Call-By-Name Normalization for System F

Aaron Stump

November 10, 2014

1 Introduction

This note gives a proof that call-by-name reduction is normalizing for unannotated System F (polymorphic
lambda calculus), and considers a few consequences. System F is defined with annotated terms, where -
bound variables must be declared with their types. So we have Ax : Tt instead of just Az.t. For metatheoretic
analysis, I prefer to work with unannotated terms. This system (with unannotated terms) is also called A2.

2 Syntax

term variables x

type variables X

terms t = z|Azt]|tt

types T = X|T->T|VvVXT
3 Typing

A typing context I' declares free term and type variables:
Typing context T ::= - | D,z : T | T, X : %

We treat I" as a function, and write I'(z) = T to mean that I" contains a declaration z : 7. We will implicitly
require that I' does not declare any variable x twice. Variables can be implicitly renamed in A-terms to
make it possible to enforce this requirement. The typing rules are in Figure 1. To ensure that types are
well-formed, we use some extra rules, called kinding rules, in Figure 2.

I(z)=T De:TkHt:T 'Ft: Ty =T, TH¢:T)
I'tx:T Fl—)\x.t:T—>T/) THtt Ty

DX :ixbt:T THt:YXT TFT :x

TFi:vXT TFt:[I'/X|T

Figure 1: Typing rules for unannotated System F

INX)=x THETy:x DHTy: % DX :xbT:x
Tk X:x THTy, — Ty * TFVYX.T:x

Figure 2: Kinding rules for unannotated System F

[x1, = p(X)
I —T], = {teN |V e[, tt e[T:],}
[VX.TT, = ﬂReR[[Tﬂp[XHR]

Figure 3: Reducibility semantics for types

4 Semantics for types

Figure 3 gives a compositional semantics [T], for types. The function p gives the interpretations of free
type variables in T'. Each free type variable is interpreted as a reducibility candidate, and write p only for
functions mapping type variables X to reducibility candidates. To define what a reducibility candidate is:
let us denote the set of closed terms which normalize using call-by-name reduction as N. We will write
~ for call-by-name reduction. Then a reducibility candidate R is a set of terms satisfying the following
requirements:

e RCN
elftc Randt ~~t thent € R

The set of all reducibility candidates is denoted K.

Lemma 1 (R is a cpo). The set R ordered by subset forms a complete partial order, with greatest element
N and greatest lower bound of a nonempty set of elements of R given by intersection.

Proof. N satisfies both requirements for a reducibility candidate, and since one of those requirements is being
a subset of N, it is clearly the largest such set to do so. Let us prove that the intersection of a nonempty
set S of reducibility candidates is still a reducibility candidate. Certainly if the members of S are subsets of
N then so is (] S. For the second property: assume an arbitrary ¢ € [)S with ¢’ ~ ¢, and show ¢’ € [S.
For the latter, it suffices to show ¢’ € R for every R € S. Consider an arbitrary such R. From ¢t € (]S and
R € S, we have t € R. Then since R is a reducibility candidate, ¢ € R and ¢’ ~» t implies ¢’ € R, . O

Lemma 2 (The semantics of types computes reducibility candidates). If p(X) is defined for every free type
variable of T, then [T], € R.

Proof. The proof is by induction on the structure of the type. If T is a type variable X, then by assumption,
p(X) is a reducibility candidate, and this is the value of [T7,,.

If T is an arrow type 177 — Tb, we must prove the two properties listed above for being a reducibility
candidate. Certainly [T, C N, because the semantics of arrow types requires this explicitly. Now suppose
that t € [Th — T3], and ¢’ ~» t. We must show ¢’ € [T} — T5],. Since t is normalizing and t' ~» ¢, we know
that ¢’ is also normalizing (there is a reduction sequence from ¢’ to ¢ and from ¢ to a normal form). So let us
assume an arbitrary t” € [T1],, and show that t' t” € [T3],. Since t' ~~ t, by the definition of call-by-name
reduction, we have

t/ t// ~ t t”

Since t € [Ty — T5],, we know by the semantics of types that t t"” € [T3],, since t” € [T1],. By the IH,
[T>], is a reducibility candidate. So since t' t” ~» t ¢ and t t" € [T»],, we also have ¢’ t” € [T3],. This was
all we had to prove in this case.

