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Abstract
This paper presents generic derivations of induction for im-
predicatively typed lambda-encoded datatypes, in the Cedille
type theory. Cedille is a pure type theory extending the
Curry-style Calculus of Constructions with implicit prod-
ucts, primitive heterogeneous equality, and dependent inter-
sections. All data erase to pure lambda terms, and there is no
built-in notion of datatype. The derivations are generic in the
sense that we derive induction for any datatype which arises
as the least fixed point of a signature functor. We consider
Church-style and Mendler-style lambda-encodings. More-
over, the isomorphism of these encodings is proved. Also,
we formalize Lambek’s lemma as a consequence of expected
laws of cancellation, reflection, and fusion.

CCS Concepts • Theory of computation → Construc-
tive mathematics; Type theory; Logic and verification;
Proof theory;
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1 Introduction
Can practically useful constructive type theory be developed
based on pure lambda calculus? For many decades the an-
swer has been no. Implementations like Coq and Agda of
constructive type theory augment a pure type system with
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a subsystem for primitive user-declared datatypes [5, 13].
This is because, among other issues, induction is provably
not derivable in second-order dependent type theory [7]. In
this paper, we contribute an alternative, positive answer: we
show how to define a general class of inductive datatypes,
with their associated induction principles, within a compact
pure type theory called the Calculus of Dependent Lambda
Eliminations (CDLE) [18]. The theory is pure in the sense
that the language of terms is just that of pure untyped lambda
calculus, with no additional term operators. This Curry-style
type system extends the (Curry-style) Calculus of Construc-
tions with a small number of additional typing primitives.
Using these, the second author has already shown how to
derive natural-number induction within the type theory [19].
In this paper we go much further and present a general devel-
opment that derives induction abstractly, for any inductive
datatype which arises as a least fixed point of a signature
functor. We give separate derivations for Church-encoded
datatypes and Mendler-encoded ones (these encodings are
reviewed in Section 3).

The technical contributions of the paper are:
1. We present the first generic derivation of induction in

a pure type theory.
2. To do this, we extend the standard notions of Church-

style and Mendler-style algebra, to dependently typed
versions we call proof algebras.

3. We show that our definitions of inductive datatypes
are well-behaved. In particular, we prove the Lambek’s
lemma as a consequence of derived properties of reflec-
tion, cancellation, and fusion. Moreover, we prove that
Church-encoded datatypes are isomorphic to Mendler-
encoded datatypes. We also present the utility of our
derivation on several basic examples.

4. We observe that while as expected, both the identity
and composition functor laws are required for the
derivation of induction based on conventional alge-
bras (Church encoding), only the identity functor law
is needed for the induction rule for Mendler encodings.
To the best of our knowledge this is a novel observa-
tion which we plan to investigate in future to see if it
broadens the class of definable datatypes.

Note that the first paper on CDLE includes a complex
form of recursive types [18]. We have since dropped this

https://doi.org/10.1145/3167087
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construct after discovering induction is derivable without it,
in the presence of a primitive heterogeneous equality type,
which we use also in this paper [19].

2 Background
The starting point for the CDLE type theory in which we
work is the Curry-style Calculus of Constructions (CC). This
language is defined by a type-assignment system, assigning
the types of CC to pure unannotated lambda terms. These
types include dependent function types Π x :T .T ′ and im-
predicative quantification ∀X : κ .T over types at possibly
higher kind κ. Example type-assignment rules include:

Γ,x : T ⊢ t : T ′

Γ ⊢ λ x . t : Π x :T .T ′
Γ,X : κ ⊢ t : T
Γ ⊢ t : ∀X :κ .T

Note that in the second of these rules, the subject t of the
typing judgment does not change. Also note that X cannot
be free in t as t is a pure untyped λ-term and hence contains
no type variables.

For algorithmic typing, CDLE uses annotated terms, which
contain enough information to apply the type-assignment
rules deterministically. So in the implementation, one uses
instead of the second rule above, this one, which is similar
to the usual rule for Church-style ∀-introduction:

Γ,X : κ ⊢ t : T
Γ ⊢ ΛX :κ . t : ∀X :κ .T

Relatedly, when testing convertibility of types, the algo-
rithmic type system compares the erasures of the types,
where erasing a type simply erases the terms contained in it
(see Figure 3). The erasure of ΛX :κ . t , for example, is just
the erasure of t , matching up with the Curry-style version
of ∀-introduction.
To Curry-style CC, CDLE adds three additional typing

constructs:
1. implicit products ∀x :T .T ′ as in the Implicit Calculus

of Constructions [14],
2. a primitive heterogeneous equality type t ≃ t ′ that

expresses β-equality of two terms t and t ′ of possibly
different types, and

3. dependent intersection types ι x :T .T ′ as introduced
by Kopylov [10] (though he used notation x : T ∩T ′)

Figure 1 gives the formation rules for these constructs,
and Figure 2 the algorithmic introduction and elimination
rules, showing also the syntax we use for their annotated
terms. The rules for implicit products (first row of Figure 2)
are essentially Miquel’s [14]. We use a minus sign to indicate
an erased argument. We use some arbitrary term β (λ x . x ,
say) as the proof for true equations. CDLE’s conversion rule
allows changing a term t1 to any β-equal t2 of the same type,
so using the introduction rule we can inhabit the type t1 ≃ t2.
Note, however, that in keeping with our extrinsic viewpoint,
the types of the terms are not actually part of the equality
type itself, nor does the elimination rule require that the

Γ,x : T ′ ⊢ T : ⋆
Γ ⊢ ∀x :T ′.T : ⋆

Γ ⊢ t : T Γ ⊢ t ′ : T ′
Γ ⊢ t ≃ t ′ : ⋆

Γ ⊢ T : ⋆ Γ,x : T ⊢ T ′ : ⋆
Γ ⊢ ι x :T .T ′ : ⋆

Figure 1. Formation rules for additional type constructs of
CDLE

types of the left- and right-hand sides are the same to do an
elimination. Only upon introduction are the types required
to be the same.
The remaining rules of Figure 2 are for introducing and

eliminating dependent intersections. These are similar to
the usual (nondependent) intersection types, except that in
ι x :T .T ′, the type T ′ may contain x free, and hence substi-
tution of the subject of typing is required when considering
this second component of the intersection. This allows the
remarkable possibility to refer to a term t in its own type
[t/x]T ′, giving some form of self reference – albeit the refer-
ence x inT ′ is required to be at some other typeT . Note that
for introducing a dependent intersection, we require that the
two components are provably equal. We could alternatively
impose the stricter requirement that the erasures of the two
components are identical; we have confirmed that the results
of the paper still hold in this case.
The rules in Figure 2 are all justified by a denotational

semantics for types, essentially that of [18] with a couple
of straightforward modifications. This semantics justifies
also the conversion rules shown in Figure 4, where T =β
T ′ relates types by contracting type-level β-redexes, and
t =β t ′ is standard β-equivalence of terms. In particular, the
semantics interprets terms as sets of β-equivalence classes
of closed terms; this explains the third premise in the rule
for introducing intersection types. Finally, the erasures of
annotated terms are given in Figure 3.

