
Verified Programming in Guru

Aaron Stump1 Morgan Deters2 Adam Petcher3

Todd Schiller3 Timothy Simpson3

1Computational Logic Center
CS, The University of Iowa

2LSI, Universitat Politècnica de Catalunya, Spain

3CSE, Washington University in St. Louis

Funding from NSF CAREER.

A Vexing Continuum

Real code Math. functions
concurrent
imperative
general recursive

sequential
pure
total

Where is your verification method?

Plotting Some Approaches

Verification
power

Real code Math

Model Checking

Static Analysis

Dependently Typed PL

Type Theory

The GURU Approach

Real code Math. functionsGURU

General recursion
Dependently typed programs
External theorems about programs
Unaliased mutable state
No concurrency
No aliasing (for mutable state)

Basic GURU Design

Terms : Types.
Proofs : Formulas.
“Full-spectrum” dependency.

I Types can contain arbitrary terms.
I Definitional equality very weak (no β).
I Type checking decidable.
I Explicit casts.

Proofs and types can appear in terms.
I computationally irrelevant.
I erased by compilation, definitional equality.

Today:
I specificational data.
I ownership and memory management.
I functional modeling.

Specificational Data

Programmer can designate argument positions spec.
I for constructors, functions.
I can use a spec x in a spec argument.
I also in types, proofs.
I nowhere else.
I enforced separately from type checking.

spec args erased by compilation [Brady+03], def. equality.
Improves efficiency, simplifies proofs.

Example: Vector Append

Inductive vec : Fun(A:type)(n:nat).type :=
vecn : Fun(A:type).<vec A Z>

| vecc : Fun(A:type)(spec n:nat)(a:A)(l:<vec A n>).
<vec A (S n)>.

vec_append : Fun(A:type)(spec n m:nat)
(l1 : <vec A n>)(l2 : <vec A m>).
<vec A (plus n m)>

Compiled to C: gvec gvec_append(gtype gA, gvec gl1, gvec gl2);

vec_append_assoc :
Forall(A:type)(n1 : nat)(l1 : <vec A n1>)

(n2 n3 : nat)(l2 : <vec A n2>)(l3 : <vec A n3>).
{ (vec_append (vec_append l1 l2) l3) =
(vec_append l1 (vec_append l2 l3)) }

Memory Management in GURU

Currently, no aliasing.
I All data inductive.
I Reference graph acyclic.

Use reference counting, not GC.
Programs use explicit inc, dec.
Static analysis ensures no leaks, no double deletes.
Analysis runs after type checking.
Reduce need for inc/dec with ownership annotations.

Example: Filling a List

fun fill(A:type)(a:A)(n:nat):<list A>.
match n with

Z => (nil A)
| S n’ => (cons A a (fill A a n’))
end.

This type checks, but needs inc/dec to compile.
By default, inputs unowned by caller.
Function must consume each input exactly once.

Compilable Version

fun fill(A:type)(a:A)(n:nat):<list A>.
match n with

Z => dec a (nil A)

| S n’ => (cons A inc a (fill A a n’))
end.

dec a t: consume reference, evaluate t.
inc a: create new reference.
n is consumed by match.

A Different Version Using owned

fun fill(A:type)(owned a:A)(owned n:nat):<list A>.
match n with

Z => (nil A)
| S n’ => (cons A inc a (fill A a n’))
end.

a, n are owned by caller.
Function must still inc for cons of a.
No need to dec a in Z case.
match does not consume owned n.
n’ automatically owned in second case.

Reference Counting Implementation

One byte for constructor tag, three for reference count.
When refcount = 0:

I put item on per-constructor freelist.
I O(1) time.

When allocating from free list:
I dec subdata.
I O(d) time, where d is arity of constructor.

Around 4x faster than malloc/free.
For generic code:

I pass int tags for types.
I code for inc/dec indexed by tag.

Functional Modeling

Awkward squad via functional modeling [Swierstra+07].
I Identify interface.
I Define pure functional model.
I Use model for type checking, theorem proving.
I Replace during compilation.
I Use linear types (unique) to ensure equivalence.

Examples in GURU:
I Basic I/O.
I 32-bit words with increment.
I ASCII characters.
I char-indexed mutable arrays.

Character-Indexed Mutable Arrays

Model charvec as <vec A 128>.
Interface is:

mk_charvec : Fun (A:type)(a:A):unique <charvec A>

cvget : Fun(A:type)(unique_owned l:<charvec A>)
(c:char) : A

cvupdate : Fun(A:type)(c:char)(a:A)
(unique l:<charvec A>) : unique <charvec A>.

cvget does not consume the array.
cvupdate does.

Future Work

Goal: efficient verified FP with effects.
So far:

I general recursion
I mutable structures
I good performance via refcounting.

Next up: aliasing.
I idea: maintain a spanning tree of primary pointers.
I these have type unique <aliased A n>.
I n is number of outstanding aliases.
I to traverse alias, shift primaries/aliases.
I use a physical equality to prove equivalent.
I eliminate shifting code during compilation.

Version 1.0 is close to release:

guru-lang.googlecode.com

guru-lang.googlecode.com

