ug (o) do”

H1/2+‘7(0,l)

H1/2+’7(0,l)
ow ow
= — (-, to; ") — —(-,tl;x*)) wy (z*)dz*
/O' (at 3t H1/2+D‘(07l)
By the similar argument to Lemma 5.16, we have
o 2
I(o+1/2)/4 Z (COS(}\,}/2t2) — cos(\] A2y )) di(+) (u1);
=1 L2(0,0)
b 2
Z (cos A2 ts) cos(A1/2t1)> /\E‘Hlm/2 (uy)?
i=1
> COS /\ 1/2 tg — COS(/\ 1/2 tl) 0/241/4—1+p 2
Z 1/2 A - Ai(w);
i=1 )
S C|t2 o 7(J_1|2p (Z )\;7/2—3/44—17 . Az(”l)?) )
i=1
and
o 2
1/2 1/2
Z cos(\; “ta) — cos(N,"“t1) ) ¢l )(ul)
=1 2(0,1)
i 2
— Z <cos(/\ /2 ty) — cos(\; 1/2 ty )
i=1
= cos()\l/ tg — cos(A /2t1 1t
i=1
S O|t2 — t1‘2p <Z/\ I+p )\ (Ul ) .
=1
Applying Proposition 5.3 and Lemma 5.15
aw ) do 8w o
0 0 H1/2+‘7(0,l)
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In the third and last term of (5.46), we have

to l t1 l
/ / w(-, to — 832" )N (¥, 8) dz* ds — / / w(-,ty — s; ") N(z*, s) de* ds
o Jo o Jo

Hl/2+a’(07l)

to l
< / / |w(-te — s52%) —w(-, 0;2%) || 172400, Ne(2™, 5)| da™ ds
t1 0
11 l
+ / / Jw(-,ta = s;27) —w(-, t1 — 527 [| grrzso oy | Ne(2™, 8)| dv™ ds
o Jo
to l t1 !
< / / Clts —s]p]Ne(x*,s)\dx*ds—i-/ / Clta — t1|P |[Ne(z¥, s)| da™ ds
t Jo o Jo
to 1 T 1
< Clty — tllp/ / |Nc(z*, s)|dx* ds < Clty — tl\p/ / |Nc(z*, s)| dx™ ds,
o Jo o Jo
and since fOT fol |Nc(z*, s)| dx* ds is bounded independently of €, we have a bound

Clta — t1|? on [Juc(+,ta) — uc(+, t1)[| gr/240 0y that is independent of e. Similarly, we

have

to l t1 l
/0 /0 w(-, to — s;2") f(x*) dae™ ds — /0 /0 w(-ty — s;2") f(x*) da* ds

= Clta — 17| fll 200y = Clt2 — t1]7,

Hl/2+0o (O,l)

since f € L*(0,1). So using the definition of the norm of CP?(0,T; H'/?%7(0,1)),

el cr o1 m1/24 0,0)) < M, where M does not depend on e. O

In the previous Lemma 5.17, u, is uniformly bounded in C?(0, T'; H'/?%°(0,1).
As this space is compactly imbedded in C([0,] x [0, T]) (this follows directly from the
Ascoli theorem [35, p. 57]), there exists a subsequence of u, that converges u strongly
in C([0,1] x [0,T7]).
Lemma 5.18. For any weakly converging subsequence of (u¢)eso in CP(0,T; HY/?+7(0,1))

(and there is at least one such subsequence) we have

Tl Tl
/ /Ne(u€+g)dxdt—>/ /N(u—i—g)dxdt.
o Jo o Jo
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Thus there is a solution u € C(0,T; HZ;(0,1)) NWH(0,T; L*(0,1)) N C([0,1] x [0, T7)

of (5.5-5.8).

Proof. Note that since N, > 0, subsequence of N, —* N as measures, so N > 0 in the
sense of measures. Also, the constraint condition u + g > 0 follows from Lemma 5.14

that N(u. + g) < 0 since N(x,t) > 0 only when u.(z,t) + g(x) < 0. Thus, we have

Tl T
02/ /Ne(ue—i—g)dxdtand/ /N(u—l—g)dmdtzo.
o Jo o Jo

Note that CP(0,T; H/?*7(0,1)) is compactly imbedded in C([0,T] x [0, 1]) for
p, ¢ > 0. To see this, suppose that B is a bounded subset of C?(0,T; H'/>*°(0,1)).
Then for each s, ¢ € [0,T] there is a bound ||2(f)||gr/2+a0; < M and |[|2(t) —
2(8)|| /2400y < M [t—s]? for each z € B. The set B is an equicontinuous set of func-
tions into H'/277(0,1) by the Holder bound: for any € > 0 we can set § = (¢/M)/? so
that [s—t| < ¢ implies that [|z(t)—2(s)|| g1/2+0 (o) < €. Furthermore, for each ¢ € [0, T},
the set { 2(t) | z € B} is bounded in H'/2¥7(0,1) and therefore is compact in C[0, [].
Thus by the Ascoli theorem [35, pp.57-59] there is a uniformly convergent subsequence
in C(0,T; C(0,1)) of any bounded sequence u, in CP(0,T; H'/?*7(0,1)). Denote the
subsequence which converges strongly in C'(0,7"; C(0,1)) = C([0,T] x [0,1]), u,. Call
this limit u so that |Juc—u||c(or)xo,) — 0 as € | 0 in this subsequence. Thus applying

Lemma 5.12,

T [l T [l
/ /Neuedxdte/ /Nudxdt,
o Jo o Jo

as € | 0 in the subsequence. Since g € C[0,[], and N, converges weak* to N,

//Nxt dxdt%//Nxt x) dx dt.
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Combining these results gives

Tl T [l
OZ/ /Ne(u€+g)dxdt—>/ /N(u+g)dmdt20.
o Jo o Jo

Now we see that the integral fOT f(f N(u+ g)drdt =0 as it is the only non-negative
number that is a limit of non-positive numbers. Thus there is a solution u €
C(0,T5 HZ(0,1)) N Whe(0,T; L*(0,1)) of our problem (5.3-5.8). The proof is com-

plete. O
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CHAPTER 6
EULER-BERNOULLI BEAM IN DYNAMIC CONTACT :
TIME DISCRETIZATION

6.1 Formulation of the discrete-time problem
For a dynamical problem, time discretization is one of the useful numerical
methods. In order to obtain a numerical formulation, we will employ the two numer-

ical schemes on the time space:
e Elasticity (tzzer) - Midpoint rule is used
e Contact condition - Implicit Euler is used.
First we consider a partition of time:
O=to<ti<bo<--- <t <ty <---<T.

We denote by u!(z) numerical solution of displacement u(z,#;) and by v'(z) numerical
solution of velocity v(x,t;) and N'(x) numerical solution of magnitude of contact
force, N(x,t;), respectively at each discretized time ¢; = [h. Then the time step size
is h =t —t;, for | > 0. From (5.3), we take pA = EI = 1 by proper scaling.

Using our numerical scheme we establish numerical formulation:

oL g wlHl 4l
h 2
Ut — R
0<N L Wty g>o0, (6.3)

where u' = u!(z), v = v!(z), N' = N'(x) for each [ > 0.
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6.2 Energy dissipation in semi-discrete case
In this Section, we will see that numerical formulations (6.1-6.3) cause energy
dissipation. Indeed, energy is conserved when beam does not touch a rigid founda-
tion and energy is dissipated when beam reaches to the rigid foundation as we shall
see in the next Lemma. Now we define energy functional which is dependent on

displacement v and velocity v:

L L
E(u,v) = %/0 (Jv]* + |uza|?) dz —/0 fud. (6.4)

The first term fOL |v|?dz is the kinetic energy, the second term fOL |tpe|?dx is the
elastic energy and the last term — fOL f-udx is the external potential energy. We will

derive energy dissipation for our time-discretization.
Lemma 6.1. In the semi-discrete case, enerqgy is dissipated.

Proof. We want to show that E(u!™' v*1) < E(u!,v"). Using (6.1-6.2), we have
/L |UH_1|2 — |Ul|2 dr = _/ (uft—;:ltx +uxxxx)(ul+1 ul) dr
h
0

>
/f =) +/ Al Gl )dx.(6.5)

Multiplying by A on the both side of (6.5) and using integration by parts and the

boundary conditions, we obtain

/L ‘Ul+1’2_‘vl‘2 dr _/L ‘ul+1‘2 ’um’2 i
0 2 0

L L
+/ f- (W™ —ul)da —I—/ N (W — ) da.
0 0
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Thus from the LCP condition (6.3),

1 B 1+1,2 112
5/0 (o™ = V') da
1 L
:__/ (’ l+1‘2 ’uxx‘ dl’—i—/ f l+1 l)d$

/Nl (u'* + g) dx—/ N (u' + g) da

<o [ Q) e 50 -an 6o
0

as fOLNl (u*tt 4+ g) dz = 0 by (6.3), but N' and u'+ g > 0 so fOL N (u'+g) dx > 0.