We have implemented CDLE in a tool called Cedille, which
we have used to check all the examples in this paper. A pre-
release version for use evaluating the artifacts referenced in
this paper is here:

http://cs.uiowa.edu/~astump/cedille-prerelease.zip

All code referenced in this paper may be found here:
http://cs.uiowa.edu/~astump/papers/cpp2018-code.zip

2.1 Deriving natural-number induction
It is well-known that computationally, natural-number in-
duction can be reduced to iteration (cf. Section 2 of [8]). Let
us illustrate this informally. First define the type cNat of
Church-encoded natural numbers as usual:

cNat ◀ ⋆ = ∀ X : ⋆. (X → X) → X → X.

http://cs.uiowa.edu/~astump/cedille-prerelease.zip
http://cs.uiowa.edu/~astump/papers/cpp2018-code.zip
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Γ,x : T ′ ⊢ t : T x < FV( |t |)
Γ ⊢ Λx :T ′. t : ∀x :T ′.T

Γ ⊢ t : ∀x :T ′.T Γ ⊢ t ′ : T ′
Γ ⊢ t − t ′ : [t ′/x]T

Γ ⊢ t : T
Γ ⊢ β : t ≃ t

Γ ⊢ t ′ : t1 ≃ t2 Γ ⊢ t : [t1/x]T
Γ ⊢ ρ t ′ − t : [t2/x]T

Γ ⊢ t1 : T Γ ⊢ t2 : [t1/x]T ′ Γ ⊢ p : |t1 | ≃ |t2 |
Γ ⊢ [t1, t2{p}] : ι x :T .T ′

Γ ⊢ t : ι x :T .T ′
Γ ⊢ t .1 : T

Γ ⊢ t : ι x :T .T ′
Γ ⊢ t .2 : [t/x]T ′

Figure 2. Algorithmic introduction and elimination rules
for additional type constructs of CDLE

|Λx :T . t | = |t |
|t − t ′ | = |t |
|β | = λ x . x
|ρ t − t ′ | = |t ′ |
|[t1, t2{p}]| = |t1 |
|t .1| = |t |
|t .2| = |t |

Figure 3. Erasures of annotations for implicit products, prim-
itive equality, and dependent intersections

Γ ⊢ t : T ′ T =β T
′ Γ ⊢ T : ⋆

Γ ⊢ t : T

Γ ⊢ t : [t1/x]T t1 =β t2 FV(t2) ⊆ dom(Γ)

Γ ⊢ t : [t2/x]T

Figure 4. Conversion rules

Let cZ and cS be the zero and successor constructors for this
type as usually defined. Then given predicate P : cNat → ⋆,
base case b : P cZ, and step case
s : Π x : cNat. P x → P (cS x)

we must try to inhabit Π n : cNat. P n. Let us use
standard syntax for dependent pair types Σ x : A. B
(though these are not primitive in CDLE). Given n : cNat,
we apply n to Σ x : cNat. P x (to instantiate the type
variable X in the definition of cNat), and then to (cZ,b) and
λ p. (cS (π1 p) , s (π1 p) (π2 p)). This constructs a
proof of P n by iterating the step case n times starting from
the base case. But crucially, at the end of this iteration, all
we have is an inhabitant of Σ x : cNat. P x. We do not
know that the first component of the pair computed for n is

actually n. The identity of the n for which we have P n is
hidden by the existential abstraction (i.e., the Σ-type).

As proposed by the second author [19], this problem can
be overcome in Cedille using dependent intersection types.
We first define a predicate expressing that a Church-encoded
natural number (cNat) is inductive:
Inductive ◀ cNat → ⋆ = λ x : cNat.
∀ Q : cNat → ⋆.
(∀ x : cNat. Q x → Q (cS x)) →
Q cZ →
Q x.

Now we define the “true” type of natural numbers as de-
pendent intersection of cNat and predicate Inductive. Intu-
itively, Nat is a subset of cNat carved out by the inductivity
predicate:
Nat ◀ ⋆ = ι x : cNat. Inductive x.

Moreover, this says that natural numbers are cNats which
are simultaneously their own proofs of inductiveness. This
builds on an observation of Leivant’s that under the Curry-
Howard isomorphism, proofs in second-order logic that data
satisfy their type laws can be seen as isomorphic to the
Church-encodings of those data [12]. Here, the data are al-
ready Church-encoded, and so they are isomorphic to the
proofs of their own inductiveness. We may then define the
constructors for Nat type:
Z ◀ Nat = [ cZ, Λ X. λ s. λ z. z { β } ].
S ◀ Nat → Nat = λ n. [ cS n.1,
Λ P. λ s. λ z. s -n.1 (n.2 P s z) { β } ].

So, if n is a natural of type Nat then it can be “viewed” as a
cNat by first component of the intersection type n.1 and as
a proof that n.1 is inductive by second component, namely
that n.2 : Inductive n.1. Critically, as noted above, the
components t1 and t2 of an introduction [ t1, t2 { p } ]
of a dependent intersection are required to be accompanied
with a proof p that their erasures are equal, a requirement
we refer to generally as alignment. Since this requirement
is trivially satisfied in the definitions for Z and S then it
also justifies that erasure of n.1 and n.2 is n and therefore
n.1 ≃ n.2 for any natural n.

Given the above definitions, we may then inhabit the fol-
lowing type for induction:
∀ Q : Nat → ⋆.
(∀ x : Nat. Q x → Q (S x)) →
Q Z →
Π x : Nat. Q x

The derivation uses x.2 with the following predicate:
λ x : cNat. Σ x' : Nat. (x ≃ x'.1 × Q x')

This says that we will prove by induction on x : cNat that
there exists an x' : Nat, a proof that x equals x' (since
x'.1 erases to x'), and a proof of Q x'. This is easily done
based on the strategy at the start of this section. The crucial
innovation allowing this strategy to go through is using
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dependent intersection for the definition of Nat, and using
equality to connect the x that is eliminated with the x' that
is constructed. For a more leisurely consideration of this
derivation, see [19].

3 Encodings of inductive types
In this section we review the standard material on impred-
icative encodings of inductive datatypes [17, 24]. We also
compare the Church and Mendler-style encodings.
For this and all the following sections we assume the

following global parameters:
1. A functor F kinded as ⋆ → ⋆.
2. A function fmap associated with F:

fmap ◀ ∀ X : ⋆.∀ Y : ⋆. (X → Y) → F X → F Y

3. The identity law for fmap.
Law1 ◀ ⋆ = ∀ X : ⋆. ∀ Y : ⋆.
∀ f : X → Y.
∀ prf : (Π v : X. f v ≃ v).
Π x : F X. fmap f x ≃ x.

4. The composition law for fmap:
Law2 ◀ ⋆ = ∀ X : ⋆. ∀ Y : ⋆. ∀ Z : ⋆.
∀ f : Y → Z. ∀ g : X → Y.
Π x : F X.
fmap f (fmap g x) ≃ fmap (λ x. f (g x)) x.

