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1 Introduction

This note gives a proof that call-by-name reduction is normalizing for unannotated System F (polymorphic
lambda calculus), and considers a few consequences. System F is defined with annotated terms, where λ-
bound variables must be declared with their types. So we have λx : T.t instead of just λx.t. For metatheoretic
analysis, I prefer to work with unannotated terms. This system (with unannotated terms) is also called λ2.

2 Syntax

term variables x
type variables X
terms t ::= x | λx.t | t t′
types T ::= X | T → T ′ | ∀X.T

3 Typing

A typing context Γ declares free term and type variables:

Typing context Γ ::= · | Γ, x : T | Γ, X : ?

We treat Γ as a function, and write Γ(x) = T to mean that Γ contains a declaration x : T . We will implicitly
require that Γ does not declare any variable x twice. Variables can be implicitly renamed in λ-terms to
make it possible to enforce this requirement. The typing rules are in Figure 1. To ensure that types are
well-formed, we use some extra rules, called kinding rules, in Figure 2.

Γ(x) = T

Γ ` x : T

Γ, x : T ` t : T ′

Γ ` λx.t : T → T ′)

Γ ` t : T1 → T2 Γ ` t′ : T1
Γ ` t t′ : T2

Γ, X : ? ` t : T

Γ ` t : ∀X.T
Γ ` t : ∀X.T Γ ` T ′ : ?

Γ ` t : [T ′/X]T

Figure 1: Typing rules for unannotated System F
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Γ(X) = ?

Γ ` X : ?

Γ ` T1 : ? Γ ` T2 : ?

Γ ` T1 → T2 : ?

Γ, X : ? ` T : ?

Γ ` ∀X.T : ?

Figure 2: Kinding rules for unannotated System F

JXKρ = ρ(X)

JT1 → T2Kρ = {t ∈ N | ∀t′ ∈ JT1Kρ. t t′ ∈ JT2Kρ}

J∀X.T Kρ =
⋂
R∈RJT Kρ[X 7→R]

Figure 3: Reducibility semantics for types

4 Semantics for types

Figure 3 gives a compositional semantics JT Kρ for types. The function ρ gives the interpretations of free
type variables in T . Each free type variable is interpreted as a reducibility candidate, and write ρ only for
functions mapping type variables X to reducibility candidates. To define what a reducibility candidate is:
let us denote the set of closed terms which normalize using call-by-name reduction as N . We will write
 for call-by-name reduction. Then a reducibility candidate R is a set of terms satisfying the following
requirements:

• R ⊆ N

• If t ∈ R and t′  t, then t′ ∈ R

The set of all reducibility candidates is denoted R.

Lemma 1 (R is a cpo). The set R ordered by subset forms a complete partial order, with greatest element
N and greatest lower bound of a nonempty set of elements of R given by intersection.

Proof. N satisfies both requirements for a reducibility candidate, and since one of those requirements is being
a subset of N , it is clearly the largest such set to do so. Let us prove that the intersection of a nonempty
set S of reducibility candidates is still a reducibility candidate. Certainly if the members of S are subsets of
N then so is

⋂
S. For the second property: assume an arbitrary t ∈

⋂
S with t′  t, and show t′ ∈

⋂
S.

For the latter, it suffices to show t′ ∈ R for every R ∈ S. Consider an arbitrary such R. From t ∈
⋂
S and

R ∈ S, we have t ∈ R. Then since R is a reducibility candidate, t ∈ R and t′  t implies t′ ∈ R, .

Lemma 2 (The semantics of types computes reducibility candidates). If ρ(X) is defined for every free type
variable of T , then JT Kρ ∈ R.

Proof. The proof is by induction on the structure of the type. If T is a type variable X, then by assumption,
ρ(X) is a reducibility candidate, and this is the value of JT Kρ.