Therefore we have

(% /L (012 + [ulLP2) ) / Foult de
0
1 L
< (5/ |v!|? +\uml2dx) / f-uldx
0 0

as desired. 0

From (6.6), we note that the energy E is conserved if N' = 0, and energy is dis-
sipated by the LCP condition (6.3) if N'(x) > 0 for some x € (0, L). Assume that the
initial energy is finite. Then Lemma 6.1 implies that v' € L*(0, L) and u' € HZ;(0, L)
for all [ > 1 and h > 0, and that they are bounded in these spaces independently of

[ and h > 0.

6.3 Convergence of the time discretization
In this Section one time step solution for the numerical formulation is obtained
algebraically. Also the convergence for our numerical scheme is investigated. Those

are considered in the semi-discrete case: only time space is discretized. .
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6.3.1 Convergence of the numerical scheme
As mentioned in Chapter 6, the fourth order differential operator K = 9*/0x*
has the orthonormal basis ¢; with 9*¢;/0z* = \;¢; and satisfying the homogeneous
boundary conditions (¢;(0) = ¢5(0) = ¢/ (L) = ¢!"(L) = 0). We order the eigenvalues
Aiso that 0 < A\ < Ay <,-oo < A\ < --- and lim;_o A; = oo. Properties of
these eigenfunctions are discussed in Subsection 5.2.1, we can write the discrete-time

solution quantities as

ul(z) = Zui@(m), vl(z) = va@(z), and N'(z) = Z Nl¢i(x).
i=1 i=1 i=1
So using the above numerical solution expressions and the numerical formulation

(6.1-6.2), we have

I+1 I I+1 l

v, — u, - +u

Z e L)+ N 6.7
2 ( 3 ) : (6.7)

W o ut (6.8)
h 2

Note that when we investigate the convergence of our numerical scheme, we will ignore

the external body force f(x).

Lemma 6.2. From (6.7) and (6.8), u.™ and v\ are expressed in terms of ul and v!

for each 1 > 1 and each | > 0 in the following way:

ultt 1 0 cosy; siny; 1 0 ul
it 0 A/ —siny; cosy; 0 A V!
h
hN} 2

. 6.9
+1+h2)\i/4 | ’ (6.9)

where y; = X(h)\i/Q), i.e., function x; depends only on h)\il/Q.



Proof. From (6.8), we have

o = 2t ) o

Multiplying by h on (6.7) and plugging (6.10) into (6.7), we obtain
2041 I hoy o I I
E(ul —u;) — 2u; = _5()‘2‘“@' + \iu;) + N,
Thus multiplying by h/2 on (6.11) gives
(1 4+ B2\ /4)ultt = (1 — R?)\;/4)ul + hol + h2NY /2.
So the discrete-time solution at the next step is

ui™t = (14 1PN /4) 7 [(1 = RPN /4 + hol + h*N] /2] .

In order to obtain the next step’s velocity, we use (6.10):

110

(6.10)

(6.11)

2

2
o =AY (1 Bl T + R2NL2) ] o]
2/h 2 ! I p2a7l 2 I .
= v [(1 = R2N/4)ul + hol + BN /2 — (1 + RPN /4)u] — v
1 l 2 l 1
= oy g LAY, 1— )t N .
1+ h2); /4 [ hiu; + ( h*Xi/4)v; + h z]

Therefore solving the equations for u/*! and v'*! in terms of u! and v' gives:

ultt 1 1 —h2\;/4 h ul LN

s L4+ n2Ai/4

The above system can be written as:

ul*! 1 1 0 SV YN 1 0

4
1+h2)\z 4 1
A M A2 5 VAN I (<5 Vil B VD

)

* 1+ h2)\; /4
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[y

L hN
1+ 12\ /4

Note that we have

1+ h2);/4 1+ h2);/4 (11 h2);/4)2

_ 1+h2)‘i/42—1
—o\14m2N4) T

2
(1—h2)\i/4)2+< hAL/? ) L ORAA2J16 4 BN 2+ 1

So we can write

, hAL? 1— h2\; /4
siny; = —————, COSXi = — 7
X T /4 X T /4
where x; = X(h)\z1 / 2). Hence the result follows. O

Indeed, we can require that y; be restricted to [0, 7].

Remark 6.3. Consider a sequence of vectors z;.1 = Cz; + by, for | € N. Then we

have
-1
zZ; = ClZO + Z Cl_l_]bj.

Jj=0

It is easy to prove this formula using mathematical induction.

Lemma 6.4. From (6.7) and (6.8), u! for each | > 1 can be expressed as

ub = ulcos(ly;) + 10 sin(lx;) /A

h 2L M heosf(l—1— i sin{(l —1—79)v ;
+mz< {( : Jxi}  sin{( - J)x}> N/ (6.12)

)

j=0

where uY and v) are coefficients for the initial displacement and velocity, respectively.
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Proof. In order to apply Remark 6.3, we set

ul 1 0 cosX; SInx; 1 0 %Nzl
z, = ) C= ) b; =
v! 0 /\il/2 —siny; cosY; 0 )\;1/2 N}
So from Lemma 6.2, we have
l
ui 1 0 cosX;  SInX; 1 0 u?
= -
v! 0 )\;/2 —siny; cosy; 0 /\i_l/2 v?
I-1—j
i I—ZI 1 0 cosy; siny; 1 0 b/
1+ h2)\;/4 4 - .
/ 7=0 0 A/ —siny; cosx; 0 A N}

Note that
cosy; Siny;

—siny; cos;

is a transformation matrix called the clockwise rotation through y;. By mathematical

induction,
ul cos(ix:) A sin(ly) u |
vl : “NZsin(ly)  cos(lxi) v?
h cos{(l—1—j)t N Psin{(l—1-j)} | | 4N
VNS | im0 -1 esl0-1-w) | | W

Multiplying by row vector [1, 0] on the both side of the above system, the coefficient

ul of ul(z) is obtained as desired. O

We define the impulse response function (or fundamental solution of the time-

discretization) for fixed z* € (0, L) to be

w!a) = 3 wloi(a),
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where w! = (hcos(lx;)/2 + sm(lxz)/)\lﬂ)/(l + h2X\;/4). Similar to the fundamental
solution of the PDE system, we extend w! = 0 for [ < 0. Thus using this form of

impulse response function with Lemma 6.4, we have

-1
sin( 1 1
ub = uY cos(Ix;) + v? 1/2 E J 1NZJ. (6.13)
z =0

Recalling the fundamental solution of the PDE system, we define impulse response

function for fixed z* € (0, L),

Zw di(2) (). (6.14)

Lemma 6.5. Using the impulse response function w'(-), the discrete-time solution

ul() can be expressed as:

:iugcos(lXi)'@(') Z ?sml/Q ¢4 +h2/ w2 )N (2% da
i—1

=1

Proof. Employing (6.13) for fixed z* € (0, L), we have

00 -1 oo
S uloi() Zucoslxz ) i) + Z?S““S/Q)@ R3S ul TN ().
=1 7=0 =1

Since N7(+) = >°2 | NZ¢,(+) and ¢; is orthonormal basis in L?(0, L), we have

=/ ZWT )i (@) da” —/ N (&), (") da

Thus

SDITEIUEIIES Bttt
-1 oo

+h Y w7 (- /NJ )i (

7=0 =1
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- Zu cos(l) - () Z 05”“1/2 éi()
+hZ / Zwgﬂ'*@(x*>@<~>Nﬂ'<x*>dw*

- Zu cos(l) - () Z 08”“1/2 éi()
+h2/ I 2t N (a7 ) dat

as required. O

We now need a Lemma giving some basic bounds on the function y(s). These
basic bounds will be used to establish a uniform Hoélder continuity result for the
discrete fundamental solution w, and then for the solution wu; of the discrete-time

problem.

Lemma 6.6. If cos x(s) = (1 — s?/4)/(1 + s*/4) and sin x(s) = s/(1 + s*/4), then

X(s) <s fors>0.

Proof. Taking a derivative sin x(s) with respect to s,

dsinx(S)dx_i( 5 )

dy ds ds\1+s2/4

Thus we have

dx 1—s%/4
COSX'E = 7(1—1—52/4)2
1 1—s%/4 1
= 1_|_52/4'1+52/4:1+52/4COSX<COSX'

So if s # 2, dx/ds < 1. Since x(0) = 0, we have x(s) < s for s > 0 by Proposi-

tion 5.8. If s = 2, cos x(2) = 0. So x(2) = 7/2 < 2. Therefore the result follows. [
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Lemma 6.7. The following uniform Hélder continuity property holds for p = 27,

O<p<l:

sin{(l + 7)x(hAY?)} — sin{lx(hAY/?)}
7Y

’ S Op ’ (Th)pv
where Cy, is independent of h and \.