Also we adopt some syntactical simplifications to improve
readability. In particular, we hide the implicit (erased) ar-
guments in the definitions. For example the arguments X
and Y in the definition of fmap are quantified implicitly,
so we write fmap π1 instead of fully annotated version
fmap (Σ A B) A (π1 A B). The current version of Cedille
language requires fully annotated terms.
It is important not to confuse the implicit arguments in

the sense of Implicit Calculus of Constructions and “hidden”
arguments as in languages like Agda and Coq. For example,
in Agda the identity function has one implicit argument
id : {A : Set} → A → A

This argument may be omitted when the typechecker can
infer it, e.g. id zero. In Cedille, the implicit arguments are
ones which exist just for purposes of typing, so that equa-
tional reasoning happens on terms from which the implicit
arguments have been erased (see Figure 3).

3.1 Church-style inductive types
In categorical parlance, given an endofunctor F the conven-
tional (Church-style) F-algebra is a pair of object X (carrier)
and an arrow F X → X (recall that F is a global parameter):
AlgC ◀ ⋆ → ⋆ = λ X : ⋆. F X → X.

These form a category, where an arrow between (X,f) and
(X',f') is given by a homomorphism h : X → X' such
that ∀ v : F X. f' (fmap h v) ≃ h (f v).

The inductive type induced by the least fixed point of F
is usually modelled as a carrier of the initial object in the
category of F-algebras. We follow this definition in three
steps. First, we define a carrier of initial F-algebra (which in
our case is a type):
FixC ◀ ⋆ = ∀ X : ⋆. AlgC X → X.

Second, initiality tells that there must be a (unique) homo-
morphism from the initial one to any other F-algebra. In
Cedille, this translates into a function which for an algebra
AlgC X returns a function from FixC to X:
foldC ◀ ∀ X : ⋆. AlgC X → FixC → X
= λ alg. λ fix. fix alg.

Lastly, the arrow of the initial F-algebra is a function inC
from F FixC to FixC, which denotes the collection of con-
structor functions for inductive datatype FixC.
inC ◀ AlgC FixC
= λ fix. λ alg. alg (fmap (foldC alg) fix).

For every F-algebra f' : AlgC X' the function foldC f'
is indeed a homomorphism:
HomC ◀ ∀ X' : ⋆. Π f' : AlgC X'. Π v : F FixC.
f' (fmap (foldC f') v) ≃ foldC f' (inC v)
= λ f'. λ v. β.

The equality follows simply by beta reduction. Since we do
not have a dependent elimination for FixC then we cannot
prove that foldC f' is a unique homomorphism (modulo
extensionality). As a result, FixC and inC form only a weakly
initial F-algebra.

Categorically, one can prove Lambek’s lemma, which states
that every initial F-algebra is an isomorphism. The lemma
justifies that the carrier of the initial algebra (FixC) is a least
fixed point of the functor. Unfortunately, absence of depen-
dent elimination (induction rule) prevents us from proving
that inC : AlgC FixC is initial and hence the proof of
the Lambek’s lemma fails. We will correct this in Section 4
below.
Let us look at the example of natural numbers in terms

of above definitions. Natural numbers arise as a least fixed
point of functor NatF:
NatF ◀ ⋆ → ⋆ = λ X : ⋆. Unit + X.

natFmap ◀ ∀ X : ⋆. ∀ Y : ⋆. (X → Y)
→ NatF X → NatF Y = λ f. λ nf.
case nf (λ unit. in1 unit)

(λ x. in2 (f x)).

NatF X is a disjoint sum of singleton type Unit and X (in1
and in2 are left and right injections of the disjoint sum). We
instantiate the global functor parameter F with NatF and
fmapwith natFmap. Natural numbers are then the least fixed
point of NatF:
NatC ◀ ⋆ = FixC.
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To define the usual constructors of natural numbers we first
create the values of type NatF NatC and then use function
inC to “inject” them into NatC:
zeroC ◀ NatC = inC (in1 unit).

sucC ◀ NatC → NatC = λ n. inC (in2 n).

3.2 Mendler-style inductive types
The categorical model of the Mendler-style inductive types
is more involved than the conventional one. A Mendler-style
F-algebra for an endofunctor F : C → C is a pair (X ,Φ) so
that X is an object in C and Φ : C (−,X ) → C (F −,X ) is a
natural transformation [23]. In Cedille, this translates into a
polymorphic function:
AlgM ◀ ⋆ → ⋆ = λ X : ⋆.
∀ R : ⋆. (R → X) → F R → X.

Similarly to the Church-style, Mendler-style F-algebras form
a category and the inductive type induced by a signature
functor F is modelled by the carrier of the initial object in
this category. In our case, the object is a type defined as a
Mendler-style least fixed point:
FixM ◀ ⋆ = ∀ X : ⋆. AlgM X → X.

As before, folding the value of FixM with an algebra AlgM X
gives the homomorphism from FixM to X:
foldM ◀ ∀ X : ⋆. AlgM X → FixM → X
= λ alg. λ fix. fix alg.

In Cedille, the arrow of (weakly) initial Mendler-style F-
algebra is a polymorphic function inM:
inM ◀ AlgM FixM = λ c. λ v. λ alg.
alg (foldM alg) (fmap c v).

As in the case of inC, the purpose of inM is to define construc-
tor functions for the carrier type. The example of natural
numbers encoded in Mendler-style looks very similar to the
Church-style approach.
NatM ◀ ⋆ = FixM.

zeroM ◀ NatM = inM (λ x. x) (in1 unit).

sucM ◀ NatM → NatM = λ n. inM (λ x. x) (in2 n).

In the example above, the argument R is implicitly instanti-
atedwith NatM so that inM (λ x. x) : NatF NatM → NatM
is a Church-style F-algebra.

3.3 Comparison of approaches
As it is common to normalizing languages based on poly-
morphic lambda calculus, Cedille does not allow explicit
recursive calls. Instead, recursive calls are encoded by means
of impredicative polymorphism.
The core difference of Church-style and Mendler-style

F-algebras is in how they encode the recursive calls. Let us
exhibit the difference by defining the function even for NatC

and NatM. In both cases we fold the input with an appropriate
algebra.
evenC ◀ NatC → Bool = foldC evenAlgC.

evenM ◀ NatM → Bool = foldM evenAlgM.

The Church-style algebra is essentially a function of type
NatF Bool → Bool. We must think of its argument
NatF Bool as a collection of constructors of NatC which en-
capsulate the result of a recursive call of evenC on a previous
natural number (below denoted by b).
evenAlgC ◀ AlgC Bool = λ fn.
case fn (λ _ . true) % zero case

(λ b . not b). % suc case

TheMendler-style NatF-algebra is a polymorphic function of
type ∀ R : ⋆. (R → Bool) → NatF R → Bool. It allows
us to state the recursive calls explicitly by providing argu-
ments R → Bool and NatF R. One can think of universally
quantified R as NatM in disguise and the argument R → Bool
is the function evenM in disguise. The polymorphic R ensures
that recursive calls will be made on only the previous natural
number (which ensures termination; cf. [1]).
evenAlgM ◀ AlgM Bool = λ rec. λ fr.

case fr (λ _. true) % zero case
(λ r. not (rec r)). % suc case

Delaware et al. explain that the explicit control over the
recursive calls make the Mendler-style algebras behave rea-
sonably in both lazy and strict environments. At the same
time they show that the lack of control over the recursive
calls in Church-style algebras leads to performance draw-
backs in strict environments and subtle issues in lazy envi-
ronments [2, 4].

