
SYSTEMS OF NONLINEAR EQUATIONS

Widely used in the mathematical modeling of real world
phenomena.
We introduce some numerical methods for their solution.

For better intuition, we examine systems of two nonlinear
equations and numerical methods for their solution. We
then generalize to systems of an arbitrary order.

The Problem: Consider solving a system of two nonlin-
ear equations

f(x; y) = 0

g(x; y) = 0 (1)



Example: Consider solving the system

f(x; y) � x2 + 4y2 � 9 = 0
g(x; y) � 18y � 14x2 + 45 = 0

(2)

A graph of z = f(x; y) is given in Figure 1, along with
the curve for f(x; y) = 0.

Figure 1: Graph of z = x2+ 4y2� 9, along with z = 0
on that surface



To visualize the points (x; y) that satisfy simultaneously
both equations in (1), look at the intersection of the zero
curves of the functions f and g. Figure 2 illustrates this.
The zero curves intersect at four points, each of which
corresponds to a solution of the system (2). For example,
there is a solution near the point (1;�1).

Figure 2: The graphs of f(x; y) = 0 and g(x; y) = 0



TANGENT PLANE APPROXIMATION

The graph of z = f(x; y) is a surface in xyz-space.

For (x; y) � (x0; y0), we approximate f(x; y) by a plane
that is tangent to the surface at the point (x0; y0; f (x0; y0)).
The equation of this plane is z = p(x; y) with

p(x; y) � f(x0; y0) (3)

+(x� x0)fx(x0; y0) + (y � y0)fy(x0; y0);

fx(x; y) =
@f(x; y)

@x
; fy(x; y) =

@f(x; y)

@y
;

the partial derivatives of f with respect to x and y, re-
spectively.

If (x; y) � (x0; y0), then

f(x; y) � p(x; y)

For functions of two variables, p(x; y) is the linear Taylor
polynomial approximation to f(x; y).



NEWTON�S METHOD

Let � = (�; �) denote a solution of the system

f(x; y) = 0

g(x; y) = 0

Let (x0; y0) � (�; �) be an initial guess at the solution.

Approximate the surface z = f(x; y) with the tangent
plane at (x0; y0; f(x0; y0)).

If f(x0; y0) is su¢ ciently close to zero, then the zero
curve of p(x; y) will be an approximation of the zero
curve of f(x; y) for those points (x; y) near (x0; y0).

Because the graph of z = p(x; y) is a plane, its zero
curve is simply a straight line.



Example. Consider f(x; y) � x2 + 4y2 � 9. Then

fx(x; y) = 2x; fy(x; y) = 8y

At (x0; y0) = (1;�1),

f(x0; y0) = �4; fx(x0; y0) = 2; fy(x0; y0) = �8

At (1;�1;�4) the tangent plane to the surface z =
f(x; y) has the equation

z = p(x; y) � �4 + 2(x� 1)� 8(y + 1)

The graphs of the zero curves of f(x; y) and p(x; y) for
(x; y) near (x0; y0) are given in Figure 3.

Figure 3: f(x; y) = 0 and p(x; y) = 0



The tangent plane to the surface z = g(x; y) at
(x0; y0; g(x0; y0)) has the equation z = q(x; y) with

q(x; y) � g(x0; y0)+(x�x0)gx(x0; y0)+(y�y0)gy(x0; y0)

Recall that the solution � = (�; �) to

f(x; y) = 0

g(x; y) = 0

is the intersection of the zero curves of z = f(x; y) and
z = g(x; y).

Approximate these zero curves by those of the tangent
planes z = p(x; y) and z = q(x; y). The intersection of
these latter zero curves gives an approximate solution to
the above nonlinear system.

Denote the solution to

p(x; y) = 0

q(x; y) = 0

by (x1; y1).



Example. Return to the equations

f(x; y) � x2 + 4y2 � 9 = 0
g(x; y) � 18y � 14x2 + 45 = 0

with (x0; y0) = (1;�1).

The use of the zero curves of the tangent plane approxi-
mations is illustrated in Figure 4.

Figure 4: f = g = 0 and p = q = 0



Calculating (x1; y1). To �nd the intersection of the zero
curves of the tangent planes, we must solve the linear
system

f(x0; y0) + (x� x0)fx(x0; y0) + (y � y0)fy(x0; y0) = 0
g(x0; y0) + (x� x0)gx(x0; y0) + (y � y0)gy(x0; y0) = 0

The solution is denoted by (x1; y1). In matrix form,"
fx(x0; y0) fy(x0; y0)
gx(x0; y0) gy(x0; y0)

# "
x� x0
y � y0

#
= �

"
f(x0; y0)
g(x0; y0)

#
It is actually computed as follows. De�ne �x and �y to
be the solution of the linear system"
fx(x0; y0) fy(x0; y0)
gx(x0; y0) gy(x0; y0)

# "
�x
�y

#
= �

"
f(x0; y0)
g(x0; y0)

#
"
x1
y1

#
=

"
x0
y0

#
+

"
�x
�y

#
Usually the point (x1; y1) is closer to the solution � than
is the original point (x0; y0).



Continue this process, using (x1; y1) as a new initial
guess. Obtain an improved estimate (x2; y2).