Proof. Suppose r > 1. We have

sin{ (1 + r)x(hAY?)} — sin{lx(hA'/?)} ‘ _ 2 cos { 2+ ) }' ‘Si <_X> )
N A ’ 2
< % sin <%) ’ :

Since rx — sin(ry/2) > 0 for ry > 0, we have
A7 sin{ (I 4+ r)x} — sin(lx)| < 2A7" min(ry, 1).
Applying Lemma, 6.6, for hAY/2 < 2
A7 [sin{(1 4+ r)x} — sin(lx)| < 2277 min(rhAY2, 1), (6.15)

and for hAY2 > 2, (6.15) also holds by inspection as rhAY/? > 1. Dividing by (rh)?

on the both side of (6.15),

A7 [sin{(l + 7)x} — sin{lx}|

i)y < 2\7(rh) P min(rhA'/2 1),

If rhAlY/? < 1,

A7V [sin{ (1 + r)x} —sin{ix}| (rh)™P < 2X7V(rh)"P(rhAY?)
= 2N (rh)' P

< QATYHVZ)\P/2-1/2 9 \p/2-
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If rhAY2 > 1, |A sin{(I +r)x} — AV sin{ix}| (rh) ™ < 2A77(rh)™ < 2\P/277. Thus

putting p = 2v, we have
AT |sin{ (1 + r)x(RAY?)} — sin{lx(RAY?)}| < 2(hr)P,
as required. O

Let the value uy(+,t) be a continuous piecewise linear interpolant of uy (-, lh) =
ul and up (-, (I +1)h) = u'** for t € [Ih, (I + 1)h]. Then recalling Lemma 6.4, uy(+, [h)

computed at step [ is expressed as

[e.9]

) = Do cos(b) - 6+ Y o X0

=1 %

+ hZ/O wp(-, (I — § — 1), x*)N? (2*)dz*, (6.16)

where wy, (-, 1h, 2*) = 322 (hcos(lx;) /2 + sin(lx:) /A )i ()i (2*) /(1 + h2A;/4). Now
we define the discrete-time contact force Ny(z,t) as

|T/h|—1
Nule,t)=h 3 8t~ (j + DN (2),

where ¢ is the Dirac-d function and |7'/h] is the number of time-steps. We also

identify NV, with a non-negative Borel measure on [0, L] x [0, 7] by

Nh(B):/BNh(I,t)dIdt,

where B is any Borel set in [0, L] x [0,7]. The next Lemma shows that the Borel
measures N, can be expressed in another way. Indeed, it will play an important role

in bounding the measure Nj,.
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Lemma 6.8. From the definition of Ny(z,t), we have

|T/h]-1

/OT/OLNh(x,t)dxdt:h ; /OLNl(x)dx.

Proof. Using the definition Ny, we have

T /L T+e oL
/ / Np(z,t)dzdt = limg / / Ny(z,t) dx dt
0o Jo 0 0

T+e oL T/h]-1
~  hlim / S 6t — (14 Dh)N' () du dt
€l0 0 0 =
LT/h]-1 T+e
= h/ lim(/ 5t—l+1hdt)Nl:1:dx
X ([ se-aroma) v
[T/h)-1 .
S / N(z) da, (6.17)
1=0 0
as required. Note that e is not dependent on h. O

Lemma 6.9. The Borel measures Ny, are uniformly bounded as measures on [0, L] x

0,7] as h | 0 forv' € L*(0, L) and u' € H}(0,L).

Proof. Multiplying (6.1) by h and ignoring the body force f(z),

h
+1 I _ +1 l
v —v = _§(uacacacac + Upgaa

)+ AN

Then multiplying #?/2 on the both side in (6.1) and taking integral on the both side

in (6.1),

L .2 h L 2 L 2
/ I—(v“rl —odr = —= / x—(uf;;}m + b, )dr + h/ T N'da.
. 2 2 ), 2 . 2

Thus taking sum over [ > 0 and using an integration by parts,

T/h]—1 |T/h]—1 T/h]—1

\_ L I2 ; L xQ - . h/ \_ L 12 " l
hy | INde = T — e+ 2 Tl d
=0 /0\ 2 ) ; A 2 (/U v ) Tt 2 ; /0\ 2 (UIIII + uxxxx) X
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T/R]-1 ., 72 T/hJ —1
_ o l+1
- [ Fe =g Z/ +i)da
L2 T/h 0
?(HUL / J||L2(0,L) + [[v"] 22 (0,1))

IA

OL1/2 i l
+ Ogg?’%{/hj ||uxxHL2(07L)7

where C' =T does not depend on time step size h.

We want to show that fOL N'dz is bounded by fOL %Nldx for all I > 0. Since
9(0) > 0 and u(0,t;11) = Ou/dx(0,t141) = 0 and w'™ € HZ;(0, L), there is an > 0
such that u'™'(z) > —g(x) for all z € [0,n]. So by LCP condition of the numerical

formulation, N' = 0 for 0 < z <. Since N! > 0and 2?/2 > 7%/2 > Ofor [n, L], we

have
L,2 L, 2 2 L 2 oL
/ x—Nldx:/ x—Nldx > 77—/ Nldz = 77—/ Nldz.
0 2 n 2 2 Jy 2 Jo
So by Lemma 6.8, the Borel measure N}, is bounded, independent of h as h | 0.
The proof is complete. O

Lemma 6.10. The discrete-time solution t — up(+,t) is uniformly Holder continuous

into HP(0, L) as h | 0 with an exponent 0 < p <1 and 3 > 0 in the following sense:
un(-, (14 7)h) — un (-, 1R) || goo,n) < Cp(rh)?,
for integers | and r, where 3/2 +p < 3/4 and C, is independent of h.

Proof. Applying (6.16), the last term of up(-, (I + r)h) becomes

I+k—1

hZ/ wp(-, (147 — j — 1)h, 2" )N (2*)da* (6.18)
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Similarly, last term of wuy(-,lh) becomes
-1 L
Z/ wp (-, (1 — j — 1), 2*)N7 (2*)da*. (6.19)
j=0 "0

We denote (6.18) by (I) and (6.19) by (II). Thus using Lemma 6.7, we have

lun(:, (4 r)h) = un(, 10) |15 (o,p)

Z ud[cos{ (I +r)x;} — cos(lx;)]¢i(w)
1=1 HP(0,L)
N Z:; o0 sin{ (I + T)j\(f/}g — sin(ly;) bu(2) N
+h / L[(I) — (I)]dz* (6.20)

HB(0,L)

Since u® € HZ%(0,L), [u’[3z) = 2 Mi(uf)? < oo. Using Proposition 5.3, in the

first term of (6.20) we have

1> ulleos{(1+r)xi} — cos(bxa)] i (2) o,y

=1

= Jeos{(1 +r)xi} — cos(ixi)PAY (uf)?

=1
OO

+ Cos{ L4+ 7)xi} — cos(lxi)]? (ud)?

i=1

-3

A2 i(u7)”

=1

2
cos{(l +7)x:} COS(lXi)] \B/2r-1

. 2
+ [COS“”X‘} COS(ZX")] APLLN (uf)?2
— )\JD/2

=1 =1

Zpi)\l [)\ﬁ/ﬂp 1 AP 1]

=1

2p[iAz Aﬂ/2+p1+ZA 2N 1]
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Similarly, in the second term of (6.20), we have

Z o sin{(l—i—)x)f/; sin(ly;) ou(2)

i=1 )

HB(0,L)

2

Z [ osin{(l +7r)x;} — Siﬂ(lXi)] B/2+p—1

= v, A;
/2

£ |

2
osin{(l + )y} — sin(lxi)] 1

Py /\P/2
= (rh)¥ [Z( )N 1+Z )\fll
1=1

(rh)? 30 A (@0)? [
1=1

Note that since v* € L*(0, L), [[v°(|72(q 1) = >2;(v])? < oc. Similarly in the third term

of (6.20),

L

[(1) (ID)]dz”
HB(0,L)

/ (ID)|| 5 0,1y dx”

-1

dx*

HB(0,L)

J(U+71— G = Dhya*) —wu(, (I — 5 — 1), z*) N/ (z¥)

0

/

Recall that wy (-, lh, 2%) = S22 (hcos(lx;)/2 + sin(Ix;) /A 2) i (- da(2*) /(1 + h2X; /4)

+k—

J(I+7—7—1)h,x*)N?(z*) dx*. (6.21)

