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AN EXISTENCE THEOREM FOR ABEL INTEGRAL EQUATIONS*

KENDALL E. ATKINSON$

Abstract. An existence and smoothness theorem is given for the Abel integral equation

o K(s, t)f(t)(s tP) dt g(s), 0 < =< T, with given p > 0 and 0< a < 1. Particular attention is
given to the behavior of g(s) andf(s) about 0.

1. Introduction. Consider the Abel integral equation

; K(s, t)f(t) dt
(1.1)

(sp- tp)
g(s), O < s <= T,

with given p > 0 and 0 < e < 1. To avoid degeneracy, we shall assume K(s, s) 4:0
for 0 __< s =< T. This is a classical equation, and it is obtained from a variety of
mathematical and physical problems;see the bibliography of Noble [7].

In the past this equation has been examined case by case (for example, see
Schmeidler [8] and the references in [7]). The methods of analysis were usually
constructive or explicit, and the numerical analysis of (1.1) was usually based on
these methods. Within the last few years, direct numerical methods for (1.1) have
been proposed and studied (see [1]-[6], [10], [11]). These are general numerical
methods which depend only on the smoothness of K(s, t) and f(t). As a com-
plementary study to the numerical analysis of(1.1), we give a result on the existence
and smoothness of solutions.

We shall need some special function spaces. For 7 > 1, let us define

f {sf(s)l f e C[0, T]},
u

7> -1

It can easily be seen that if 7 < , then c . The space is much, but not all,
of L(O, T) VI C(0, T].

THEOREM. Let g(s) have theform
(1.2) g(s) st,(s), 0 < s <= T, , e Cn+ 110, T],

for some integer n >_ O. Let fl satisfy

(1.3) pe +/3 > O.

Assume K(s, t) is n / 2 times continuously differentiable for 0 <= <__ s <__ T, and
furthermore,

(1.4) K(s, s) :/: O, 0 <- s <_ T.

Then there is a unique solution f e of (1.1), and its form is

(1.5) f(s) sp+a- X[a + sl(s)] sP+a-lf(s), s > O,
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with e C"[0, T]. The constant a 0 if and only if (0) 0. (Note that the special
form of f(s) implies the existence of fl"+ 1)(0).) Finally, there is a constant d, > O,
independent of, C"[0, T], for which

(1.6) max {llfll, "’, If") } -_< d, max{ll’ll, ..., II’"+ 1)1 }.
The norm is the max norm on [0, T].

In 2 we give some standard results for K(s, t) =- 1. In 3, we introduce a
decomposition of (1.1) and prove some preliminary results about it. The proof of
the theorem is given in 4.

The theorem is true for systems as well. Let K(s, t) be an m x m matrix, and
let f and g be m-component column vectors. Condition (1.4) is replaced by

det K(s, s) 4: O, 0 <= s <= T;

all smoothness statements generalize immediately. The proof given in 3 and 4
generalizes by merely replacing absolute values by appropriate vector and matrix
norms.

2. The Abel transform. Define the Abel transform by

h(t) dt
n(s)

(sp tp),
0 < s <__ T, h LI(O, T) fl C(O, T].

(See Sneddon [9] for some properties and uses of the transform.) We give the
needed properties of sO’ in the following lemma.

LEMMA. Consider the equation

f(t) dt
(2.1)

(sp tpY
s,(s), 0 < s <= T,

with , C" + 110, 7], for some n >= 0 and pa + fl > O. Then there is a unique solution

f L1(0, T) f’] C(O, T] and its form is

(2.2) f(s) sp+I- l[a + sk(s)] =- s

with k C"[O, T] and a =- const. Moreover, for some constant d,

(2.3) IIf")ll <__ d max

Proof The inverse of is given by

(2.4) s- h(s)
p sin (an) d f rp- h(r) dr

s>0.

Using this and a change of the variable of integration, we obtain (2.2) with

(2.5)

a
p sin up + du
--(p +/)(o) (i 2-),

k(s)
p sin (arc) f] uP+ [rc (1 uP)a-

,’(us) + (pa + fl)
(us) us- ’()1 du.
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The remaining results follow from the formula for k(s).