This iteration process is continued until a solution with
su¢ cient accuracy is obtained.

The general iteration is given by"
fx(xk; yk) fy(xk; yk)
gx(xk; yk) gy(xk; yk)

# "
�x;k
�y;k

#
= �

"
f(xk; yk)

g(xk; yk)

#
"
xk+1
yk+1

#
=

"
xk
yk

#
+

"
�x;k
�y;k

#
; k = 0; 1; : : :

(4)
This is Newton�s method for solving

f(x; y) = 0

g(x; y) = 0

Many numerical methods for solving nonlinear systems
are variations on Newton�s method.



Example. Consider again the system

f(x; y) � x2 + 4y2 � 9 = 0
g(x; y) � 18y � 14x2 + 45 = 0

Newton�s method (4) becomes"
2xk 8yk
�28xk 18

# "
�x;k
�y;k

#
= �

"
x2k + 4y

2
k � 9

18yk � 14x2k + 45

#
"
xk+1
yk+1

#
=

"
xk
yk

#
+

"
�x;k
�y;k

#
(5)

Choose (x0; y0) = (1;�1). The resulting Newton iter-
ates are given in Table 1, along with

Error = k�� (xk; yk)k � maxfj� � xkj ; j� � ykjg



Table 1: Newton iterates for the system (5)

k xk yk
0 1:0 �1:0
1 1:170212765957447 �1:457446808510638
2 1:202158829506705 �1:376760321923060
3 1:203165807091535 �1:374083486949713
4 1:203166963346410 �1:374080534243534
5 1:203166963347774 �1:374080534239942

k Error
0 3:74E � 1
1 8:34E � 2
2 2:68E � 3
3 2:95E � 6
4 3:59E � 12
5 2:22E � 16

The �nal iterate is accurate to the precision of the com-
puter arithmetic.



AN ALTERNATIVE NOTATION. We introduce a more
general notation for the preceding work. The problem to
be solved is

F1(x1; x2) = 0

F2(x1; x2) = 0
(6)

Introduce

x =

"
x1

x2

#
; F (x) =

"
F1(x1; x2)

F2(x1; x2)

#

F 0(x) =

266664
@F1
@x1

@F1
@x2

@F2
@x1

@F2
@x2

377775
F 0(x) is called the Frechet derivative of F (x). It is a
generalization to higher dimensions of the ordinary deriv-
ative of a function of one variable.

The system (6) can now be written as

F (x) = 0 (7)

A solution of this equation will be denoted by �.



Newton�s method becomes

F 0(x(k))�(k) = �F (x(k))
x(k+1) = x(k) + �(k)

(8)

for k = 0; 1; : : : .

A shorter and mathematically equivalent form:

x(k+1) = x(k) �
h
F 0(x(k))

i�1
F (x(k)) (9)

for k = 0; 1; : : : .

This last formula is often used in discussing and analyzing
Newton�s method for nonlinear systems. But (8) is used
for practical computations, since it is usually less expen-
sive to solve a linear system than to �nd the inverse of
the coe¢ cient matrix.

Note the analogy of (9) with Newton�s method for a sin-
gle equation.



THE GENERAL NEWTON METHOD

Consider the system of n nonlinear equations

F1(x1; : : : ; xn) = 0
...

Fn(x1; : : : ; xn) = 0
(10)

De�ne

x =

264 x1...
xn

375 ; F (x) =

264 F1(x1; : : : ; xn)...
Fn(x1; : : : ; xn)

375

F 0(x) =

2666664
@F1
@x1

� � � @F1
@xn... ...

@Fn

@x1
� � � @Fn

@xn

3777775
The nonlinear system (10) can be written as

F (x) = 0

Its solution is denoted by � 2 Rn.



Newton�s method is

F 0(x(k))�(k) = �F (x(k))
x(k+1) = x(k) + �(k); k = 0; 1; : : :

(11)

Alternatively, as before,

x(k+1) = x(k) �
h
F 0(x(k))

i�1
F (x(k)); k = 0; 1; : : :

(12)
This formula is often used in theoretical discussions of
Newton�s method for nonlinear systems. But (11) is used
for practical computations, since it is usually less expen-
sive to solve a linear system than to �nd the inverse of
the coe¢ cient matrix.

CONVERGENCE. Under suitable hypotheses, it can be
shown that there is a c > 0 for which�� x(k+1) � c �� x(k)2 ; k = 0; 1; : : :

�� x(k) � max
1�i�n

�����i � x(k)i
����

Newton�s method is quadratically convergent.