In fact, Mendler-style and Church-style algebras are inter-
convertible:
ca2ma ◀ ∀ X : ⋆. AlgC X → AlgM X
= λ algC. λ f. λ fr. algC (fmap f fr).

ma2ca ◀ ∀ X : ⋆. AlgM X → AlgC X
= λ algM. algM (λ x. x).

Hence, FixC and FixM are interconvertible as well. Moreover,
both encodings are isomorphic, but we cannot formally prove
that without induction.

4 Induction principle
The goal of this section is to employ dependent intersec-
tion types to define inductive types for which the induction
principle is provable.

4.1 Induction for Mendler-style types
In this section, our goal is to define a type which will rep-
resent a subset of FixM for which the induction principle
is derivable. We define the subset as an intersection type
of FixM with the “inductivity” predicate on it. Also, we are
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constrained by an introduction rule of the intersection types,
which requires a proof that the terms which are involved
in an intersection have the same erasures (see Figure 2). To
satisfy this condition we express the inductivity of FixM as
a “dependently-typed” version of FixM. Recall, that FixM is
defined in terms of Mendler-style algebra:
AlgM ◀ ⋆ → ⋆ = λ X : ⋆. ∀ R : ⋆.
(R → X) → F R → X.

FixM ◀ ⋆ = ∀ X : ⋆. AlgM X → X.

Hence, we start by introducing the dependent version of
Mendler algebra, a Q-proof F-algebra, which is parameterized
by an algebra and the predicate on its carrier. (Note that our
notion of proof algebra differs from that of [4].) But first, to
aid the reader, here is an overview of the central concepts
that will be defined below:
• PrfAlgM – a dependently typed version of AlgM, but
with some extra explicit arguments that may be help-
ful for users of induction (but hinder alignment with
AlgM).
• PrfAlgM' – like PrfAlgM but with those arguments
made implicit (and so not obstructing alignment with
AlgM); this version is used internally in the develop-
ment of induction, but we will see at the end of the
section how to return to PrfAlgM.
• IsIndFixM – a predicate stating that an element of
type FixM satisfies induction for predicates on FixM. In-
duction here is phrased using the function inM (which
denotes the constructors of FixM).
• FixIndM – the subset of FixM satisfying IsIndFixM;
this is the type for which we prove induction.
• IsIndFixIndM – a predicate stating that an element of
FixIndM satisfies induction for predicates on FixIndM.
Induction is phrased using the function inFixIndM,
which denotes the constructors of FixIndM.
• allIndFixIndM – the proof that every element of type
FixIndM indeed satisfies the predicate IsIndFixIndM.
Deriving this is the main result of this section.

To return to proof algebras: as we saw above (Section 3.2),
a Mendler-style F-algebra provides a function to make ex-
plicit recursive calls. Correspondingly, we define proof alge-
bras to provide a function to use for explicitly invoking the
inductive hypothesis. Therefore, the inductive hypothesis
is a dependent function of type Π r : R. Q (cast r),
where cast converts polymorphic R to X. For the inductive
hypothesis to be strong enough, cast must not change the
value it is being applied to.
PrfAlgM ◀ Π X : ⋆. (X → ⋆) → AlgM X → ⋆
= λ X : ⋆. λ Q : X → ⋆. λ alg : AlgM X.
∀ R : ⋆. Π cast : R → X.
Π _ : ∀ r : R. cast r ≃ r.
(Π r : R. Q (cast r)) →
Π fr : F R. Q (alg cast fr).

Given the inductive hypothesis for every R, the proof algebra
must conclude that alg cast fr satisfies Q. Since PrfAlgM
has more explicit parameters than AlgM, the erasures of their
values can never be the same (align)—this will prevent us
from defining the inductive subset of FixM as the intersection
type. For that reason we give an alternative definition of
proof algebra so that the function cast and the proof that it
is the identity function are implicit:
PrfAlgM' ◀ Π X : ⋆. (X → ⋆) → AlgM X → ⋆
= λ X : ⋆. λ Q : X → ⋆. λ alg : AlgM X.
∀ R : ⋆. ∀ cast : R → X.
∀ _ : ∀ r : R. cast r ≃ r.
(Π r : R. Q (cast r)) →
Π fr : F R. Q (alg cast fr).

Implicitly quantified cast might appear as a restriction on
a derivation of Q (alg cast fr). However, later we will
observe that both types of algebras are equivalent in the
context of the induction rule.

Next, to stay close to the definition of FixMwe say that the
value of x : FixM is inductive if a Q-proof algebra implies
Q x:
IsIndFixM ◀ FixM → ⋆ = λ x : FixM.
∀ Q : FixM → ⋆.
PrfAlgM' FixM Q inM → Q x.

If x satisfies IsIndFixM then to show that the particular x
satisfies Q it is enough to do a proof by induction—prove
that for any fr : F R we can conclude Q (inM cast fr)
given the premise that every r : R satisfies Q (cast r)
and cast r ≃ r.
It is crucially important to maintain a similarity in the

definition of FixM and the inductivity predicate IsIndFixM.
FixM = AlgM X → X.
IsIndFixM x = PrfAlgM' FixM Q inM → Q x.

The analogy of definitions allows us to internalize the fact
that induction can be reduced to iteration. Namely, that the
inductive value x : FixM and the proof that x is inductive
(IsIndFixM x) could be represented by terms with provably
equal erasures—the property which is required by introduc-
tion rule of intersection types.

Let us then define the inductive subset of FixM as a depen-
dent intersection of FixM and predicate IsIndFixM:
FixIndM ◀ ⋆ = ι x : FixM. IsIndFixM x.

Similarly to the function inM, the function inFixIndM con-
structs the values of FixIndM from polymorphic R : ⋆, func-
tion f : R → FixIndM, and value fr : F R. The implemen-
tation combines these arguments into value v : F FixIndM
by mapping f over fr:
inFixIndM ◀ AlgM FixIndM
= λ f. λ fr. let v = fmap f fr in
[ tm1 v, tm2 v { eqm v } ].

Then the resulting value FixIndM is an intersection of tm1 v
and tm2 v. The first component of intersection must be a
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value of FixM derived from F FixIndM in terms of previously
defined function inM.
tm1 ◀ F FixIndM → FixM
= λ v. inM (λ x. x) (fmap (λ x. x.1) v).

The second component (tm2 v) is a proof that every tm1 v
is inductive:
tm2 ◀ Π v : F FixIndM. IsIndFixM (tm1 v)
= λ v. Λ Q. λ q. q FixIndM
-(λ z. z.1)
-(Λ r. β)
(λ r. r.2 Q q) (fmap FixIndM FixIndM (λ x. x) v).

(For better intuition the implicit arguments are shown.)
Now let us look at the unfolded erasures of tm1 and tm2

tm1 = λ v. λ q. q (λ r. (r q))
(fmap (λ x. x) (fmap (λ x. x) v))

tm2 = λ v. λ q. q (λ r. (r q))(fmap (λ x. x) v)

The third component of intersection (eqm v) proves that
erasures of tm1 and tm2 are equal by applying the identity
law of F.

