
Resource Typing in Guru

Aaron Stump1 Evan Austin2

1Computer Science
The University of Iowa

2Computer Science
The University of Kansas

U.S. National Science Foundation CAREER grant.



The GURU Verified-Programming Language

Pure functional language + logical theory.
I Includes indexed datatypes, dependent function types.
I Terms : Types.
I Proofs : Formulas.

Inspired by Coq/CIC, but with some improvements:
I General recursion for terms.

F Proofs are still sound.
F Explicit casts instead of conversion => type equivalence still decidable.

I Annotations dropped for type equivalence.
F Including types, specificational (“ghost”) data, and proofs.
F Avoids problems with equality of proofs.
F Like Implicit Calculus of Constructions (ICC).

I Resource-tracking analysis [new!]

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



The GURU Compiler

CARRAWAY Layer

Guru source code

Parser

Type/proof-checker

λ-lifting

Resource analysis

Linearization

Compile datatypes

C target code

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Functional Modeling for Imperative Abstractions

I/O, mutable arrays, cyclic structures, etc.
Do not fit well into pure FP.
Approach: functional modeling. 1

I Define a pure functional model (e.g., <list A n> for arrays).
I Model is faithful, but slow.
I Use during reasoning.
I Replace with imperative code during compilation.
I Use linear types (alternatively, monads) to keep in synch.

Combining dependent and linear typing is powerful.
I Cf. “Safe Programming with Pointers through Stateful Views” [Zhu,Xi 2005].
I Also, “End-to-end Verification of Security Enforcement is Fine”

[Swamy,Chen,Chugh 2009].

1Cf. “Beauty in the Beast” [Swierstra and Altenkirch 2007]
Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



A Resource Typing Framework

Idea: explore resource management with a framework.
Framework implements concepts of resource, subresource.
Different resource abstractions then defined:

reference-counted data unique references

heap abstractions read-only views

On top of these, build data abstractions:
I Mutable array abstractions.
I Aliased data structures (e.g., FIFO queues).

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



A Framework for Resources

Fundamental ideas:
1 A resource can only be used by one entity at a time.
2 A resource can be temporarily decomposed into subresources.

Resource abstraction defined by primitives:
I a trusted resource type,
I a functional model in GURU,
I trusted C code implementing the primitive.

Resource analysis:
I Check linearity conditions (used exactly once, affine).
I Track subresource relationships.
I Enforce consumption annotations on input variables:

F (default) – consume exactly once/affine.
F ˆ – consume but do not return.
F ! – do not consume.

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Subresources

“Deathly Hallows” as subresource of Harry Potter boxed set.
Cannot use boxed set until all individual volumes returned.
Sublist l’ as a subresource of (cons x l’).
Subresource relationship based on type <R x>:

I x:R – x has resource type R.
I y:<R’ x> – y has resource type R’, and is a subresource of x.

Cannot consume x until all subresources have been consumed.
Need ˆ (“consume but do not return”) to consume y:<R’ x>.

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Resource Abstraction: Reference-Counted Data

ResourceType unowned [...].

Define primitive inc
: Fun(spec A:type)(! #unowned y:A).#unowned A
:= fun(A:type)(y:A).y
«END

inline void *ginc(void *y) { [...] }
END.

Define primitive dec
: Fun(A:type)(^#unowned y:A).void
:= fun(A:type)(y:A).voidi
«END
void gdec(int A, void *r) { [...] }

END.

Inductive (tree-like) data are reference-counted.
(Flat types like bool are untracked.)

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Resource Abstraction: Owned References
ResourceType owned affine.

Define primitive inspect
: Fun(spec A:type)(!#unowned x:A).#<owned x> A
:= fun(A:type)(x:A).x
«END

#define ginspect(x) x
END.

x:A

y:#<owned x> A

This y is pinning x.
Cannot consume x while y is live.

I No inc, dec required for y.
I improved performance, still memory safe.

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Mutable State and Readers/Writers

For writing mutable state, require unique reference.
Can implement readers/writers, using subresource idea.

I Must check in the read-only views to get the read/write one.
I For read/write, x:#unique.
I For read-only, y:#<unique_owned x>.

Use unique/unique_owned for arrays, queues, tries, etc.

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Data Abstraction: Word-Indexed Mutable Arrays

Type: <warray A N L>.
Resource types: unique/unique_owned.

I A is type of elements.
I N is length of array.
I L is list of initialized locations.

(new_array A N) : <warray A N []>.
Writing to index i:

I requires proof: i < N.
I functional model: consume old array, produce updated one.
I imperative implementation: just do the assignment.
I array’s type changes: <warray A N i::L>.

Reading from index i:
I does not consume array.
I requires proof: i ∈ L.

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Data Abstraction: FIFO Queues

Mutable singly-linked list, with direct pointer to enqueue-end.
Aliasing.
Resource abstraction: heaplets (part of heap).

Type Functional Model Imperative Implementation
<heaplet A I> list of aliased values nothing
<alias I> index into heaplet I reference-counted pointer

Unverified queue:
I Just memory safety.
I 138 lines total (6 lines proof).

Verified queue:
I Prove that qin-node has no next-pointer.
I Requires reasoning about aliases.
I 310 lines total (178 lines proof).

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Garbage Collection, Or Lack Thereof

Garbage collection has led to great productivity gains...
... but can hurt performance.
No continuum in mainstream: all GC (slow) or no GC (unsafe).
GURU does not use GC.

I Resource abstractions are memory safe.
I But heaplet can leak memory for cyclic structures.

A perfect world might provide:
I GC’ed regions for productivity.
I Heavier abstractions for safety without GC.

F E.g., compile-time reference counting.
F Significant verification burden.

I Key: ability to choose which is more appropriate.

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Empirical Comparison

Benchmark 1: In array storing [0,220), do binary search for each element.

Benchmark 2: push all words in “War and Peace” through 2 queues.

Mutable Array Test
Language Time Binary
HASKELL 1.18 s 581K
HASKELL (No GC) 0.49 s
OCAML 0.61 s 131K
OCAML (No GC) 0.54 s
GURU 0.42 s 37K

Queue Test
Language Time Binary
HASKELL 1.08 s 614K
HASKELL (No GC) 0.53 s
OCAML 0.66 s 132K
OCAML (No GC) 0.37 s
GURU 0.60 s 37K

Compilers: ghc 6.10.4, ocamlopt 3.11.1, gcc 4.3.3
Machine: 2.67Ghz Intel Xeon, 8 GB mem, Linux 2.6.18

Implementations: Data.Sequence (HASKELL), references (OCAML).

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Future Directions

Better abstractions for aliased structures.
Realistic applications.

I versat: verified modern SAT solver.
F Complex code, uses mutable state.
F Not too large.
F Simple spec.: learned clauses derivable by resolution from input clauses.

Meta-theoretic work on resources.
To learn more:

www.guru-lang.org

“Verified Programming in Guru” book.

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010

www.guru-lang.org


Extra Slides



Initializing Subdata in match-cases

Init-function defined as part of resource abstraction.
Suppose matching on x:r, subdatum y:r’.
Init-function for r-r’ initializes y.
Init ginit_unowned_unowned(#unowned x)(#unowned y).#unowned
«END
inline void *ginit_unowned_unowned(int A,void *x,void *y) {

ginc(y);
return y;

}
END.

Init ginit_owned_unowned(#owned x)(#unowned y).#<owned x> «END
#define ginit_owned_unowned(A,x,y) y

END.

Compressing chains of ownership:

t:<r y> y:<r’ z>
@ t:<r z>

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010


