
SOME DEFINITIONS

Let xT denote the true value of some number, usually
unknown in practice; and let xA denote an approxi-
mation of xT .

The error in xA is

error(xA) = xT − xA

The relative error in xA is

rel(xA) =
error(xA)

xT
=

xT − xA
xT

Example: xT = e, xA =
19
7 . Then

error(xA) = e− 19
7

.
= .003996

rel(xA) = .00147

We also speak of significant digits. We say xA has m
significant digits with respect to xT if the magnitude
of error(xA) is ≤ 5 units in the (m+ 1)st digit, be-
ginning with the first nonzero digit in xT . Above, xA
has 3 significant digits with respect to xT .



SOURCES OF ERROR

This is a very rough categorization of the sources of

error in the calculation of the solution of a mathemat-

ical model for some physical situation.

(E1) Modelling Error: As an example, if a projectile

of mass m is travelling thru the earth’s atmosphere,

then a popular description of its motion is given by

m
d2r(t)

dt2
= −mgk− b

dr

dt

with b ≥ 0. In this, r(t) is the vector position of the

projectile; and the final term in the equation repre-

sents friction. If there is an error in this a model of a

physical situation, then the numerical solution of this

equation is not going to improve the results.



(E2) Blunders: In the pre-computer era, these were

likely to be arithmetic errors. In the earlier years of the

computer era, the typical blunder was a programming

error. These were usually easy to find as they generally

resulted in absurd calculated answers.

Present day “blunders” are still often programming

errors. But now they are often much more difficult to

find, as they are often embedded in very large codes

which may mask their effect. Some simple rules:

(i) Break programs into small testable subprograms.

(ii) Run test cases for which you know the outcome.

(iii) When running the full code, maintain a skeptical

eye on the output, checking whether the output is

reasonable or not.



(E3) Observational Error: The radius of an electron

is given by

(2.81777 + ε)× 10−13 cm, |ε| ≤ .00011

This error cannot be removed, and it must affect the

accuracy of any computation in which it is used. We

need to be aware of these effects and to so arrange

the computation as to minimize the effects.

(E4) Rounding/chopping Error: This is the main source

of many problems, especially problems in solving sys-

tems of linear equations. We later look at the effects

of such errors.



(E5) Approximation Error: This is also called “dis-

cretization error” and “truncation error”; and it is the

main source of error with which we deal in this course.

Such errors generally occur when we replace a compu-

tationally unsolvable problem with a nearby problem

that is more tractable computationally.

For example, the Taylor polynomial approximation

ex ≈ 1 + x+
1

2
x2

contains an “approximation error”.

The numerical integrationZ 1
0
f(x) dx ≈ 1

n

nX
j=1

f
µ
j

n

¶
contains an approximation error.

Finally, the numerical differentiation formula

f 0(x) ≈ f(x+ h)− f(x− h)

2h

contains an approximation error.



LOSS OF SIGNIFICANCE ERRORS

This can be considered a source of error or a conse-

quence of the finiteness of calculator and computer

arithmetic. We begin with some illustrations.

Example. Define

f(x) = x [sqrt(x+ 1)− sqrt(x)]
and consider evaluating it on a 6-digit decimal calcu-

lator which uses rounded arithmetic. The values of

f(x), taken from the text in Section 2.2:

x Computed f(x) True f(x)
1 .414210 .414214
10 1.54340 1.54347
100 4.99000 4.98756
1000 15.8000 15.8074
10000 50.0000 49.9988
100000 100.000 158.113

What happened?



Example. Define

f(x) =
1− cosx

x2
, x 6= 0

Values for a sequence of decreasing positive values

of x is given in Section 2.2 of the text, using a past

model of a popular calculator. The calculator carried

10 decimal digits, and it used rounded arithmetic.

x Computed f(x) True f(x)

0.1 0.4995834700 0.4995834722

0.01 0.4999960000 0.4999958333

0.001 0.5000000000 0.4999999583

0.0001 0.5000000000 0.4999999996

0.00001 0.0 0.5000000000



Consider one case, that of x = .001. Then on the

calculator:

cos (.001) = .9999994999
1− cos (.001) = 5.001× 10−7
1− cos (.001)
(.001)2

= .5001000000

The true answer is f(.001) = .4999999583. The rel-

ative error in our answer is

.4999999583− .5001

.4999999583
=
−.0001000417
.4999999583

.
= −.0002

There 3 significant digits in the answer. How can such

a straightforward and short calculation lead to such a

large error (relative to the accuracy of the calculator)?



When two numbers are nearly equal and we subtract

them, then we suffer a “loss of significance error” in

the calculation. In some cases, these can be quite

subtle and difficult to detect. And even after they are

detected, they may be difficult to fix.