Now we can turn our attention to the derivation of induc-
tion for FixIndM. Similarly to FixM, the value of x : FixIndM
is inductive if we can derive Q x from the respective proof
algebra (note a similarity of IsIndFixM and IsIndFixIndM).
IsIndFixIndM ◀ FixIndM → ⋆ = λ x : FixIndM.
∀ Q : FixIndM → ⋆.
PrfAlgM' FixIndM Q inFixIndM → Q x.

Our goal is to prove that all FixIndM are inductive in this
sense. Note that since the predicate Q ranges over FixIndM
instead of FixM (as in IsIndFixM), we cannot simply use
the form of inductivity for x.1 arising from x : FixIndM
(namely, x.2 : IsIndFixM x.1) as a proof of inductivity
of x itself (namely, IsIndFixIndM x).

Let us start the derivation by assuming the existence of a
predicate Y : FixM → ⋆with the property that Y x.1 im-
plies Q x for any x. Then we can reduce the derivation of Q x
to Y x.1 and prove Y x.1 by using the fact that x.1 is induc-
tive. However, to do that we must convert a proof algebra of
FixIndM to a proof algebra of FixM. In other words, we need
a function from PrfAlgM' FixIndM Q to PrfAlgM' FixM Y.
For that purpose we also need an implication from Q x to
Y x.1. The most important part of the derivation is to show
how to convert a predicate on FixIndM to a predicate on
FixM satisfying both the above properties:
WithWitness ◀ Π X : ⋆. Π Y : ⋆.
(X → ⋆) → (X → Y) → Y → ⋆
= λ X : ⋆. λ Y : ⋆. λ Q : X → ⋆.
λ cast : X → Y. λ y : Y.
Σ x : X. (y ≃ cast x) × Q x.

WithFixIndM ◀ (FixIndM → ⋆) → FixM → ⋆
= λ Q : FixIndM → ⋆.

WithWitness FixIndM FixM Q (λ x. x.1).

The predicate WithWitness X Y Q cast is satisfied by value
y : Y iff there exists a value x : X so that Q x holds and
y ≃ cast x. Therefore, the predicate WithFixIndM Q is sat-
isfied by value y : FixM iff there exists a value x : FixIndM
so that Q x holds and y ≃ x.1. The key role in this definition
is played by heterogeneous equality on erasures. Since the
erasure of x.1 is x then the equality y ≃ x.1 is equivalent
to y ≃ x. Hence, it becomes easy to verify that Q x holds iff
WithFixIndM Q x.1 does.
prop1 ◀ Π x : FixIndM. ∀ Q : FixIndM → ⋆.
Q x → WithFixIndM Q x.1 = <..>.

prop2 ◀ Π x : FixIndM. ∀ Q : FixIndM → ⋆.
WithFixIndM Q x.1 → Q x = <..>.

convIH ◀ ∀ Q : FixIndM → ⋆.
PrfAlgM' FixIndM Q inFixIndM →
PrfAlgM' FixM (WithFixIndM Q) inM
= <..>.

(convIH is implemented in terms of prop1 and prop2.)
This is enough to show that all FixIndM are inductive:

allIndFixIndM ◀ Π x : FixIndM. IsIndFixIndM x.
= λ x. Λ Q. λ algQ. prop2 x Q

(x.2 (WithFixIndM Q) (convIH Q algQ)).

Unfolding the definition of IsIndFixIndM, we may rear-
range premises in the above statement to highlight that any
Q-proof algebra implies that Q holds for every FixIndM.
inductionM' ◀ ∀ Q : FixIndM → ⋆.
PrfAlgM' FixIndM Q inFixIndM →
Π x : FixIndM. Q x
= λ algQ. λ x. allIndFixIndM x algQ.

Recall that we designed PrfAlgM' to align with AlgM. Since
PrfAlgM has more explicit parameters, it is more convenient
for the user to define. In the context of the induction rule
the original PrfAlgM is equivalent to PrfAlgM'. The cen-
tral idea is that proof algebra PrfAlgM' for lifted predicate
WithWitness X X Q (λ x. x) is equivalent to PrfAlgM
for Q. But since lifted Q is logically equivalent to Q then we
can state the final version of induction in terms of original
“strong” proof algebra PrfAlgM:
inductionM ◀ ∀ Q : FixIndM → ⋆.
PrfAlgM FixIndM Q inFixIndM →
Π x : FixIndM. Q x = <..>.

4.2 Induction for Church-style types
Similarly to the previous section, our goal is to define a type
which will represent a subset of FixC for which the induction
principle is derivable. We define this subset as an intersection
type of FixC with the “inductivity” predicate IsIndFixC. As
before, the erasures of x : FixC and IsIndFixC x must
align. We define IsIndFixC by following the definition of
FixC:
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AlgC ◀ ⋆ → ⋆ = λ X : ⋆. F X → X.

FixC ◀ ⋆ = ∀ X : ⋆. AlgC X → X.

The first question is how to define the dependent version of
Church-style algebra. The main difficulty of this task is in
expressing the inductive hypothesis. The immediate idea is to
use the dependent product of typeΣ X Q. In other words, we
pair the values of X and proofs that they satisfy Q. Then the Q-
proof algebra is simply a dependent function from inductive
hypothesis x : F (Σ X Q) to Q (alg (fmap π1 x)):
PrfAlgC ◀ Π X : ⋆. (X → ⋆) → AlgC X → ⋆
= λ X : ⋆. λ Q : X → ⋆. λ alg : AlgC X.
Π ih : F (Σ X Q). Q (alg (fmap π1 ih)).

FixC is inductive if given a Q-proof algebra we can conclude
that it satisfies Q (analogously to the definition of FixC):
IsIndFixC ◀ FixC → ⋆ = λ x : FixC.
∀ Q : FixC → ⋆. PrfAlgC FixC Q inC → Q x.

The inductive subset of FixC consists of values which satisfy
IsIndFixC:
FixIndC ◀ ⋆ = ι x : FixC. IsIndFixC x.

Next, we implement a function for constructing the values
of FixIndC from F FixIndC:
inFixIndC ◀ AlgC FixIndC
= λ v. [ tc1 v, tc2 v { eqc v } ].

The function tc1 must convert F FixIndC to FixC. Since F
is a functor and we already defined function inC then tc1 is
implemented in terms of it:
tc1 ◀ F FixIndC → FixC =
λ v. inC (fmap (λ x. x.1) v).

The function tc2 must prove that every tc1 v is inductive:
tc2 ◀ Π v : F FixIndC. IsIndFixC (tc1 v)
= λ v. Λ Q. λ k. k (fmap FixIndC (Σ FixC Q)
(λ q . sigma q.1 (q.2 Q k)) v).

