
PROPAGATION OF ERROR

Suppose we are evaluating a function f(x) in the ma-
chine. Then the result is generally not f(x), but rather
an approximate of it which we denote by ef(x). Now
suppose that we have a number xA ≈ xT . We want
to calculate f(xT ), but instead we evaluate

ef(xA).
What can we say about the error in this latter com-
puted quantity?

f(xT )− ef(xA) = [f(xT )− f(xA)]+
h
f(xA)− ef(xA)i

The quantity f(xA) − ef(xA) is the “noise” in the
evaluation of f(xA) in the computer, and we will
return later to some discussion of it. The quantity
f(xT ) − f(xA) is called the propagated error; and it
is the error that results from using perfect arithmetic
in the evaluation of the function.

If the function f(x) is differentiable, then we can use
the “mean-value theorem” to write

f(xT )− f(xA) = f 0(ζ) (xT − xA)

for some ζ between xT and xA.



Since usually xT and xA are close together, we can

say ζ is close to either of them, and

f(xT )− f(xA) ≈ f 0(xT ) (xT − xA) , (*)

Example. Define

f(x) = bx

where b is a positive real number. Then (*) yields

bxT − bxA ≈ (log b) bxT (xT − xA)

Rel (bxA) ≈ xT (log b) (xT − xA) /xT

= xT (log b) Rel (xA)

= K · Rel (xA)
withK = xT (log b). Note thatK = 104 and Rel(xA) =

10−7, then Rel(bxA) ≈ 10−3. This is a large decrease
in accuracy; and it is independent of how we actually

calculate bx. The numberK is called a condition number

for the computation.



PROPAGATION IN

ARITHMETIC OPERATIONS

Let ω denote arithmetic operation such as +, −, ∗,
or /. Let ω∗ denote the same arithmetic operation
as it is actually carried out in the computer, including

rounding or chopping error. Let xA ≈ xT and yA ≈
yT . We want to obtain xTωyT , but we actually obtain

xAω
∗yA. The error in xAω∗yA is given by

xTωyT − xAω
∗yA = [xTωyT − xAωyA]

+ [xAωyA − xAω
∗yA]

The final term is the error is introduced by the inex-

actness of the machine arithmetic. For it, we usually

assume

xAω
∗yA = fl (xAωyA)

This means that the quantity xAωyA is computed ex-

actly and is then rounded or chopped to fit the answer

into the floating point representation of the machine.



The formula

xAω
∗yA = fl (xAωyA)

implies

xAω
∗yA = (xAωyA) (1 + ε) (**)

with limits given earlier for ε. Manipulating (**), we

have

Rel (xAω
∗yA) = −ε

With rounded binary arithmetic having n digits in the

mantissa,

−2−n ≤ ε ≤ 2−n



The term

xTωyT − xAωyA

is the propagated error; and we now examine it for
particular cases.

Consider first ω = ∗. Then for the relative error in
xA ∗ yA ≡ xAyA,

Rel (xAyA) =
xTyT − xAyA

xTyT
Write

xT = xA + ξ, yT = yA + η

Then

Rel (xAyA) =
xTyT − xAyA

xTyT

=
xTyT − (xT − ξ) (yT − η)

xTyT

=
xTη + yTξ − ξη

xTyT

=
ξ

xT
+

η

yT
− ξ

xT
· η
yT

= Rel (xA) + Rel (yA)− Rel (xA) · Rel (yA)



Since we usually have

|Rel (xA)| , |Rel (yA)| ¿ 1

the relation

Rel (xAyA) = Rel (xA)+Rel (yA)−Rel (xA) ·Rel (yA)
says

Rel (xAyA) ≈ Rel (xA) + Rel (yA)
Thus small relative errors in the arguments xA and yA
leads to a small relative error in the product xAyA.

Also, note that there is some cancellation if these rel-

ative errors are of opposite sign.

There is a similar result for division:

Rel

Ã
xA
yA

!
≈ Rel (xA)− Rel (yA)

provided

|Rel (yA)| ¿ 1



ADDITION AND SUBTRACTION

For ω equal to − or +, we have

[xT ± yT ]− [xA ± yA] = [xT − xA]± [yT − yA]

Thus the error in a sum is the sum of the errors in

the original arguments, and similarly for subtraction.

However, there is a more subtle error occurring here.

Suppose you are solving

x2 − 26x+ 1 = 0
Using the quadratic formula, we have the true answers

r
(1)
T = 13 + sqrt(168), r

(2)
T = 13− sqrt(168)

From a table of square roots, we take

sqrt(168)
.
= 12.961

Since this is correctly rounded to 5 digits, we have

|sqrt(168)− 12.961| ≤ .0005



Then define

r
(1)
A = 13+12.961 = 25.961, r

(2)
A = 13−12.961 = .039

Then for both roots,

|rT − rA| ≤ .0005

For the relative errors, however,

Rel
µ
r
(1)
A

¶
≤ .0005

25.9605

.
= 3.13× 10−5

Rel
µ
r
(2)
A

¶
≤ .0005

.0385

.
= .0130

Why does r
(2)
A have such poor accuracy in comparison

to r
(1)
A ?

The answer is due to the loss of significance error

involved in the formula for calculating r
(2)
A . Instead,

use the mathematically equivalent formula

r
(2)
T =

1

13 + sqrt(168)

.
=

1

25.961

This results in a much more accurate answer, at the

expense of an additional division.


