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The GURU Verified-Programming Language

Pure functional language + logical theory.
I Includes indexed datatypes, dependent function types.
I Terms : Types.
I Proofs : Formulas.

Inspired by Coq/CIC, but with some improvements:
I General recursion for terms.

F Proofs are still sound.
F Explicit casts instead of conversion => type equivalence still decidable.

I Annotations dropped for type equivalence.
F Including types, specificational (“ghost”) data, and proofs.
F Avoids problems with equality of proofs.
F Like Implicit Calculus of Constructions (ICC).

I Resource-tracking analysis [new!]
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The GURU Compiler
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C target code
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Functional Modeling for Imperative Abstractions

I/O, mutable arrays, cyclic structures, etc.
Do not fit well into pure FP.
Approach: functional modeling. 1

I Define a pure functional model (e.g., <list A n> for arrays).
I Model is faithful, but slow.
I Use during reasoning.
I Replace with imperative code during compilation.
I Use linear types (alternatively, monads) to keep in synch.

Combining dependent and linear typing is powerful.
I Cf. “Safe Programming with Pointers through Stateful Views” [Zhu,Xi 2005].
I Also, “End-to-end Verification of Security Enforcement is Fine”

[Swamy,Chen,Chugh 2009].

1Cf. “Beauty in the Beast” [Swierstra and Altenkirch 2007]
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A Resource Typing Framework

Idea: explore resource management with a framework.
Framework implements concepts of resource, subresource.
Different resource abstractions then defined:

reference-counted data unique references

heap abstractions read-only views

On top of these, build data abstractions:
I Mutable array abstractions.
I Aliased data structures (e.g., FIFO queues).
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A Framework for Resources

Fundamental ideas:
1 A resource can only be used by one entity at a time.
2 A resource can be temporarily decomposed into subresources.

Resource abstraction defined by primitives:
I a trusted resource type,
I a functional model in GURU,
I trusted C code implementing the primitive.

Resource analysis:
I Check linearity conditions (used exactly once, affine).
I Track subresource relationships.
I Enforce consumption annotations on input variables:

F (default) – consume exactly once/affine.
F ˆ – consume but do not return.
F ! – do not consume.
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Subresources

“Deathly Hallows” as subresource of Harry Potter boxed set.
Cannot use boxed set until all individual volumes returned.
Sublist l’ as a subresource of (cons x l’).
Subresource relationship based on type <R x>:

I x:R – x has resource type R.
I y:<R’ x> – y has resource type R’, and is a subresource of x.

Cannot consume x until all subresources have been consumed.
Need ˆ (“consume but do not return”) to consume y:<R’ x>.
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Resource Abstraction: Reference-Counted Data

ResourceType unowned [...].

Define primitive inc
: Fun(spec A:type)(! #unowned y:A).#unowned A
:= fun(A:type)(y:A).y
«END

inline void *ginc(void *y) { [...] }
END.

Define primitive dec
: Fun(A:type)(^#unowned y:A).void
:= fun(A:type)(y:A).voidi
«END
void gdec(int A, void *r) { [...] }

END.

Inductive (tree-like) data are reference-counted.
(Flat types like bool are untracked.)
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Resource Abstraction: Owned References
ResourceType owned affine.

Define primitive inspect
: Fun(spec A:type)(!#unowned x:A).#<owned x> A
:= fun(A:type)(x:A).x
«END

#define ginspect(x) x
END.

x:A

y:#<owned x> A

This y is pinning x.
Cannot consume x while y is live.

I No inc, dec required for y.
I improved performance, still memory safe.

Stump, Austin (Iowa, Kansas) Resources in Guru PLPV 2010



Mutable State and Readers/Writers

For writing mutable state, require unique reference.
Can implement readers/writers, using subresource idea.

I Must check in the read-only views to get the read/write one.
I For read/write, x:#unique.
I For read-only, y:#<unique_owned x>.

Use unique/unique_owned for arrays, queues, tries, etc.
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Data Abstraction: Word-Indexed Mutable Arrays

Type: <warray A N L>.
Resource types: unique/unique_owned.

I A is type of elements.
I N is length of array.
I L is list of initialized locations.

(new_array A N) : <warray A N []>.
Writing to index i:

I requires proof: i < N.
I functional model: consume old array, produce updated one.
I imperative implementation: just do the assignment.
I array’s type changes: <warray A N i::L>.

Reading from index i:
I does not consume array.
I requires proof: i ∈ L.
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Data Abstraction: FIFO Queues

Mutable singly-linked list, with direct pointer to enqueue-end.
Aliasing.
Resource abstraction: heaplets (part of heap).

Type Functional Model Imperative Implementation
<heaplet A I> list of aliased values nothing
<alias I> index into heaplet I reference-counted pointer

Unverified queue:
I Just memory safety.
I 138 lines total (6 lines proof).

Verified queue:
I Prove that qin-node has no next-pointer.
I Requires reasoning about aliases.
I 310 lines total (178 lines proof).
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Garbage Collection, Or Lack Thereof

Garbage collection has led to great productivity gains...
... but can hurt performance.
No continuum in mainstream: all GC (slow) or no GC (unsafe).
GURU does not use GC.

I Resource abstractions are memory safe.
I But heaplet can leak memory for cyclic structures.

A perfect world might provide:
I GC’ed regions for productivity.
I Heavier abstractions for safety without GC.

F E.g., compile-time reference counting.
F Significant verification burden.

I Key: ability to choose which is more appropriate.
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Empirical Comparison

Benchmark 1: In array storing [0,220), do binary search for each element.

Benchmark 2: push all words in “War and Peace” through 2 queues.

Mutable Array Test
Language Time Binary
HASKELL 1.18 s 581K
HASKELL (No GC) 0.49 s
OCAML 0.61 s 131K
OCAML (No GC) 0.54 s
GURU 0.42 s 37K

Queue Test
Language Time Binary
HASKELL 1.08 s 614K
HASKELL (No GC) 0.53 s
OCAML 0.66 s 132K
OCAML (No GC) 0.37 s
GURU 0.60 s 37K

Compilers: ghc 6.10.4, ocamlopt 3.11.1, gcc 4.3.3
Machine: 2.67Ghz Intel Xeon, 8 GB mem, Linux 2.6.18

Implementations: Data.Sequence (HASKELL), references (OCAML).
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Future Directions

Better abstractions for aliased structures.
Realistic applications.

I versat: verified modern SAT solver.
F Complex code, uses mutable state.
F Not too large.
F Simple spec.: learned clauses derivable by resolution from input clauses.

Meta-theoretic work on resources.
To learn more:

www.guru-lang.org

“Verified Programming in Guru” book.
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Initializing Subdata in match-cases

Init-function defined as part of resource abstraction.
Suppose matching on x:r, subdatum y:r’.
Init-function for r-r’ initializes y.
Init ginit_unowned_unowned(#unowned x)(#unowned y).#unowned
«END
inline void *ginit_unowned_unowned(int A,void *x,void *y) {

ginc(y);
return y;

}
END.

Init ginit_owned_unowned(#owned x)(#unowned y).#<owned x> «END
#define ginit_owned_unowned(A,x,y) y

END.

Compressing chains of ownership:

t:<r y> y:<r’ z>
@ t:<r z>
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