PROPAGATION OF ERROR

Suppose we are evaluating a function f(x) in the machine. Then the result is generally not f(x), but rather an approximate of it which we denote by $\tilde{f}(x)$. Now suppose that we have a number $x_A \approx x_T$. We want to calculate $f(x_T)$, but instead we evaluate $\tilde{f}(x_A)$. What can we say about the error in this latter computed quantity?

$$f(x_T) - \widetilde{f}(x_A) = [f(x_T) - f(x_A)] + \left[f(x_A) - \widetilde{f}(x_A)\right]$$

The quantity $f(x_A) - \tilde{f}(x_A)$ is the "noise" in the evaluation of $f(x_A)$ in the computer, and we will return later to some discussion of it. The quantity $f(x_T) - f(x_A)$ is called the propagated error; and it is the error that results from using perfect arithmetic in the evaluation of the function.

If the function f(x) is differentiable, then we can use the "mean-value theorem" to write

$$f(x_T) - f(x_A) = f'(\zeta) \left(x_T - x_A \right)$$

for some ζ between x_T and x_A .

Since usually x_T and x_A are close together, we can say ζ is close to either of them, and

$$f(x_T) - f(x_A) \approx f'(x_T) (x_T - x_A),$$
 (*)

Example. Define

$$f(x) = b^x$$

where b is a positive real number. Then (*) yields

$$b^{x_T} - b^{x_A} \approx (\log b) b^{x_T} (x_T - x_A)$$

$$\operatorname{Rel}(b^{x_A}) \approx x_T (\log b) (x_T - x_A) / x_T$$

$$= x_T (\log b) \operatorname{Rel}(x_A)$$

$$= K \cdot \operatorname{Rel}(x_A)$$

with $K = x_T (\log b)$. Note that $K = 10^4$ and $\text{Rel}(x_A) = 10^{-7}$, then $\text{Rel}(b^{x_A}) \approx 10^{-3}$. This is a large decrease in accuracy; and it is independent of how we actually calculate b^x . The number K is called a <u>condition number</u> for the computation.

PROPAGATION IN ARITHMETIC OPERATIONS

Let ω denote arithmetic operation such as +, -, *,or /. Let ω^* denote the same arithmetic operation as it is actually carried out in the computer, including rounding or chopping error. Let $x_A \approx x_T$ and $y_A \approx$ y_T . We want to obtain $x_T \omega y_T$, but we actually obtain $x_A \omega^* y_A$. The error in $x_A \omega^* y_A$ is given by

$$x_T \omega y_T - x_A \omega^* y_A = [x_T \omega y_T - x_A \omega y_A] + [x_A \omega y_A - x_A \omega^* y_A]$$

The final term is the error is introduced by the inexactness of the machine arithmetic. For it, we usually assume

$$x_A \omega^* y_A = fl\left(x_A \omega y_A\right)$$

This means that the quantity $x_A \omega y_A$ is computed exactly and is then rounded or chopped to fit the answer into the floating point representation of the machine. The formula

$$x_A \omega^* y_A = fl\left(x_A \omega y_A\right)$$

implies

$$x_A \omega^* y_A = (x_A \omega y_A) (1 + \varepsilon)$$
 (**)

with limits given earlier for ε . Manipulating (**), we have

$$\mathsf{Rel}\left(x_A\omega^*y_A\right) = -\varepsilon$$

With rounded binary arithmetic having n digits in the mantissa,

$$-2^{-n} \le \varepsilon \le 2^{-n}$$

The term

$$x_T \omega y_T - x_A \omega y_A$$

is the propagated error; and we now examine it for particular cases.

Consider first $\omega = *$. Then for the relative error in $x_A * y_A \equiv x_A y_A$,

$$\mathsf{Rel}\left(x_A y_A
ight) = rac{x_T y_T - x_A y_A}{x_T y_T}$$

Write

$$x_T = x_A + \xi, \qquad y_T = y_A + \eta$$

Then

$$\operatorname{Rel}(x_A y_A) = \frac{x_T y_T - x_A y_A}{x_T y_T}$$

$$= \frac{x_T y_T - (x_T - \xi) (y_T - \eta)}{x_T y_T}$$

$$= \frac{x_T \eta + y_T \xi - \xi \eta}{x_T y_T}$$

$$= \frac{\xi}{x_T} + \frac{\eta}{y_T} - \frac{\xi}{x_T} \cdot \frac{\eta}{y_T}$$

$$= \operatorname{Rel}(x_A) + \operatorname{Rel}(y_A) - \operatorname{Rel}(x_A) \cdot \operatorname{Rel}(y_A)$$

Since we usually have

$$\left|\mathsf{Rel}\left(x_{A}
ight)
ight|,\left|\mathsf{Rel}\left(y_{A}
ight)
ight|\ll1$$

the relation

 $\operatorname{Rel}(x_A y_A) = \operatorname{Rel}(x_A) + \operatorname{Rel}(y_A) - \operatorname{Rel}(x_A) \cdot \operatorname{Rel}(y_A)$ says

 $\operatorname{\mathsf{Rel}}(x_A y_A) \approx \operatorname{\mathsf{Rel}}(x_A) + \operatorname{\mathsf{Rel}}(y_A)$

Thus small relative errors in the arguments x_A and y_A leads to a small relative error in the product $x_A y_A$. Also, note that there is some cancellation if these relative errors are of opposite sign.

There is a similar result for division:

$$\mathsf{Rel}\left(rac{x_A}{y_A}
ight)pprox\mathsf{Rel}\left(x_A
ight)-\mathsf{Rel}\left(y_A
ight)$$

provided

$$|\mathsf{Rel}\,(y_A)|\ll 1$$

ADDITION AND SUBTRACTION

For ω equal to - or +, we have

$$[x_T \pm y_T] - [x_A \pm y_A] = [x_T - x_A] \pm [y_T - y_A]$$

Thus the error in a sum is the sum of the errors in the original arguments, and similarly for subtraction. However, there is a more subtle error occurring here.

Suppose you are solving

$$x^2 - 26x + 1 = 0$$

Using the quadratic formula, we have the true answers

$$r_T^{(1)} = 13 + \text{sqrt}(168), \qquad r_T^{(2)} = 13 - \text{sqrt}(168)$$

From a table of square roots, we take

$$sqrt(168) \doteq 12.961$$

Since this is correctly rounded to 5 digits, we have

$$|\mathsf{sqrt}(168) - 12.961| \le .0005$$

Then define $r_A^{(1)} = 13 + 12.961 = 25.961, \quad r_A^{(2)} = 13 - 12.961 = .039$ Then for both roots,

$$|r_T - r_A| \le .0005$$

For the relative errors, however,

$$\operatorname{Rel}\left(r_{A}^{(1)}\right) \leq \frac{.0005}{25.9605} \doteq 3.13 \times 10^{-5}$$
$$\operatorname{Rel}\left(r_{A}^{(2)}\right) \leq \frac{.0005}{.0385} \doteq .0130$$

Why does $r_A^{(2)}$ have such poor accuracy in comparison to $r_A^{(1)}$?

The answer is due to the loss of significance error involved in the formula for calculating $r_A^{(2)}$. Instead, use the mathematically equivalent formula

$$r_T^{(2)} = rac{1}{13 + ext{sqrt}(168)} \doteq rac{1}{25.961}$$

This results in a much more accurate answer, at the expense of an additional division.