Finally, if 7" is a universal type V.X.T", then by IH, the set [7],/x.-) is a reducibility candidate for all
R € R. Since R is a complete partial order, (o [7"],1x—r) is then also a reducibility candidate.

O

5 Soundness of Typing Rules

The goal of this section is to prove that terms which can be assigned a type using the rules of Figure 1 are
normalizing. We will actually prove a stronger statement, based on an interpretation of typing judgments.
First, we must define an interpretation [I'] for typing contexts I'. This interpretation will be a set of pairs
(0, p), where p is, as above, a function mapping type variables to reducibility candidates; and o maps term
variables to terms. The definition is by recursion on the structure of I':

(U’ p) € [[.Z‘ : T7 Fﬂ A U(.ﬁ) € [[Tﬂﬂ A (07 p) € [[FH
(o,p) €[X :x,T] & plx)€eR A (0,p) €[I]
(0,0) €[]

In the statement of the theorem below, we write ot to mean the result of simultaneously substituting o(x)
for x in t, for all z in the domain of o.

Lemma 3. Suppose (o,p) € [I']. Ift € [T],, then (olx — t],p) € [I',x : T]. Also, if R € R, then
(o,p[zr — R]) € [T, X : «].

Proof. The proof of the first part is by induction on I'. If I' = -, then to show (o[z — t],p) € [,z : T,
it suffices to show ¢ € [T],, which holds by assumption. If I' = y : T",I”, then we have (o,p) € [I'] by
the definition of [I'], and we may apply the IH to conclude (o[z — t],p) € [I,x : T], from which we can
conclude the desired (o[x — t],p) € [T,z : T], again by the definition of [I']. Similar reasoning applies if
I' = X : x,IV. The proof of the second part of the lemma is exactly analogous. O

Theorem 4 (Soundness of typing rules with respect to the semantics). IfT' ¢ : T, then for all (o, p) € [T,
we have ot € [T],.

Proof. The proof is by induction on the structure of the assumed typing derivation. In each case, we will
implicitly assume an arbitrary (o, p) € [T'].
Case:

(z)=T

'tz:T
We proceed by inner induction on I'. If T' is empty, then I'(z) = T is false, and this case cannot arise.
Suppose I' is of the form z : T,IV. Then o(x) € [T], by definition of [I'], which suffices to prove the

conclusion. Suppose T is of the form y : T,T”, where y # z, or of the form X : %, I. Then I''(z) = T and
(0,p) € [I'"], and we use the induction hypothesis to conclude oz € [17,.

Case:
Dx:TkHt:T

FPEXzt:T—=T)

To prove (Az.ot) € [T — T'],, it suffices to assume an abitrary t’ € [T, and prove (Az.ot) t' € [T"],. Since
[T'], is a reducibility candidate, it suffices to prove [t'/z|ot € [T'],, since (Az.ot) t' ~ [t'/z](cot). But if

we let ¢’ = o[z — '], then we have (o/,p) € [I',x : T] by Lemma 3, so we may apply the IH to conclude
o't € [T'],, as required.

Case:
I'bt:Ty =Ty F"tliTl
FFtt T,

By the IH, ot € [Ty — T>], and ot’ € [T1],. By the semantics of arrow types, this immediately implies
(at) (ot’) € [T2],, as required.

Case:
X :xHt:T
I'Ht:VX.T

We must prove ot € [VX.T],. By the semantics of universal types, it suffices to assume an arbitrary R € R,
and prove ot € [T],x.,r). But this follows by the IH, which we can apply because (o, p[X — R]) € [I', X :
%], by Lemma 3.

Case:
FFt:VXT TFT %
k¢ [T/ X]T

By the IH, we know ot € [VX.T],, which by the semantics of universal types is equivalent to

ot € ﬂ T, xR (1)
RER

Since (o, p) € [I'], we may easily observe that p is defined for all the free type variables of T7’. So by Lemma 2,
[T'], € R. From the displayed formula above (1), we can conclude ot € [T],/x—[r],]- Now we must apply
the following lemma, whose easy proof by induction on 7" we omit, to conclude ot € [[T7/X]T],.

Lemma 5. [[T'/X]T], = [T],pcor