The last example, fortunately, can be fixed in a num-

ber of ways. Easiest is to use a trigonometric identity:

cos (2θ) = 2 cos2 (θ)− 1 = 1− 2 sin2 (θ)
Let x = 2θ. Then

f(x) =
1− cosx

x2
=
2 sin2 (x/2)

x2

=
1

2

"
sin (x/2)

x/2

#2
This latter formula, with x = .001, yields a computed

value of .4999999584, nearly the true answer. We

could also have used a Taylor polynomial for cos(x)

around x = 0 to obtain a better approximation to

f(x) for small values of x.



A MORE SUBTLE EXAMPLE

Evaluate e−5 using a Taylor polynomial approxima-
tion:

e−5 ≈ 1 + (−5)
1!

+
(−5)2
2!

+
(−5)3
3!

+ · · ·+ (−5)
n

n!
With n = 25, the error is¯̄̄̄

¯(−5)
26

26!
ec
¯̄̄̄
¯ ≤ 10−8

Imagine calculating this polynomial using a computer

with 4 digit decimal arithmetic and rounding. To

make the point about cancellation more strongly, imag-

ine that each of the terms in the above polynomial is

calculated exactly and then rounded to the arithmetic

of the computer. We add the terms exactly and then

we round to four digits.

See the table of results in Section 2.2 of the text. It

gives a result of 0.009989 whereas the correct answer

is 0.006738 to four significant digits.



To understand more fully the source of the error, look

at the numbers being added and their accuracy. For

example,

(−5)3
3!

= −125
6
→ −20.83

in the 4 digit decimal calculation, with an error of

magnitude 0.00333 . . . Note that this error in an in-

termediate step is of same magnitude as the true an-

swer 0.006738 being sought. Other similar errors

are present in calculating other coefficients, and thus

they cause a major error in the final answer being cal-

culated.

Whenever a sum is being formed in which the fi-

nal answer is much smaller than some of the terms

being combined, then a loss of significance error is

occurring.



NOISE IN FUNCTION EVALUATION

Consider using a 4-digit decimal calculator (with round-

ing) to evaluate the two functions

f1(x) = x2 − 3
f2(x) = 9 + x2

³
x2 − 6

´
= [f1(x)]

2

Note that f2(x) = [f1(x)]
2. On our calculator,

f1(x) is


< 0, 0 ≤ x ≤ 1.731
= 0, x = 1.732
> 0, x ≥ 1.733

However,

f2(x) is


> 0, 0 ≤ x ≤ 1.725
= 0, 1.726 ≤ x ≤ 1.738
> 0, x ≥ 1.739

Thus f2(x) has 13 distinct zeros on this calculator;

whereas we know that f2(x) has only the zeros±sqrt(3)
.
= 1.732. What happened in our calculations?



Whenever a function f(x) is evaluated, there are arith-

metic operations carried out which involve rounding or

chopping errors. This means that what the computer

eventually returns as an answer contains noise. This

noise is generally “random” and small. But it can af-

fect the accuracy of other calculations which depend

on f(x). For example, we illustrate the evaluation of

f(x) = −1 + 3x− 3x2 + x3

= −1 + x (3 + x (−3 + x))

which is simply (x− 1)3 and has only a single root
at x = 1. We use MATLAB with its IEEE double

precision arithmetic.

0.99998 1.00000 1.00002
-8

-6

-4

-2

0

2

4

6

x 10-15

x



UNDERFLOW ERRORS

Consider evaluating

f(x) = x10

for x near 0. When using IEEE single precision arith-

metic, the smallest nonzero positive number express-

ible in normalized floating-point format is

m = 2−126 .
= 1.18× 10−38;

see the table on IEEE single precision arithmetic with

E = 1 and (a1a2 . . . a23)2 = (00 . . . 0)2.Thus f(x)

will be set to zero if

x10 < m

|x| < m
1
10

.
= 1.61× 10−4

−0.000161 < x < 0.000161



OVERFLOW ERRORS

Attempts to use numbers that are too large for the
floating-point format will lead to overflow errors. These
are generally fatal errors on most computers. With
the IEEE floating-point format, overflow errors can
be carried along as having a value of ±∞ or NaN,
depending on the context. Usually an overflow error
is an indication of a more significant problem or error
in the program and the user needs to be aware of such
errors.

When using IEEE single precision arithmetic, the largest
nonzero positive number expressible in normalized floating-
point format is

m = 2128
³
1− 2−24

´ .
= 3.40× 1038

see the table on IEEE single precision arithmetic with
E = (254)10 and (a1a2 . . . a23)2 = (11 . . . 1)2.Thus
f(x) will overflow if

x10 > m

|x| > m
1
10

.
= 7131.6