3. Preliminary definitions and results. Define

f K(s, t)f(t) dt
sfh(s)

(sp- tPY
0 < s <__ T, hLX(O, T) f’] C(0, T].

To simplify some formulas, we assume, without loss of generality, that

K(s, s) 1,

Assuming K2(s, s) cK(s, t)/&lt=s exists, let us define

K(s, s) K(s, t),
s>t,

st
U(s,t)

OK(s, t)
c3t

s= t,

O<_s<_T.

f H(s, t)(s t) -h(t) dt
fh(s) [(ff tp)/(s )3

0<s<T.

Then

(3.1) f s’ ..
To solve ’f g, equation (1.1), we solve the problem

(3.2) s’z g, f- sO-ocgf z.

To examine the existence and smoothness off, we shall need a formula for- An especially useful one is

-h(s) spsin(=){f u- fo h(ws)(u-w)-(2 ,- [(u w)/(u 3[p(us, ws)
(3.3)

+ usH(us, ws)] dw du

+ (1 u") (u" w")

Up Wp

which is valid for all h . To obtain it, we take a specific form for h, say h(s)
s(s), for some 7 > -1,/ e C[0, T]. Substituting this into ,h(s), we make a

change of variable, and note the behavior of )fh(s) about s 0. We substitute this
into (2.4), and then perform much algebraic manipulation to obtain (3.3). Note
that we need the existence of the partial derivative H(s, t), which follows from the
fact that K(s, t) is twice continuously differentiable.

We also need a number of special inequalities. From the identity

1 Sp

p [1 -(1 s)r]p- dr, 0=<s<l, p>0,
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we obtain

Sp

(3.4) min {1 p} < _< max {1,p}, 0 _< s < p > O.

From the estimate

we obtain

F(x + 1) x/xX+ 1/2 x>O, 0<0<1,

r(x) (x)< x>0, 0<2<1(3.5)
r(x + ,)= (x + ,)

with

7(x) (1 + ) e1+1/12’,

a monotone decreasing function of x on (0,
Define

A(l)
(1 _2 il-a w(u- w)1-a

wV
dw du,

(3.6)

fo U fo w’dw
B(l)

(1 u)- (u wy clu’ 1>

We use the change of variable w uv, 0 __< v =< 1, the bounds (3.4), and some
manipulation to reduce (3.6) to new formulas involving beta functions. We evalu-
ate these and then bound them, using (3.5), to obtain eventually

Ca(l) C(l)
> 1,(3.7) A(1) =< (I + 2 )2, B(l) <_

(l + 2

with Ca(l) and CB(I) monotone decreasing functions on (- 1,

4. Proof of theorem. The proof is divided into several parts.
(i) Existence and uniqueness of solution f e . Recall the statement of the

theorem. It is easily seen that if either 3ff g or formulation (3.2) has a unique
solution for a g of form (1.2), then so does the other. We shall use (3.2).

Let s’z g. By the lemma,

(4.1) z(s) S
pa+- l[a + sk(s)] =_ spa+- 1(s), k, e C"[0, T].

To show the unique solvability in Y" of (I s’- l)f z, we shall show that

This will be shown by proving that

1-1
(4.2) I z’- ,t.,’ onto

for ally> -1.
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From (4.2) and (4.1), we shall also have

(4.3) f(s) sp+E- if(s), f C[0, T].

To prove that (4.2) holds, we begin by looking at (3.3) with h(s)= s(s).
Then

dg-’h(s)
uP- flrt (1 _5 x-= E(up_ wp)/(u_ -w-)

[pH(us, ws) + usH(us, ws)] dw du
(4.4)

f uP fi’H(us, ws)w’ft(ws) I oPW’-l(u-w)ldwdu}/
(1-up)- (u>_ wp)=

1-
up-wp

Thus

and this proves that I /- 3f maps into 5ft.
Let z e 5f for some 7 > -1, z(s)= sr(s). We shall show the existence of

f e Y’ with (I 1-15/f)f z by looking at the Neumann series for the equation.
Define

fj--[1-1]Jz, S>0,__ j= 0,1,2,

By induction, using (4.5), we have fj e f for all j __> 0, and thus fje C[0, T]. We
shall show that

(4.6) f(s) Z L(s)
0

converges uniformly on [0, T]. It will follow by standard arguments for Neumann
series that f(s)=_ sf(s) is a solution of (1- -)f z. We shall discuss
uniqueness later.