HB(0,L)

and maxo<,<z, |¢:(x)] < M. Note that A/*h/(1+\h2/4) < 1and 1/(1+Ah2/4) <1

for Ai/Qh > 0. In the first term of (6.21) for 0 < j <[ — 1, we have

ewn (-, (047 =5 = Dxa, ") — wale (U= § = Dxa, )] N (@) 60,1

© A2 . A2 A.B. .
/\:3/2 1 ? 7 11 ) *\ 12 N] %\ 12
ZZI + {4&,(1 + h2)‘i/4)2 + )‘i(l + h2)‘i/4)2 |¢l(‘r )| | (ZL‘ )|
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A’@/Q 1 i (% QNJ %112
P )Ai<1+h2xi/4>2'¢z<x>l| ()|

2 0 2
< %‘NJ ‘QZ ()\ﬁ/2+p 1 )\p 1)

Ap/2
2
+V2M?|N (27)? Z Ap/2 O P
00 2
+ M2 N (z* |2Z1 /\p/z ()\ﬂ/2+p Laeh
< (3 + VM |NI (o) P (k) SO (62
=1

where A; = |cos{(l+7r—j5—1)xi} —cos{(l —j —1)x;}| and B; = |sin{(l+7r —j —
1)xi} —sin{(l—j —1)x;}|. Similarly in the second term of (6.21), for [ < j <[+k—1

we have

Jwn (- (L4 & =7 = 1)xi, 2*)N? (@) 500.1

rh)® Y AT ), (6.23)
=1

Note that for sufficiently large i, there exist C' > 0 such that \; > Ci*. This was shown
in Lemma 5.2 and by the integral test, the result follows, provided that §/2 + p <

3/4. 0

Note that the condition of Lemma 6.10 is the same case as for the penalty
method.

Note that the Borel measures Nj, on [0, L] x [0,7] are bounded. By Riesz
Representation Theorem [49, 35], the dual space of C([0, L] x [0,71]) is isometrically
isomorphic to the space of Borel measures on [0, L] x[0, T]. Then by Alaoglu’s Theorem

[47, p. 203], there is a subsequence of N, which is weakly* convergent to N. We wish
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to show a corresponding result for u. As we saw in Lemma 6.10, wu; is bounded
in CP(0,T; H?(0,L)). By the Arzela—Ascoli Theorem [35, pp. 57-59], that space
is compactly imbedded in C([0,L] x [0,7]). Thus there is a subsequence (of the
subsequence in which N* —* N) in which u;, — uin C([0, L] x[0, T). Since up+g > 0
for each h > 0, it follows that u 4+ g > 0.

We now want to show that the complementarity conditions 0 < N 1 wu +
g > 0 hold in the weak sense. Now for any continuous ¢ > 0 on [0, L] x [0,7],
f[07 Lx[0.7] ® Np,dxdt > 0 since N, is a non-negative measure. Since a subsequence

of N;, converges weak™ to IV, f[o 1 O Ndxdt > 0. Thus N > 0 in the sense of

x[0,T
Borel measures. The condition that u(z,t) 4+ g(x) > 0 holds as noted in the previous

paragraph, and taking limits in the subsequence gives

0= /L /T No(a, ) (un(z, £) + g(x)) do dt — /T /L N, ) (u(z, 1) + g(x)) da dt,
o Jo 0o Jo
(6.24)
and so the LCP condition holds.
Lemma 6.11. In a certain subsequence with h | 0 the time-discretized functions uy,
vp, and Ny converge to a solution, up, uniformly in C([0, L] x [0,T]), v, weak™® in

L>(0,T;L*(0,L)) and N;, weak* in the space of measures on [0, L] x [0,T].

Proof. By Lemma 6.9, N, —* N as measure. Since N, > 0, N > 0. Then since
CP(0,T; H?(0, L)) is compactly imbedded in C([0, L] x [0, T]), by the Arzela—Ascoli
Theorem [35, pp. 57-59] there exists a suitable subsequence of u; such that u, — u
in C([0, L] x [0, T]). We also denote this subsequence by wuy, and restrict our attention

to this subsequence.
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Since vy, is uniformly bounded in L*(0,7T;L*(0,L)) and L>(0,T; L*(0,L))
is identified with the dual space of L'(0,T;L*(0,L)), by Alaoglu’s theorem there
is a weak* converging subsequence, also denoted v;, and restrict attention to this
subsequence.

We want to show that for such N and w, (6.24) is satisfied. Since wup(-,t) is
an interpolant of wy(-,lh) and u,(+, (I + 1)h), and Ny(z,t) = hZ]LZ{)thl ot — (5 +

1)h)N?(z) for t € [lh, (I + 1)h], we have

/0 /0 Ny(x, t) (up (2, t) + g(z)) dz dt
|T/h|—1

= h/o /0 Z 5t — (G +Dh)N (2) | (up(z,t) + g(z)) dedt

T/h|—-1

Ll T
:h/o ;O /0 5t — (5 + D) (up(x,t) + g(z)) dt | N’(z) dz

L T/h]-1

_ h/o > N (@) + gw) dw = .

So we obtain

0— /OT /OL No(z, ) (un(z, £) + g(x)) dedt — /OT /OL N(a, ) (u(, ) + g(x)) dudt = 0.

The proof is completed. O

6.3.2 Do the discrete-time solutions converge strongly?
While we cannot fully answer this question at this time, we will lay the ground-
work in this Subsection for the numerical evidence to be presented later for strong

convergernce.
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We recall the numerical solution u'(x) at each discretized time t;:

- Zag@(x). (6.25)

In this Section we want to use @ to indicate coefficients of the eigenfunctions, in
contrast to u! which indicates coefficients of the FEM basis functions (which will be
described in Section 7.1). Similarly we can write the velocity as v'(z) = Y o0, l¢i(x),
and also force f(z) = 32°°, fii(x). Note that we write 2" and 0" instead of 4! and 7,
respectively, in order to show the dependence on h > 0 more explicitly. Then
we consider numerical trajectories wup(x,t) by piecewise continuous linear interpo-

lation of uy(x,t;) = ub*(x) and v, (x,t) by piecewise continuous linear interpolation

of vy (x, ;) = vl (x) for each [ > 0. So we express these as

Z ) and vy (z,t) = Z@f(t)d)i(:z:).

Then the value of @"(t) is the linear interpolant of @%(lh) = @™ and @l ((I + 1)h) =

attt for t € [1h, (1 + 1)h).

Lh _ (~Lh ~bh ~bh Lh _ (~lih ok Lk _(F 7 F

Let u (ul yUg 5 U3, ~)andv (vl Uy U3, ')andf_(f1:f2af3:"'
; Lh  Lho Lk Lh _ \1/2-Lh , :

and wh = (w" wy" wy", - -+ ), where w;’ :)\i/ u;" for i > 1. We use notation ¢? as

the Hilbert space of sequences x = (1, x2, 23, - -+ ), where ||x||2 = /> ;" |xi|? < cc.

Lemma 6.12. The energy is expressed in the discrete form:

R M (CORTICOR O (6.20
l;h

Furthermore, w'" vt € 02 and those are uniformly bounded in (2.
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Proof. Recalling the energy (6.4), we have the energy functional
1 /L
Bl ) = 5 [ (0P + ubf = £ ) de
0
Then the kinetic energy becomes

1/L|Ul|2dgv:1/L
2 Jo 2 Jo

Using integration by parts and the boundary condition and recalling decomposition

o0 o0

%) f:@wjm] w=ts (@)

i=1 j=1 i=1

into eigenfunctions, the elastic energy becomes

L[5 . IRl h 1 & ) 2
3 b =g [ [z /(@)Y ¢j<x>] dr= 3> (@)
1=1 1=1

Jj=1

Similarly, we have the potential energy

1 00
/ f-ulde = Z flﬂ?h.
0 i=1
Thus (6.26) is obtained. Since the initial energy is bounded and f € L*(0,L),

whh vbh e ¢2 for [ > 1 and those are uniformly bounded in ¢2. O

Now suppose that we do not consider body force f in the energy function.
Since for t; <t < t;,1, up(x,t) is the interpolant of u%" and @'™" and vy(x,t) is the

interpolant of 7" and ©'*%", by the energy boundness we have

ST (@t)” and Y (3(1)* < oo

i=1 i=1
So w”, v € £? and are uniformly bounded in 2, where w" = (wh(t), WE(t), WH(t),---)
for wh(t) = \a"(t) and v = (00(t),08(t), 0%(t), - -). Thus there are a subsequence
of v and a subsequence of w” which are convergent to v(t) and w(t), respectively in

¢, as h | 0. These facts induce the next Lemma 6.13.
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By inspection of the eigenfunctions, the frequency of oscillation is proportional
on A/, So high frequency modes correspond to large eigenvalues and low frequency
modes correspond to small eigenvalues. Also, only the elastic energy defines the
modes, since they are eigenfunctions of the fourth order operator K = 8*/0x* in the
in the continuous case or eigenvectors of M~'K in the fully discretized case, which
will be considered in the Section 7.4. In the next Lemma, it is shown that the amount
of energy in the high frequency modes is almost zero under the assumption of the
strong convergence. In the physical point of view, this implies that high frequency
modes would be converted to heat. In the Section 7.5, Lemma 6.13 will be supported

by numerical evidence. The detailed arguments will be presented in the Section 7.5.