To finalize the definition of inFixIndC we must show that
the erasure of tc1 and tc2 are the same. Unfortunately, this
is not the case. The fully unfolded and erased terms look as
follows:
tc1 v = λ k. k (fmap (λ q. q k)

(fmap (λ x. x) v))
tc2 v = λ k. k (fmap (λ q. λ c. (c q (q k))) v)

The variable q in the erasure of tc1 represents the value
of FixC and value k represents the F-algebra. Hence, q k
delivers a recursive call (q k ≃ foldC k q). The vari-
able q in the erasure of tc2 represents the value of FixIndC
and k represents the proof algebra. Hence, q k delivers the
inductive hypothesis Q q (q.2 Q k ≃ q k). Since the
value of Q q depends on q, the sigma type is being created
(sigma q.1 (q.2 Q k) ≃ λ c. c q (q k)).

The problem is that the F-algebra and proof algebra differ
in the representation of recursive call and representation of
inductive hypothesis. The recursive call is simply a value X

while the inductive hypothesis is a dependent pair Σ X Q.
To force the equality between the erasures of tc1 and tc2
we must adjust the algebras. To achieve that we wrap the
recursive call into the unary product and use a “weak” sigma
type for the inductive hypothesis in the proof algebra. The
definition of unary product is simple:
Unary ◀ ⋆ → ⋆
= λ A : ⋆. ∀ X : ⋆. (A → X) → X.

unary ◀ ∀ X : ⋆. X → Unary X
= Λ X. λ x. Λ Y. λ c. c x.

The weak sigma type represents the “dependent” version
of unary product. In other words, one can think of WΣ as
usual sigma type but with the first projection being implicit
(erased).
WΣ ◀ Π A : ⋆ . (A → ⋆) → ⋆
= λ A : ⋆. λ B : A → ⋆.
∀ X : ⋆. (∀ a : A. B a → X) → X.

wsigma ◀ ∀ X : ⋆. ∀ Y : X → ⋆.
∀ x : X. Y x → WΣ X Y
= Λ X. Λ Y. Λ x. λ y. Λ Z. λ c. c -x y.

Observe, that erasure of wsigma is equal to λ a. λ c. c a
which is the same as the erasure of unary. Hence, if we wrap
the recursive call into unary product unary (foldC k q)
and wrap the inductive hypothesis into weak sigma type
wsigma -q.1 (q.2 Q k) then the erasures will be equal
to λ c. c (q k) in both cases and we can fix the problem
with alignment described above.

Unfortunately, in the general case it is impossible to imple-
ment projection functions from WΣ A B. We can implement
both projections for the special case WΣ A (WWId A B),
where WWId lifts the predicate B to the logically equivalent
one that also stores the witness A:
WWId ◀ Π X : ⋆. (X → ⋆) → X → ⋆ =
λ X : ⋆. λ Q : X → ⋆. WithWitness X X Q (λ x. x).

wsPrj1 ◀ ∀ X : ⋆. ∀ Y : X → ⋆.
WΣ X (WWId X Y) → X = <..>.

Now, to guarantee the alignment of algebras we can redefine
Church F-algebra in terms of Unary and proof algebra in
terms of WΣ X (WWId X Q):
AlgC' ◀ ⋆ → ⋆ = λ X : ⋆. F (Unary X) → X.

PrfAlgC' ◀ Π X : ⋆. (X → ⋆) → AlgC' X → ⋆
= λ X : ⋆. λ Q : X → ⋆. λ alg : AlgC' X.
Π ih : F (WΣ X (WWId X Q)).
(WWId X Q)

(alg (fmap (λ x. unary (wsPrj1 x) ih)).

(The predicate IsIndFixC must be adjusted to PrfAlgC')
By using the adjusted definitions of algebras we developed
functions tc1' and tc2' so that their erasures are equal.
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tc1'◀ F (Unary FixIndC) → FixC = <..>.

tc2'◀ Π v : F (Unary FixIndC). IsIndFixC (tc1' v)
= <..>.

Then it becomes possible to implement a function:
inFixIndC' ◀ AlgC' FixIndC = <..>.

Since Unary X is isomorphic to X then we get previously
desired AlgC FixIndC:
inFixIndC ◀ AlgC FixIndC = <..>.

Next, by following exactly the same steps as in the previ-
ous section we derive the induction principle for the lifted
predicates WWId FixIndC Q:
inductionC' ◀ ∀ Q : FixIndC → ⋆.
PrfAlgC' FixIndC Q inFixIndC' →
Π x : FixIndC. WWId FixIndC Q x
= <..>.

Observe that WWId FixIndC Q is logically equivalent to Q,
Unary X is isomorphic to X, and (WΣ X (WWId X Q)) is
isomorphic to Σ X Q. Therefore, we can state the induction
principle in terms of the original tidier definition of proof
algebra PrfAlgC:
inductionC ◀ ∀ Q : FixIndC → ⋆.
PrfAlgC FixIndC Q inFixIndC →
Π x : FixIndC. Q x = <..>.

4.3 Discussion
We discovered that it was simpler to derive the generic in-
duction rule in Mendler-style than in Church-style. Recall,
that the Church-style F-algebras provide access to the results
of recursive calls. By analogy, the Church-style proof algebra
must provide access to the results of the invocation of the
inductive hypothesis on "previous" elements. This inevitably
couples these elements with proofs that they satisfy a prop-
erty. The coupling between elements and proofs in proof
algebras hinders alignment with F-algebras. To overcome
this issue we adjusted both algebras by wrapping the results
of recursive calls in unary product and using specifically
tuned "weak" sigma types for representation of inductive
hypothesis.
The derivation of induction for Mendler-style datatypes

is simpler. Recall, that Mendler-style algebras allow the ex-
plicit recursive calls by providing the function R → X and
elements of F R, where R is a polymorphic type. Analo-
gously, a Mendler-style proof algebra expresses its inductive
hypothesis on elements of F R as a dependent function
Π r : R. Q (cast r), where cast is an implicit identity
function from R to X. Therefore proof algebras perfectly align
with the respective F-algebras.

The unexpected aspect of our derivation of induction is
that in Mendler-style it only relies on the first functor law.
We plan to investigate this aspect further to find if it broadens
the class of definable datatypes.

5 Properties
In this section we show that the inductive datatypes defined
by our generic development are well-behaved and satisfy
the expected properties. The same set of properties holds for
both encodings.

5.1 Initiality
FixIndM is a weakly initial Mendler-style F-algebra since
there is an algebra homomorphism from it to any other
algebra.
foldIndM ◀ ∀ X : ⋆. AlgM X → FixIndM → X
= λ alg. λ fix. foldM alg fix.1.

To show that FixIndM is initial we must prove that given an
algebra algM : AlgM X the homomorphism foldIndM algM
is unique (modulo extensionality). This is known as universal
property of folds [9]:
universal' ◀ ∀ X : ⋆. Π h : FixIndM → X.
Π algM : AlgM X.
(Π y : F FixIndM.
h (inFixIndM (λ x. x) y) ≃ algM h y) →
Π x : FixIndM. h x ≃ foldIndM algM x = <..>.

