Example 6.5.2. Use a computer with four digit floating-point decimal arithmetic with rounding, and use Gaussian elimination with pivoting. The system to be solved is

$$
\begin{align*}
& x_{1}+0.5 x_{2}+0.3333 x_{3}=1 \\
& 0.5 x_{1}+0.3333 x_{2}+0.25 x_{3}=0 \tag{6.85}\\
& 0.3333 x_{1}+0.25 x_{2}+0.2 x_{3}=0
\end{align*}
$$

Then

$$
\begin{aligned}
x^{(0)} & =[8.968,-35.77,29.77]^{T} \\
r^{(0)} & =[-0.005341,-0.004359,-0.0005344]^{T} \\
\hat{e}^{(0)} & =[0.09216,-0.5442,0.5239]^{T} \\
x^{(1)} & =[9.060,-36.31,30.29] \\
r^{(1)} & =[-0.0006570,-0.0003770,-0.0001980]^{T} \\
\hat{e}^{(2)} & =[0.001707,-0.01300,0.01241]^{T} \\
x^{(2)} & =[9.062,-36.32,30.30]^{T}
\end{aligned}
$$

The iterate $x^{(2)}$ is the correctly rounded solution of the system (6.85). This illustrates the usefulness of the residual correction method.