Lemma 6.13. Let t € [lh, (I + 1)h] for any | > 1. Suppose that w"" — w(t) and

Vi — v (t) (strongly) in (%, as h | 0, Ih — t. Then we have

1 . .
lim lim sup — Z <|i)\fh|2 + )\i|aﬁ’h|2) = 0.
T hlo 2 1>

Proof. For the fixed [ > 1 and any ¢ > 1, we obtain
0 1/2 00 1/2
<Z !wﬁ”ﬂ?) - (Z o = wi(t) + w(t)P)
i o:o 1/2 00 1/2
< (Shrowor) s (Swor)

Since ||w'" — w(t)||;z — 0 as h | 0, lh — t,
00 1/2 0o 1/2 oo 1/2
lim sup (Z |wffh|2> < limsup (Z Wbt — wi(t)|2> + (Z |wi(t)|2>

) ) —

-~ 1/2
= limsup Z\wl(t)P) . (6.27)

R10
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Since 3227, |wi()* = llw(®) 17 — 325, |wi(®)[?, we have
Tim Y fwi(t)? = Jw ()7 — lim Z jwit)]* = w7 — llw®)ll7 = 0. (6.28)

Thus combining (6.27) with (6.28),

h|0 i—c

1/2
lim lim sup (Z |l 2) <0.

Since |w!"2 = \;|@l"2 > 0 for each i > 1, we have for elastic energy

lim lim sup w”ﬂ lim lim su Ai Alh2 =0.
> o 3

c—00 c—00
hl0 1>C 1>C

Similar to the above argument, we have for kinetic energy

lim lim sup Z o}

c—00
hl0 i1>C

Therefore the result follows. O

We note that in general, u' — uin ¢’ with 1 < p < oo if and only if

limy o ul = u;, for ¢ > 1 and sup, ;. [0’ < oc.
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CHAPTER 7
EULER-BERNOULLI BEAM IN DYNAMIC CONTACT :
DISCRETIZATION IN TIME AND SPACE

7.1 Finite element method with B-splines
The Finite Element Method is one of the most popular numerical methods for
solving a static elliptic boundary value problems. So we will approximate the solution
in the spatial domain [0, L], using the Finite Element Method [6, 19]. We partition

the domain [0, L] into
O=20<21 <22 <3< x4 << Tppy1 = L.
We denote k = x;,1 — z; as size of subinterval [z;, 1, z;] for i > 1. Let
V =H.(0,L) = {ue€ H*0,L) | u(0) = u'(0) = 0},

where H.;(0,L) is a subset of Sobolev space H?(0,L), using the same norm. We
choose B-spline functions v;(x), 1 <i < m + 1 for the basis functions. The B-spline
will be a cubic spline [4, pp. 166-176] with nodes z;, i = 1,2, 3, ..., m + 1. Note
that unlike the usual piecewise continuous linear basis function, we need m + 1 basis

functions from the construction of B-spline. Thus the finite element space becomes
Vi =span{¢; |1 <i<m+1}.

These basis function will need to be in H%. Thus we can construct the standard

B-spline function B(s), according to the property of B-splines and the condition that
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B(0) =1, B(s) = B(—s), and B'(0) = 0:

14 3s]® = 3[s]> if[s| <1,

3 T@2—1s])* 1< |s| <2,

0 if |s| > 2.

\

Thus B(s) is piecewise cubic on interval [i, i+1] for i € Z. We set each basis function,

based on shifted B-splines, to be:

where x; = ik, 1 < i < m + 1. Especially, in order to satisfy essential boundary

condition, we need to change the first basis function into

T

dale) = 2{B( +1) + B(; - D} - B(}).

k

For other basis functions i = 2, 3,--- ,m + 1, we use usual shifted B-splines:

See Figure 7.1 for the construction of basis functions with B-splines.

Employing the finite element method, we write a approximate solution u', v

as

m—+1 m—+1

ul(r) = Z ultp;(z) and v'(x) = Z vl (). (7.1)

i=1

Using (6.2), we have numerical motion equation

2 +1 1 +1 2 l 1 l 2 l 1
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1.4
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Figure 7.1: Construction of basis functions with B-splines.
Then we will put approximate solutions u! = 27;11 ubi(x), vt = ZT;II viij (),

Nt = Z;n:ll Nj;(x). First multiplying by basis function ¢;(x) on both side of (7.2)

and by integration by part, we have

9 m+1 L 1 m+1 L
DUt / ity + 5y gt / Wiy de
j=1 0 j=1 0
9 m+1 L 1 m+1 L
_ l l "o
—ﬁZuj/O ¢z-%dx—52uj/0 by dx
=1 j=1

m+1 m+1

9 L L L
- ng/ Vit do +/ fibda + ) Nj./ Vit; d.
Therefore we obtain a linear system for one time step:

h? h? h?
(M + ZK) u't!t = (M — ZK) u' + hMv' + 5 (F+MN'),  (7.3)

2
N |

h
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where mass and stiffness matrix have the following forms, respectively:
L L
M;; :/ Py dr and K :/ wl{/w}/ A
0 0

At each discretized time ¢;, we will obtain numerical solutions u' = (ul,ub, -+, ul, ),
vi= (v}, v, ol ) and NE = (N, NL -+ NL ). Also note that £ = (b, by, -+, byg1)
is load vector, where b; = f(f f(z);(z) dx. Recalling that each basis function is
i(x) = B((x —x;)/k), the mass and stiffness matrices are banded matrix with 3 sub-

diagonals and 3 super-diagonals. Note that these matrices are symmetric positive

definite:
1647 283 239 1
560 280 2240 1120
283 151 1191 3 1
280 140 2240 56 2240
239 1191 151 1191 3
2240 2240 140 2240 56
1 3 1191 151 1191
1120 56 2240 140 2240
1 3 1191 151
2240 56 2240 140
4
M= -k
9

151 1191 3 1
140 2240 56 2240

1191 151 1191 3 1
2240 140 2240 56 2240

3 1191 599 531 3
56 2240 500 1120 112

1 3 531 151 129
2240 56 120 280 2240

1 3 129 1
2240 112 2240 112
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7.2 Energy dissipation in fully-discrete case
If the fully-discrete scheme has the same linear complementary condition as
semi-discrete case, energy dissipation can fail to hold. This was indeed observed in
some preliminary computations. So in the fully-discrete case, we need to modify the
LCP condition in order to guarantee energy dissipation. Following the definition of
energy functional (6.4) and (7.1), we can define energy functional in the fully-discrete

case:

(VH)"™V' + (u')"Ku') — f - d. (7.4)
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Lemma 7.1. If we have LCP condition
0<MN' 1 utl4+g>o0, (7.5)

where g = (g1, 92, , gm+1) and g; = g(x;), then energy is dissipated.

Proof. Using numerical formulation (6.1-6.2) and (7.1), we have
" (Z o= 3 tuo)) (S + St
i=1 j=1 j=1
m—+1 m+1 m+1 m+1
(S Do) (S-S bue)
i=1
m+1 m+1 m—+1
3 St (S St
m+1 m+1 m+1
3 St (e 3t
Then taking integral with respect to z and using integration by parts,
1 ZvlJrl L@Z)@Z)dl‘ 'UlJrl—ZUl L@Z)@Z)dl‘ 'Ul
2 — ‘ 0 B J — ‘ 0 B J
1,) 2y}
1 L L
=3 Zuﬁ“/o iy da -l — Zuﬁ/o iy da - u
i, 0,J
L L
£ 0 [ wde @ )+ SN [ e 7 =)
i, Y]
Using Mj; = [, vb; de, and Ki; = [} /9" du,

(V)™M — (v))'MV!) = —%((ul“)TKulH—(ul)TKul)

N —

+ fT(ul+1 _ ul) + (Nl)TM(ulJrl _ ul)
= (TR () TK)

+ MW — )+ (N)MU™ +g —u' —g).
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By the LCP condition (7.5), we have

(VHHY™V — (v)"MV) < —= (u"™)TKu't! — (0)"Ku!) + £ (u'* - u).