The proof of the above lemma does not succeed because
there are two ways of “using” Mendler-style F-algebra. First,
we can specify R to X and then construct the value of X as
follows: algM X (λ x. x) (fmap h e). The second
possibility is to specify R to FixIndM and then construct the
same value differently—algM FixIndM h e. In a categorical
setting the equality of both values follows from naturality
conditions on algM [23]. In Cedille, we cannot prove that all
Mendler-style F-algebras are natural. Instead, we define a
predicate:
Natural ◀ Π X : ⋆. AlgM X → ⋆ =
λ X : ⋆. λ algM : AlgM X.
∀ R : ⋆. ∀ f : R → X. ∀ fr : F R.
algM f fr ≃ algM (λ x. x) (fmap f fr).

(Church encodings do not require any extra assumptions.)
Now, if we assume that the given algebra is natural then we
can prove universality of foldIndM by induction:
universalM ◀ ∀ X : ⋆ . Π h : FixIndM → X.
Π algM : AlgM X. Natural X algM →
(Π y : F FixIndM.
h (inFixIndM (λ x. x) y) ≃ algM h y) →
Π x : FixIndM. h x ≃ foldIndM algM x = <..>.

This property justifies that FixIndM and inFixIndM form an
initial Mendler-style F-algebra.

5.2 Reflection, cancellation, and fusion
The three best-known consequences of initiality are the re-
flection, cancellation, and fusion laws.

The reflection property states that folding the value with
its constructors does not change it:
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reflectionM ◀ Π x : FixIndM.
foldIndM inFixIndM x ≃ x = <..>.

Reflection is a direct consequence of previously proved ini-
tiality. Since inFixIndM is natural and foldIndM inFixIndM
is an F-algebra homomorphism from FixIndM to FixIndM
then it must be the identity homomorphism.

The cancellation property can be viewed as the reduction
rule where the fold is applied to a data constructor. The
reduction recursively replaces the constructors of FixIndM
with given F-algebra.
cancellationM ◀ ∀ X : ⋆.
Π algM : AlgM X. Natural X algM →
Π x : F FixIndM.
foldIndM algM (inFixIndM (λ x. x) x) ≃

algM (foldIndM algM) x = <..>.

The fusion law describes the composition of fold with
another function. It gives conditions under which the inter-
mediate values produced by folding can be eliminated.
fusionM ◀ ∀ X : ⋆. ∀ Y : ⋆.
Π f : X → Y.
Π alg1 : AlgM X. Natural X alg1 →
Π alg2 : AlgM Y. Natural Y alg2 →
(Π fx : F X.
f (alg1 (λ x. x) fx) ≃ alg2 f fx) →
Π x : FixIndM.
f (foldIndM alg1 x) ≃ foldIndM alg2 x

= <..>.

5.3 Lambek’s lemma
The Lambek’s lemma says that if in : F (Fix F) → Fix F
forms an initial F-algebra then in is an isomorphism with
inverse being fold (fmap in) [11]. In this section we for-
malize the Lambek’s lemma for Mendler-style types. In par-
ticular we show that FixIndM is isomorphic to F FixIndM
(the same holds for FixIndC). The proof becomes possible
due to derived initiality (which itself depends on induction
principle).

To start withwe convert the initialMendler-style F-algebra
to the Church-style F-algebra:
inFixIndM' ◀ F FixIndM → FixIndM
= ma2ca inFixIndM.

As mentioned previously, the categorical model of inductive
types gives the exact recipe on how to implement the inverse
of inFixIndM', namely:
outFixIndM ◀ FixIndM → F FixIndM
= foldIndM (ca2ma (fmap inFixIndM')).

We show that it is a pre-inverse:
inoutM ◀ Π x : FixIndM.
inFixIndM' (outFixIndM x) ≃ x = <..>.

Definitionally, inFixIndM' (outFixIndM x) is equal to
inFixIndM' (foldIndM (ca2ma (fmap inFixIndM')) x),

therefore, by fusion law it is equal to foldIndM inFixIndM x
which by reflection law is x.

The function outFixIndM is also a post-inverse:
outinM ◀ Π x : F FixIndM.
outFixIndM (inFixIndM' x) ≃ x = <..>.

Since, FixIndM is isomorphic to F FixIndM then we are
justified in calling it a fixed point of F. Initiality justifies in
calling it a least fixed point.

5.4 Isomorphism of encodings
In this section, we show that Church-style and Mendler-
style encodings are isomorphic. Recall, that in Section 3.3 we
discussed how to convert between Church andMendler-style
algebras (functions ca2ma and ma2ca). Hence, to convert
between encodings of fixed points we must fold the original
value with the constructors (initial algebras) of the target
encoding:
c2m ◀ FixIndC → FixIndM
= foldIndC (ma2ca inFixIndM).

m2c ◀ FixIndM → FixIndC
= foldIndM (ca2ma inFixIndC).

The composition of c2m with m2c is an F-algebra homomor-
phism from FixIndM to FixIndM. Therefore, by initiality and
reflection property of FixIndM it must be the identity homo-
morphism:
isoM ◀ Π x : FixIndM. c2m (m2c x) ≃ x = <..>.

The same reasoning applies for the opposite direction:
isoC ◀ Π x : FixIndC. m2c (c2m x) ≃ x = <..>.

6 Examples
We instantiate the generic development for natural numbers
and polymorphic lists.

6.1 Natural numbers
In Section 2.1 we showed a specific definition of natural
numbers and derivation of induction principle for it. Let us
list the main steps we took:

1. Defining the “simply” typed natural numbers cNat.
2. Implementing constructors cZ and cS for cNat.
3. Defining the inductivity predicate Inductive in terms

of constructor functions cZ and cS.
4. Defining the inductive subset of cNat as the intersec-

tion type of cNat and Inductive.
5. Implementing the constructors Z and S for Nat.
6. Stating and deriving induction for Nat.

The definition of inductive datatypes in terms of generic
development parameterized by a functor allows us to derive
most of these steps automatically.

As was mentioned previously, natural numbers arise as a
least fixed point of functor NatF:
NatF ◀ ⋆ → ⋆ = λ X : ⋆. Unit + X.
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So, to define natural numbers wemust instantiate the functor
F of generic development with NatF, fmapwith natFmap, and
prove the functor laws. Then we define Church-style natural
numbers as a least fixed point of NatF:
Nat ◀ ⋆ = FixIndC.

Even before we defined the constructors of Nat the generic
development provides the induction rule inductionC for
Nat (the Church-style proof algebra argument is unfolded):
inductionNatGen ◀ ∀ Q : Nat → ⋆.
(Π ih : NatF (Σ Nat Q).

Q (inFixIndC (fmap π1 ih))) →
Π x : Nat. Q x = inductionC.

After defining usual constructors for Nat we can derive the
equivalent “flat” version of induction rule:
zero ◀ Nat = inFixIndC (in1 unit).

suc ◀ Nat → Nat = λ n. inFixIndC (in2 n).

inductionNat ◀ ∀ Q : Nat → ⋆.
Q zero → (Π n : Nat. Q n → Q (suc n)) →
Π x : Nat. Q x = λ qz. λ qs. λ x.
inductionNatGen (λ ih. case ih
(λ u'. ρ (eta-unit u') - qz) % zero case
(λ b. qs (π1 b) (π2 b))) % suc case
x.

