
NUMERICAL ANALYSIS: This refers to the analysis

of mathematical problems by numerical means, es-

pecially mathematical problems arising from models

based on calculus.

Effective numerical analysis requires several things:

• An understanding of the computational tool being
used, be it a calculator or a computer.

• An understanding of the problem to be solved.

• Construction of an algorithm which will solve the

given mathematical problem to a given desired

accuracy and within the limits of the resources

(time, memory, etc) that are available.



This is a complex undertaking. Numerous people

make this their life’s work, usually working on only

a limited variety of mathematical problems.

Within this course, we attempt to show the spirit of

the subject. Most of our time will be taken up with

looking at algorithms for solving basic problems such

as rootfinding and numerical integration; but we will

also look at the structure of computers and the impli-

cations of using them in numerical calculations.

We begin by looking at the relationship of numerical

analysis to the larger world of science and engineering.



SCIENCE

Traditionally, engineering and science had a two-sided

approach to understanding a subject: the theoretical

and the experimental. More recently, a third approach

has become equally important: the computational.

Traditionally we would build an understanding by build-

ing theoretical mathematical models, and we would

solve these for special cases. For example, we would

study the flow of an incompressible irrotational fluid

past a sphere, obtaining some idea of the nature of

fluid flow. But more practical situations could seldom

be handled by direct means, because the needed equa-

tions were too difficult to solve. Thus we also used

the experimental approach to obtain better informa-

tion about the flow of practical fluids. The theory

would suggest ideas to be tried in the laboratory, and

the experiemental results would often suggest direc-

tions for a further development of theory.
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With the rapid advance in powerful computers, we

now can augment the study of fluid flow by directly

solving the theoretical models of fluid flow as applied

to more practical situations; and this area is often re-

ferred to as “computational fluid dynamics”. At the

heart of computational science is numerical analysis;

and to effectively carry out a computational science

approach to studying a physical problem, we must un-

derstand the numerical analysis being used, especially

if improvements are to be made to the computational

techniques being used.



MATHEMATICAL MODELS

A mathematical model is a mathematical description

of a physical situtation. By means of studying the

model, we hope to understand more about the physi-

cal situation. Such a model might be very simple. For

example,

A = 4πR2e, Re
.
= 6, 371 km

is a formula for the surface area of the earth. How

accurate is it? First, it assumes the earth is sphere,

which is only an approximation. At the equator, the

radius is approximately 6,378 km; and at the poles,

the radius is approximately 6,357 km. Next, there is

experimental error in determining the radius; and in

addition, the earth is not perfectly smooth. Therefore,

there are limits on the accuracy of this model for the

surface area of the earth.



AN INFECTIOUS DISEASE MODEL

For rubella measles, we have the following model for

the spread of the infection in a population (subject to

certain assumptions).

ds

dt
= −a s i

di

dt
= a s i− b i

dr

dt
= b i

In this, s, i, and r refer, respectively, to the propor-

tions of a total population that are susceptible, infec-

tious, and removed (from the susceptible and infec-

tious pool of people). All variables are functions of

time t. The constants can be taken as

a =
6.8

11
, b =

1

11
The same model works for some other diseases (e.g.

flu), with a suitable change of the constants a and b.

Again, this is an approximation of reality (and a useful

one).



But it has its limits. Solving a bad model will not give

good results, no matter how accurately it is solved;

and the person solving this model and using the results

must know enough about the formation of the model

to be able to correctly interpret the numerical results.

THE LOGISTIC EQUATION

This is the simplest model for population growth. Let

N(t) denote the number of individuals in a population

(rabbits, people, bacteria, etc). Then we model its

growth by

N 0(t) = cN(t), t ≥ 0, N(t0) = N0

The constant c is the growth constant, and it usually

must be determined empirically. Over short periods of

time, this is often an accurate model for population

growth. For example, it accurately models the growth

of US population over the period of 1790 to 1860, with

c = 0.2975.



THE PREDATOR-PREY MODEL

Let F (t) denote the number of foxes at time t; and

let R(t) denote the number of rabbits at time t. A

simple model for these populations is called the Lotka-

Volterra predator-prey model :

dR

dt
= a [1− bF (t)]R(t)

dF

dt
= c [−1 + dR(t)]F (t)

with a, b, c, d positive constants. If one looks carefully

at this, then one can see how it is built from the logis-

tic equation. In some cases, this is a very useful model

and agrees with physical experiments. Of course, we

can substitute other interpretations, replacing foxes

and rabbits with other predator and prey. The model

will fail, however, when there are other populations

that affect the first two populations in a significant

way.



NEWTON’S SECOND LAW

Newton’s second law states that the force acting on

an object is directly proportional to the product of its

mass and acceleration,

F ∝ ma

With a suitable choice of physical units, we usually

write this in its scalar form as

F = ma

Newton’s law of gravitation for a two-body situation,

say the earth and an object moving about the earth is

then

m
d2r(t)

dt2
= −Gmme

|r(t)|2 ·
r(t)

|r(t)|
with r(t) the vector from the center of the earth to

the center of the object moving about the earth. The

constant G is the gravitational constant, not depen-

dent on the earth; and m and me are the masses,

respectively of the object and the earth.



This is an accurate model for many purposes. But

what are some physical situations under which it will

fail?

When the object is very close to the surface of the

earth and does not move far from one spot, we take

|r(t)| to be the radius of the earth. We obtain the
new model

m
d2r(t)

dt2
= −mgk

with k the unit vector directly upward from the earth’s

surface at the location of the object. The gravitational

constant

g
.
= 9.8meters/second2

Again this is a model; it is not physical reality.