DO —
DO | —

Thus

Therefore we have
B V) < Bl V),
as required. O

Notice that we apply the LCP condition in Lemma 7.1, when we compute

numerical solutions.

7.3 Solution techniques for
the linear complementarity problems
7.3.1 Non-smooth Newton method
To solve the linear system (7.3) for one time step with the linear complemen-
tarity condition (7.5), we consider using the non-smooth Newton method (see [45] for
details). In order to find the next step solution u'™ from the linear system (7.3) and

the LCP condition (7.5), we consider the mapping F : R™*! — R™*!:

F:u'™ — min(MN' u'*™ +g). (7.6)
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Note that min(a, b) is meant component-wise for vectors a and b, and so min(a, b) =
0 is equivalent to 0 < a 1L b > 0. Thus the LCP condition (7.5) is equivalent to
F(u*') = 0. Since MN is implicitly a function of u'*! via the linear system (7.3),

we can express MN' as:

! 2 h2 +1 h2 l l
MN'= 5 | (M+ K Ju'™ = (M- 2K o' My | £ (7.7)

So for each ¢ we have two cases:
L >0 My N} < uf! + g; so Fi(u'™) = 7. My N,
2.3, M;; N} > ultt 4 g; so Fy(ul™) = ultt + g,
We can find the next step solution u'*!, using the non-smooth Newton method:

utl = ult — V() Rl for n > 0.

This is Newton method for solving the nonlinear system F(u'*!) = 0. Even though F
is a non-smooth function [8], Newton method still converges super-linearly since F is
a semi-smooth function [40, 39]. This is because max, and min are semi-smooth func-
tions and Newton method method for semi-smooth function still converges locally at
super-linear rate provided F is “BD regular” [45]. That is, it converges superlinearly
provided OF (u) := {lim; .o, VF(u/) | lim; o u/ = u} does not contain any singular
matrices.

In practice, in order to obtain computation, we use a smooth function 6, (a, b),

instead of min(a, b)

0,(a,b) == ((a+b) — hola —b) + a),

DO | =



136

where h,(y) = \/y? + a? — a is an approximation to |y|. The number a > 0 is called

a smoothing parameter. Clearly, as a — 0, we have
0,(a,b) — min(a,b). (7.8)
Applying (7.8), we have for each 7,5, 1 <i,7 <m+1,
Qa(z Miijl», ultt 4+ g;) — min(z MijNJl-, u™ 4+ g;), as a — 0.

J

So let F;(u l“) (Z] MijN]l- + (u?rl +9;) — \/(Z] MijNgl‘ - “?1 —gi)? +a?+ Od) /2

Then from the numerical formulation (7.3),

2 1
ZMNl Zh2M23+2Kz] l+1+z __2 M) j hz UJ
j

When we want to find the (n+ 1) x (n + 1) Jacobian matrix of F, we will put (7.9)

l+1)

into vector function Fj(u; ). The elements of Jacobian matrix VF has a different

form, depending on ¢, j. If i = j, we have

oF, _1(2, 1. (30; Miy N} — wi™ — g;)(2M/1* + Ki3/2 — 1)
+1 9 277 g
8uj 2 h 2 \/(Z] szN]l o ué-‘rl o gz)2 + o

Otherwise, i.e, i # j, we have

OF; 1

2 Mo+ 1K (Z] MijNgl‘ —u;" — 9;)(2M;;/h* + K;5/2)
+1 P2t T g i T
Qu™  Z\MT 2 V(5 MyN! =l — g)2 + a2

Note that this Jacobian matrix VF is not symmetric, i.e., OF;/ 3u§“ # OF;/oult!, in

general.

7.3.2 The smoothed guarded Newton method
In this Subsection, we present in detail how we solve F(u/™') = 0. First we

introduce the guarded Newton method; that is, Newton method combined with back-
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tracking line search. Since the vector function F is smooth enough, F is assumed to

be continuously differentiable. Let p(x) = 3||F(x)||3 for x € R™!. Each iteration of

line search method is given by
Xpt1 = Xy + pndn,

where p,, is called step length and d,, is called the direction. Most line search requires

pn to be descent direction. So we take the direction
d, = —{VF(x,)} 'F(x,). (7.10)
Then we have

A7 Vp(x) = — ({VF(x,)} 'F(x,)) {VF(x,)}F(x,)

= —F(x,)" ({VF(x)} )" {VF(x)}F(x,).
If Jacobian matrix VF(x,,) is symmetric,
d? - Vp(x,) = —F(x,)" - F(x,) < 0.

So p can be reduced along this direction d,,. However since our Jacobian matrix VF
is not symmetric, p may not be reduced. So we want to employ another condition

that imposes on the step length p,. The condition is to provide reduction in p, i.e.,

p(x, + pudy) < p(x5).

Indeed, this condition is not quite the sufficient decrease criterion used in

optimization [42]. But in practice our strategy seems to work well. This is supported
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Table 7.1: Average number of linear system solved per step

h \ k |k=1/5|k=1/25|k=1/50 | k=1/500
h=1/10 | 2048 | 28.08 29.36 35.79
h=1/20 | 19.68 | 25.95 26.99 27.23
h=1/50 | 19.20 | 23.36 23.96 18.28
h=1/100 | 19.19 | 22.79 23.01 19.14
h=1/1000 | 19.28 | 22.87 19.87 14.60

by Table 7.1. From (7.10), we do not take inverse matrix of Jacobian matrix VF(x,,)
in the actual computation. Instead, we solve the linear system VF(x,)-d, = —F(x,),
using LU factorization. This is more efficient in computation. The initial step length
po is chosen to be 1 in the guarded Newton method. Note that solving F(x) = 0 is
equivalent to solving min, p(x) = 0. This gives us Algorithm 7.2 which is called the

guarded Newton method.

Algorithm 7.2. Choose the initial next step solution uy of (7.3).
repeat until |F(u)|2 <€
d — {VF(u)}'F(u)
p—1
repeat until |F(u+ pd)|2 < ||F(u)l2
p— p/2

end(repeat)
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u«—u+pd

end(repeat)

A potential disadvantage of the method is that when the initial point is remote
from a solution, the method might not be converge or may converge very slowly. To
resolve those shortcomings, we will consider a better algorithm. We add a smoothing
parameter «. In practical computation, the initial parameter « is chosen to be a
large number. Now combining the guarded Newton method, we have the following

Algorithm 7.3 which is called the smoothed guarded Newton method.

Algorithm 7.3. Choose a large number aq for .
repeat until o < €

try the guarded Newton method

tf the guarded Newton method succeed
a«— a/10

end(if)

else
o — 2

end(else)

end(repeat)

7.4 Numerical evidence for strong convergence
In this Section, we present the numerical evidence that our numerical solutions

converge strongly (via Lemma 6.13) of obtaining and assessing this evidence. Let ¢,
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be the ith eigenvector with eigenvalue \; of the generalized eigenproblem (7.11). Then

we have
¢; Mg, = 1 and K¢, = \,Me,, (7.11)

where ¢, = ((¢i)1, (0:)2, (¢i)3, - - - (¢i)m+1). Note that this is the Galerkin discretiza-

tion of the eigenfunction problem

09, .
axgx) = Nidi(), /0 ¢i(x)? =1

with the usual boundary conditions. Also note that MK is self-adjoint with re-
spect to the inner products (z, w)y = z' Mw and (z, w)g = z' Kw. So for any
given function ¥ : R — R we can define (M 'K) via 9(M~'K)¢p, = 9(\;)¢,. In
particular, let x*(\) = 1 if A < A, and x*(\) = 0 otherwise. The x*(M'K)z is the
projection onto span{¢; | i = 1,2,..., and \; < A.} that is orthogonal with respect
to both (-, )M and (-, -)k. The elastic energy in the modes ¢ with \; < A. is therefore
(k"M 'K)u)"K £*(M'K)u and the kinetic energy is 3 (+*(M'K)v)"M £*(M'K)v.
Since k*(M™'K) is not easily computable without performing an complete (and ex-
pensive) eigenvalue/eigenvector decomposition of M~'K | we will instead construct

a rational approximation to it.

Choosing A\, > 0 for any cut-off ¢ > 1, we have

1 Ai
M Ko = 6.
)\C ¢Z )\C¢Z

Thus for any large integer p > 0

1 - 1
[+ GM9) 6=
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Figure 7.2: The construction of map k.