In the zero casewe use the fact (eta-unit) that type Unit has
the unique inhabitant unit, so ρ (eta-unit u') rewrites
the goal by equation u' ≃ unit.

6.2 Lists
In this section we use Mendler-style encoding to define poly-
morphic lists. Lists of elements of type A arise as a least fixed
point of functor ListF A:
ListF ◀ ⋆ → ⋆ → ⋆ = λ A : ⋆. λ X : ⋆.
Unit + (A × X).

We skip the obvious proofs that ListF A is a functor which
satisfies the required laws. Since ListF is a family of func-
tors then we must parameterize the combinators of generic
development explicitly depending on A. Then List A is
FixIndM (ListF A) (fmap A) (law1 A) (law2 A).
However, for the readability purposes we only write the first
argument:
List ◀ ⋆ → ⋆ = λ A : ⋆. FixIndM (ListF A).

The previously developed function inductionM immediately
provides the generic induction principle for List A (the
proof algebra argument is unfolded):
inductionListGen ◀ ∀ A : ⋆.
(∀ R : ⋆. Π cast : R → List A.
Π _ : ∀ r : R. cast r ≃ r.
(Π r : R. Q (cast r)) →
Π fr : ListF A R. Q (inFixIndM cast fr)) →
Π x : List A. Q x = <..>.

We define constructors and the flat version of induction rule:
nil ◀ ∀ A : ⋆. List A
= inFixIndM (λ x. x) (in1 unit).

cons ◀ ∀ A : ⋆. A → List A → List A
= λ x. λ xs. inFixIndM (λ x. x) (in2 (pair x xs)).

inductionListM ◀ ∀ A : ⋆. ∀ Q : List A → ⋆.
Q nil →
(Π x : A. Π xs : List A. Q xs → Q (cons x xs)) →
Π xs : List A. Q xs = λ qnil. λ qcons.
inductionListGen (λ cast. λ eq. λ ih. λ fr.
case fr
(λ u'. ρ (eta-unit u') - qnil) % nil case
(λ p. (qcons (π1 p) % cons case

(cast (π2 p))
(ih (π2 p))))).

It is worth noting that in the “cons” case the inductive hy-
pothesis Q (cast (π2 p)) is produced explicitly by invoking
function ih : Π r : R → Q (cast r).

7 Related work
Swierstra showed how to solve the famous expression prob-
lem stated by Wadler [25]. His technique allows to assemble
datatypes and functions from isolated individual components
[21]. The key idea is to define datatypes as fixed points of a
functor. Most importantly, he observes that if F and F' are
functors then the pointwise coproduct F :+: F is also a func-
tor. This allows to derive function Fix (F :+: F') → X
from independently defined functions Fix F → X and
Fix F' → X.

Delaware et al. extended the idea of Swierstra to modular
proofs [4]. They developed an approach to deriving induction
for impredicative encodings based on universal property of
folds. The value v : Fix F is universal if h v ≃ fold alg v
for any algebra alg and homomorphism h. Then, it is shown
how to derive the induction principle for values which sat-
isfy universality. The induction principle allows to derive
properties for Fix (F :+: F') from properties of Fix F
and Fix F'. Also, it is important to note that the proof of
induction relies on functional extensionality. Our approach
does not require extra axioms or assumptions.

Initially, the Coq proof assistant was based on the Calculus
of Constructions. It also used the impredicative encodings
to model inductive datatypes [17]. The induction principles
for those encodings were added axiomatically which endan-
gered normalization properties of the calculus. The calculus
of inductive constructions (CIC) extends CC with built-in
inductive datatypes and serves as a basis for later versions
of Coq [16].
Ghani et al. described the derivation of induction prin-

ciple for inductive types in fibrational setting [6]. For ex-
ample, the described approach allows to derive induction
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for hyperfunctions which arise as a fixed point of functor
F X = (X → Int) → Int (this fixed point cannot be in-
terpreted as a set). Since their approach is purely categorical
then it is also inherently extensional.
In some ways closest to the present work is a recent se-

ries of papers on adding foundational support for datatypes
and co-datatypes based on category theory, to Isabelle/HOL.
This line of numerous papers is summarized in [3]; the ini-
tiating paper is [22]. Like the present work, foundational
(co)datatypes for Isabelle/HOL is based on a categorical view
of algebras (and coalgebras). At a high level, the main point
in favor of our approach is that we achieve a single generic
derivation of induction within our theory. In contrast, the
Isabelle/HOL work has developed a package which, given
suitable user specifications of (co)datatypes, can generate,
in a foundational way, the requisite definitions and proofs
of various desired theorems. So they produce derivations
of induction and related constructs automatically for each
datatype presented, while we give a single generic derivation
once and for all. While the Isabelle/HOL work derives more
than our approach (e.g., we have not treated codatatypes,
nor do we integrate with a complex ecosystem of theorem-
proving plugins and packages), their package weighs in at a
hefty 29,000 lines of Standard ML [3]. Our developments are
an order of magnitude smaller (and carried out within the
theory itself).

8 Conclusions and future work
We showed that the Calculus of Constructions extended
with implicit products, intersection types, and heterogeneous
equality allows to generically derive an induction rule for
impredicatively encoded inductive datatypes. In our work
we considered Church-style and Mendler-style encodings.
We observed that Mendler-style representation of recursive
calls (inductive hypothesis) makes the derivation of induc-
tion simpler than the Church-style representation. Also we
proved the Lambek’s lemma and showed that Church-style
and Mendler-style encodings are isomorphic.
Even with many explicit type annotations required by

the current early-stage implementation of Cedille, our de-
velopments are very compact. The entire code for deriving
induction, proving the discussed properties, and the exam-
ples is, for Church-encoding, 800 lines of Cedille, and for
Mendler-encoding, it is just 600 lines. Thus we have achieved
one of the goals of the Cedille project, to give a compact core
type theory in which we can derive inductive types in a
concise way.

In future, we consider to explore richer classes of datatypes
in Cedille. For example, it should be straightforward to ex-
tend our development to indexed datatypes by defining them
as least fixed points of indexed functors.

Another interesting direction is investigation of inductive-
recursive datatypes in Cedille. Uustalu and Vene described a

construction which allows to turn any scheme S : ⋆ → ⋆
(S can be mixed-variant—an argument can appear on covari-
ant and contravariant positions) into an isomorphic scheme
S^e : ⋆ → ⋆which is a functor. Then they showed how
to use this construction for taking a least fixed point of a
mixed-variant scheme to implement a course-of-value natu-
ral numbers (natural numbers paired with predecessor func-
tion) [23]. We conjecture that the same construction could
be used for expressing the inductive-recursive datatypes in
Cedille.

Unfortunately, Church-style and Mendler-style encodings
suffer from the linear time predecessor function. The possi-
ble alternatives are Parigot and Stump-Fu encodings [15, 20].
Parigot encoding represents datatypes as their own recur-
sors which allows to have a constant time predecessor. The
drawback of this is that the representation of natural n is
exponential in call-by-value setting. More recent Stump-Fu
encoding improves the Parigot representation by requiring
only quadratic space for representation of natural n. We plan
to investigate if the induction principle is derivable for these
encodings.
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