Let m be a bound on IH(s, t)] and IH(s, t)l for 0 __< s =< T. As an induction
hypothesis, assume that for j,

(4.7) If(s)l =< D,s’, 0 <__ s <__ T.

This is easily seen to be true for j 0 since fo ; use Do Il. Assuming the
hypothesis for a general j, we shall use (4.4) to prove it for j + 1. Since fj+ (s)

s-r[a/- fj](s), from (4.4), (4.7), (3.4), and (3.6) it follows that

Ifj+ l(S)l sj+x
p sin (art)

MDj l(pz + T)A(j + )

+ 1 +pmax 1,
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From (3.7), with r 7 + 2 > 0, we obtain

CoDj(4.8) Ifj+ l(s)l <- Dj+ is
j+ 1, Dj+ J + r’

{ Ca(7)
+ (1 + pmax { 1 1/p})C(7)}.Co=

psi Z)M (p+T)l_
The constant Co is independent ofj >= 0. Also, the induction is completed.

Using (4.8) and Do we obtain

(4.9) If(s)l-< F(r)15 Cjs-----j
F(r+j)’ j>=0, 0<=s_<_ T.

For the series (4.6),

Cos(4.10) If(s)l _<- r(r) 11 o r(r + j)"

This converges uniformly on [0, T], and thus f(s) is continuous.
To prove the uniqueness in 5f of the previously constructed f, let us assume

that

y_ -ly= 0, y(s) s37(s), 37eCI0, T].

Then

Applying the same kind of derivation as that used to obtain (4.8), with 5 replaced
by )7, we obtain

F(r + j)’
O=<s__< T, j>=0.

It follows that 37 0, and thus y _= 0.
We combine (4.9) with (2.3) of the lemma to obtain the stability result (1.6)

for the case n 0. The proof of the remaining part of (1.5) is given later.
(ii) Case n 1. We shall show that eachfje C [0, T] and that

(4.11)

converges uniformly on [0, T]. It then follows by standard arguments that
fe C1[0, T] and that f’(s) equals the series (4.11).

From fo 5o and (4.1), we have that foe C1[0, T]. By induction on j using
(4.4), it follows that fj e C1[0, T] for all j. For a second induction, assume that for
l<=i<=j,

If’(s)l DI1)si-1 0 < S < Y.

This is true for j since f’l(S) is continuous. Let us assume it for general j, and
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use (4.8) and the derivativef)+ l(s) from (4.4) to obtain

(4.12) If}+ l(S)l-< C, Lr- +
r+j+l

with C const., C >_ Co. The induction is completed. Also choose C large
enough to ensure that

If(s)l =< C max lie
From (4.12), it follows that

C{-sJ-If)(s)l =< TI(J)F(r -t-j- 1)max {llffll, Ilff’ll},

with , (j) a linear polynomial in j, for j _> 1, 0 =< s _< T. From this it follows that
the series of (4.11) converges uniformly, concluding the proof. The stability result
(1.6) follows as with n 0.

(iii) A brief sketch of the general case. Let us assume that the result has been
proven for n =< m 1 and let us prove it for n m. As part of the induction, we
assume that

C{ -"ss-"
(4.13) If}")(s)l < ’"(J)F(r + j n)max {1111, ".’,

for j >_ n, 0 =< n < m 1, 0 <= s =< T, with 7,(J) a polynomial in j of degree =<n.
To prove the theorem for n m, let us form the ruth derivative offs + l(s) using (4.4)
and Leibniz’s rule. Then we proceed exactly as with the case n 1. The many
details are omitted.

(iv) The special form of (1.5). Since fe C"[0, T], we use f(s) spa+a- Xf(s)
and (4.4) to obtain

s’- 13f(s) S
pa+ at(s), e C"[0, T].

Using f z + .’- xf, formula (4.1), and the preceding equality we obtain

f(s) spa+a- [a + s(k(s) +/(s))],

the desired form. From (2.5), it is seen that the constant a 0 if and only if ,(0) 0.
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