Then we fix a continuous map k of A

1

SN = T o)

1 -1
and then k(M 'K) = (I + (/\—M‘IK)2”) . (712)

C

Now we have

Lemma 7.4. At each time step | > 1, the energy in the fully-discrete case with no

body force is

1SR/, |
(V)™M 4 () Ru) = 257 (18P + A" )

i=1

N | —

Proof. Using (7.11), we have

((VZ)TMVl + (ul)TKul)

1 m+1 m+1 m+1 m+1
- ~I;h ~I;h ~I;h ~I;h
) E Yy ¢1M§ U; ¢j+§ u; ¢ZK§ U (0¥
i=1 j=1 i=1 j=1

N —
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N | —

m+1 m+1 m+1
~I;h|2 ~Il;h ~l;h
E 10" —l—g u; ¢2ME AU
i=1 i=1 j=1
m+1

1 . .
=5 > (1" + nfil )
i=1
]

Using Lemma 7.4, we can demonstrate numerical evidence using Lemma 6.13

that the convergence is strong. The ratio

(r*(M'K)u)TK k* (M KU + (*(MTK)VvH)TM g* (MK v
(W)TKu! + (vH)TM v!

is the ratio of the elastic and kinetic energy in the modes with \; < A. to the to-
tal elastic and kinetic energy for the numerical solution at time-step ¢;. Following
Lemma 6.13, this should go to one as A, T oo, uniformly in the numerical parameters
h > 0,1 and k > 0. Of course, for fired k > 0, this will happen as A\, T oo anyway. So
we need to first fix A\, and then compute these ratios for £ and h becoming small; from
the apparent limits of the energy ratios for several fixed \., we observe the overall

trend as A. T oo. This will be done in the following Section.

7.5 Computing x(M'K)z
In this Section, we discuss how to efficiently compute x(M™'K)z. Note that
we do not compute x*(M~'K) directly using an eigendecomposition of MK, as this
is computationally expensive. So we choose a rational function x(A) to approximate

the step function x*(\). We can then efficiently compute x(M 1K)z for any vector
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z. For simplicity we choose

1
k(N = TS O for p moderately large.

In fact, we implement this function for p = 5. The key to efficient computation
of K(M™'K)z is the factorization of x(\). The zeros of the denominator (7.12) are

solutions of (A;/A.)?? = —1. The solutions of this equation are
Ni/Ae = ¢ = exp((2j + V)7wi/2p), j=0,1,2,---,2p—1, wherei=+/—1.

Thus we have

K = (M A=) (A A=) (M A = Gp1) ™

= )\(2:1)()\ - )‘CCO)_I()‘ - )\CQ)—1 T ()\ - )\CCprl)_l-

Therefore

k(M 'K)
= APM 'K = AD MK = AGD T (MK = Aoy D)7

1

= A7 (MK = A GM)) T (M7 (K = AGM)) -

1

(MK — A\olop1M)) ™

= AP(K = AGoM) ' M(K = A M) ™+ M(K = AoCopm1 M) 'M.
This gives us Algorithm 7.5 for computing x(M™'K)z.

Algorithm 7.5. Computing k(M 'K)z
fO’I’j:O,l,Q,"' 72p—1
w «— Mz

solve (K — A\ (;M)z = w for z
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end(for)

7 — \?z

In Algorithm 7.5, (K — A\.(;M)z = w has matrices over the complex numbers

C. In order to compute those matrices, we consider the following linear system:
(A +iB)(x+iy) = (u+1iv), (7.13)

where A, B are real matrices and x, y, u, v are real vectors. The system (7.13) is

equivalent to the following linear system:

A -B X Ax — By u
= = , (7.14)

B A y Bx + Ay v
since (A +iB)(x+iy) = (Ax —By) +i(Ay + Bx). We can change the linear system
(7.14) so that we have equivalent real banded matrix with double the bandwidth.
Thus the linear system (K — \.(;M)z = w can be solved as a banded system with an
upper and lower bandwidth of six, which can be done in O(m + 1) time. The matrix-
vector products Mz can also be computed in O(m + 1) time. Thus Algorithm 7.5

can be executed in just O(pm + p) time.

The ratios contained in Table 7.2 are obtained as follows: let E(u',v') be
the total energy in actual computation and let E.(u',v!) be the energy in the low

frequency modes. Then the ratio that we use is

. ZgéhJ Ec(ula Vl)
S Bt vl

Looking across the rows of Table 7.2 we note that there does seem to be some slow

convergence of the ration as h goes to zero, and this ratio increases as m + 1 (the
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Table 7.2: The ratio of energy E. to total energy E

The number of nodes | ¢ || h=1/10 | h=1/50 | h =1/100

10 | 0.650153 | 0.407755 | 0.380260

500 30 || 0.910487 | 0.812236 | 0.777214

100 || 0.997099 | 0.986641 | 0.972011

300 || 0.999846 | 0.999166 | 0.997870

10 || 0.653481 | 0.412869 | 0.378693

1000 30 || 0.917148 | 0.855211 | 0.755536

100 || 0.997575 | 0.981944 | 0.968371

300 || 0.999846 | 0.998196 | 0.997980

number of grid nodes) increases; this limit seems to be very close to one for large
Ae; picking ¢ = 100, for the lowest 100 out of 500 or 1000 possible modes, we can
account for about 97% of the total kinetic and elastic energy. This implies that we can
account for almost all the energy in the bottom 100 frequency modes, and account
for about 75% of the total energy in the bottom 30 modes. So Table 7.2 presents
substantial numerical evidence of the applicability of Lemma 6.13 and therefore of

strong convergence of the numerical solutions.

7.6 Numerical experiments and results
The package that we used for handling the matrices and vectors is Meschach

[54], which uses the C programming language. We took particular advantage of the
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banded matrix routines in that package. Our numerical experiments were performed
on a Hewlett—Packard Visualize B2000.

In this Section, we show our numerical simulation results. In our computation,
we take the length of rod to be L = 20 and the initial displacement u°(z) = z?/4
which is consistent with the essential boundary condition and the initial velocity
v%(z) = —2 - z and gap function g(z) = (z — 12)?, and the end time 7' = 10. We
assume that the rod is moving downward, negative direction in simulation. The gap
function ¢ indicates the distance between the rigid foundation and the initial position
where the rod is located vertically. Note that the potential energy is not included in
our computation, since the body force f(z) is zero.

From the energy functional in (7.4) in the fully-discrete case, we obtain four
graphs for the total energy in Figure 7.3. According to those graphs, our numerical
implementation supports the energy dissipation that we anticipated theoretically.
The first graph shows that the energy function using 100 nodes is erratic. Indeed,
we anticipated that the smaller time step size h we used, the higher the energy.
This appears to be true for all cases except for £ = 0.2 and for h = 0.01 and for
h = 0.001. We would conjecture that the reason is that the approximations are not
sufficiently refined for this value of k. On the other hand, other graphs show that
energy conservation is expected as step size h becomes smaller and smaller.

In Figure 7.4, the motion of the rod is presented. Each curve is the profile of
the rod at given time. In this simulation, we used k& = 1/50 in space and a time step

of h = 1/100. According to our numerical experiments, that case brings the most



Table 7.3: Computation time(u:user time, s:system time)

h \ k|2x107t|4x1072| 2x107% | 2x1073
1x 107t || 0.783u 6.460u 19.892u 1083.158u
0.007s 0.041s 0.035s 2.931s
5x 1072 || 1.503u 11.082u 37.642u 1295.474u
0.003s 0.044s 0.113s 3.453s
2x 1072 || 3.632u | 25.968u 81.783u 1633.937u
0.011s 0.033s 0.158s 3.597s
1x 1072 | 7.283u | 47.621u | 151.851u | 3852.925u
0.039s 0.179s 0.255s 7.367s
1x 1073 || 73.242u | 477.255u | 1220.408u | 29675.837u
0.390s 1.234s 2.054s 65.416s

147
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comfortable and solid result. An interesting point is that the end of the rod touches
rigid foundation at some time step, and oscillates very rapidly. See the pictures at
the right of the top and the left of the bottom of Figure 7.4.

Figures 7.5 and 7.6 present the velocity of the rod. So we would guess the
phenomenon that the rate of deformation of the rod is very fast in some time steps.
Figure 7.5 shows the velocity after the rod bounces away form the rigid foundation.

Finally we have 3-dimensional picture showing the contact force in Figure 7.7.
According to those picture, when the end of rod touches rigid foundation, it seems
that its contact force is the largest among other contact positions. Even though the
number of nodes in the two pictures are different and they show different magnitudes
for the contact force, the graphs have a similar shape.

Table 7.1 and Table 7.3 are presented to show the speed of the computations.
Note that in the case & = 1/500 we use different convergence ||F(u)|2 < e. This
was necessary because of difficulties with roundoff and ill-conditioning in the stiffness
matrix K particularly. So we instead used |[VF(u) 'F(u)|s < € to avoid these
numerical difficulties. So in the Table 7.3, we can see that the ratio of times differs

from the other cases.



energy

energy

120001

11000

10000

9000

8000

7000

6000

5000

Energy for 100 nodes

h=1/100

h=1/50

h=1/1000

h=1/10

4000
0

12000

11000

10000

9000

8000

7000

6000

5000

4000
0

ime

Energy for 1000 nodes

10

energy

energy

12000

11000

10000

9000

8000

7000

6000

5000

149

Energy for 500 nodes

4000
0

12000
11000
10000
9000
8000
7000
6000

5000

Energy for 10000 nodes

4000
0
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CHAPTER 8
CONCLUSIONS

8.1 Elastic bodies in dynamic contact

It has been shown that continuous piecewise linear interpolant u” is uni-

formly bounded in space W (0, T'; L*(Q2)) and L*>°(0, T; H'(€2)), and v" is uniformly
bounded in L>(0,T;L?(Q2)). Indeed we could need a nicer space where u”, v are

uniformly bounded. Consequently, our final goal for this part is to show that
1Nl 1720y = O(D).

To extend this program, we would need to develop a bound of the form

T/h
Z [N jr-1/2(00) < C.
1=0
Then we could apply Alaoglu’s theorem to obtain a weak® convergent subsequence of
the time-discretized normal contact forces Nj,(x,t) = >_,°, N'(x) 6(t — #;). The limit
would belong to the space of H~/2(99Q)-valued measures.
However, there are a number of obstacles to this program. First, there are

reasons to believe that the estimate
IN'l s-17290) = O(h™?)

is sharp if we only assume that the initial energy is bounded. For example, in one

spatial dimension (where N' is just a scalar), consider the following solution of the
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wave equation Uy, = Uy:

(x+t)7V2 oz +t>0,
u(z,t) =
0, z+1t<0,
with € > 0. This wave has finite energy on any finite interval. If we consider this
solution on € = (0, 00) with Signorini conditions at zero, then N(t) ~ constt~1/2+¢
for small ¢t > 0.
On the other hand, if we restrict the initial conditions so that u® € H*?(Q)

and v° € H'Y2(Q), then it can be shown that u' and v' also belong to these spaces

and

1
I3 20m = O (7).

Further work would need to be done to obtain a stronger convergence theory sufficient
to establish strong convergence in H'(Q) for the defomation u and in L?*(2) for
velocity v, or to get conservation of energy in the limit.

Numerical methods can also be developed based on the time-stepping approach
described here and the Finite Element Method. However, we still need the finer

regularity properties.

8.2 The Euler-Bernoulli beam in contact
The existence of sequence u. has been shown, based on penalty method. Also
we proved boundness of u. in CP(0,T; HY/?*7). Since CP(0,T; H*/?*7) is compactly
imbedded in C([0, ] x [0, T7]), there is a subsequence of u, that converges to u strongly

in C([0,] x [0,77]). This plays important role to show the existence of solution.
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Lemma 5.18 implies that N and u + ¢ satisfy the linear complementarity
conditions a.e. by the weak™ convergence of N, and the uniform convergence of u..
Thus our limits N and u satisfy the desired system of conditions (5.3-5.8), and
solutions exist.

Note that our theory does not say anything about uniqueness or about con-
servation of energy. Indeed it can be easily shown that uniqueness does not hold
for the system of conditions (5.3-5.8). Consider the problem with initial conditions
up(z) = ¢1(x) and vo(x) = 0 for all z and the gap function is g(z) = 0 for all
x. Then since ¢1(x) > 0 for all x € [0,{], the solution is u(z,t) = cos(wit)p;(z)
for a suitable constant w; > 0 wntil the impact time wit = 7/2. After impact any
upward velocity proportional to ¢ is possible according to (5.3-5.8): put u(z,t) =
—v cos(wit)py(x) for m/2 < wit < m with v > 0. Then the normal contact force is
(1 4+7)wié1(z) 6(t — 7/ (2w)) in the neighborhood of t = 7/(2wy).

In this respect the system of equations and conditions (5.3-5.8) describes a
system much like the bouncing of a simple particle where the coefficient of restitution
is not specified. But such a solution as described in the previous paragraph with
v > 1 cannot be a limit of solutions of the penalty problem as ¢ | 0 because of
conservation of energy in the penalty equations. However, more subtle difficulties
may arise. Because the convergence theory developed here deals with a weak notion
of convergence, we cannot get convergence in H?(0, 1) spatially. Thus it is theoretically
possible for the solution of the penalty equations u. to generate higher and higher

frequency components as € | 0 so that the limiting solution (converging only weakly



157

in H%(0,1)) may actually be dissipative (that is, losing energy). In physical terms this
would correspond to elastic energy being converted into heat. Note that heat can be
considered as elastic vibrations with a length scale comparable to the inter-atomic or
inter-molecular distances in the material.

Another difficulty that could potentially arise is that as the penalty equations
are reversible, the “dissipativity” could occur going backwards in time. This would
mean that the initial conditions for the penalty problem would actually be dependent
on the penalty parameter: wug (x) where ug . converges weakly but not strongly in
H?(0,1) to ug. In physical terms, this would correspond to heat being converted into
(useful) elastic energy. As such it would violate the Second Law of Thermodynamics.
As we should realize, the Second Law of Thermodynamics is a consequence of analysis
of statistical systems and is a result that holds with extremely high probability, rather
than a certain result for deterministic systems.

This line of thinking leads in several different directions: One is to consider the
idea of explicitly incorporating the idea of “coefficient of restitution” into the system
of conditions (5.3-5.8) for the beam in contact. This seems a rather problematic task
since to do this we would need to separate the post-impact normal velocity at a point
due to the impact force from the post-impact normal velocity due to elastic waves.
Since we can only guarantee that the velocity is spatially in L*(0,1), this is not likely
to be easy.

Another line of thinking is to consider replacing the Euler—Bernoulli model of a

beam with a more realistic model, such as the Timoshenko beam model [57, 58]. This
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model consists of two coupled 2nd order PDEs, and combining this with a suitable
version of the Signorini contact conditions results in a system that bears a number of
strong resemblance with the case of a one-dimensional vibrating string (which satisfies
the wave equation and the Signorini contact conditions) as analyzed by Schatzman
[51].

A numerical method was obtained by first discretizing with respect to time,
and then with respect to space. Convergence theory has been developed with respect
to the time-discretization. The full discretization has been implemented and numer-
ical results obtained. These numerical results seem to suggest that conservation of
energy may hold for generic initial conditions.

We consider semi-discrete and fully discrete approximations to the motion of
an Euler-Bernoulli beam with frictionless contact. For the semi-discrete approxima-
tion, we are able to show that there is a subsequence of the discrete time approxima-
tions that converges (albeit in a sufficiently weak sense) to a (weak) solution of the
PDE and the Signorini contact conditions. From there we go on to develop a fully dis-
crete approximation by using the Finite Element Method using B-splines to construct
the basis functions. This scheme was implemented, and the Linear Complementarity
Problems (LCPs) that arise at each time step were solved using a smoothed guarded
Newton method applied to a reformulation of the LCP as a nonsmooth equation.
These methods turn out to be quite efficient, especially since the one-dimensional
structure of the problem results in banded matrices when handled properly. Further-

more, the number of linear solves carried out per time-step seems not to grow as the
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discretization parameters (h in time and k in space) go to zero.

Of particular interest in this thesis is the question of strong convergence of the
solutions, sufficient to determine if the limiting solution conserves energy or not. A
numerical scheme is devised in this thesis to test this question in a computationally
efficient manner. The results from the computation give evidence that the numerical
solutions for our problem do indeed converge strongly, and that even though the time-
discretization is dissipative, the limit solution also conserves energy. No analytical
demonstration of energy conservation is given; it can be demonstrated to be false in

general, but may be true generically.

8.3 Open questions and future works

Our numerical results give strong evidence of the conservation of energy. How-
ever, the question of whether there can be conservation of energy for Signorini contact
conditions is an open one. Our future work is to investigate this open problem and
complete the dynamic problem with elastic body in the first part of this thesis.

More refined tools are needed for this analysis. Amongst the tools that we
would likely need to carry out this analysis, pseudo-differential operators and other
Fourier transform based techniques for the analysis of PDEs would be included.

Regarding the work on Euler-Bernoulli beams, it would be interesting to in-
vestigate the Timoshenko beam. This work would probably more closely resemble the
work of Schatzman on the one spatial dimension wave equation with contact along

its length. These problems are a little different from elastic body problems because



160

contact can occur in the interior of the domain for the beam problems, while for
elastic bodies, contact can occur only on the boundary. This may be very significant
in the study of conservation and dissipation of energy in impacts.

Even though friction has not been considered in this thesis, frictional contact

problems with dynamic effects will be our future work.
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