If T is an arrow type T1 → T2, we must prove the two properties listed above for being a reducibility
candidate. Certainly JT Kρ ⊆ N , because the semantics of arrow types requires this explicitly. Now suppose
that t ∈ JT1 → T2Kρ and t′  t. We must show t′ ∈ JT1 → T2Kρ. Since t is normalizing and t′  t, we know
that t′ is also normalizing (there is a reduction sequence from t′ to t and from t to a normal form). So let us
assume an arbitrary t′′ ∈ JT1Kρ, and show that t′ t′′ ∈ JT2Kρ. Since t′  t, by the definition of call-by-name
reduction, we have

t′ t′′  t t′′
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Since t ∈ JT1 → T2Kρ, we know by the semantics of types that t t′′ ∈ JT2Kρ, since t′′ ∈ JT1Kρ. By the IH,
JT2Kρ is a reducibility candidate. So since t′ t′′  t t′′ and t t′′ ∈ JT2Kρ, we also have t′ t′′ ∈ JT2Kρ. This was
all we had to prove in this case.

Finally, if T is a universal type ∀X.T ′, then by IH, the set JT ′Kρ[X 7→R] is a reducibility candidate for all
R ∈ R. Since R is a complete partial order,

⋂
R∈RJT ′Kρ[X 7→R] is then also a reducibility candidate.

5 Soundness of Typing Rules

The goal of this section is to prove that terms which can be assigned a type using the rules of Figure 1 are
normalizing. We will actually prove a stronger statement, based on an interpretation of typing judgments.
First, we must define an interpretation JΓK for typing contexts Γ. This interpretation will be a set of pairs
(σ, ρ), where ρ is, as above, a function mapping type variables to reducibility candidates; and σ maps term
variables to terms. The definition is by recursion on the structure of Γ:

(σ, ρ) ∈ Jx : T,ΓK ⇔ σ(x) ∈ JT Kρ ∧ (σ, ρ) ∈ JΓK
(σ, ρ) ∈ JX : ∗,ΓK ⇔ ρ(x) ∈ R ∧ (σ, ρ) ∈ JΓK
(σ, ρ) ∈ J·K

In the statement of the theorem below, we write σt to mean the result of simultaneously substituting σ(x)
for x in t, for all x in the domain of σ.

Lemma 3. Suppose (σ, ρ) ∈ JΓK. If t ∈ JT Kρ, then (σ[x 7→ t], ρ) ∈ JΓ, x : T K. Also, if R ∈ R, then
(σ, ρ[x 7→ R]) ∈ JΓ, X : ∗K.

Proof. The proof of the first part is by induction on Γ. If Γ = ·, then to show (σ[x 7→ t], ρ) ∈ J·, x : T K,
it suffices to show t ∈ JT Kρ, which holds by assumption. If Γ = y : T ′,Γ′, then we have (σ, ρ) ∈ JΓ′K by
the definition of JΓK, and we may apply the IH to conclude (σ[x 7→ t], ρ) ∈ JΓ′, x : T K, from which we can
conclude the desired (σ[x 7→ t], ρ) ∈ JΓ, x : T K, again by the definition of JΓK. Similar reasoning applies if
Γ = X : ?,Γ′. The proof of the second part of the lemma is exactly analogous.

Theorem 4 (Soundness of typing rules with respect to the semantics). If Γ ` t : T , then for all (σ, ρ) ∈ JΓK,
we have σt ∈ JT Kρ.

Proof. The proof is by induction on the structure of the assumed typing derivation. In each case, we will
implicitly assume an arbitrary (σ, ρ) ∈ JΓK.

Case:
Γ(x) = T

Γ ` x : T

We proceed by inner induction on Γ. If Γ is empty, then Γ(x) = T is false, and this case cannot arise.
Suppose Γ is of the form x : T,Γ′. Then σ(x) ∈ JT Kρ by definition of JΓK, which suffices to prove the
conclusion. Suppose Γ is of the form y : T,Γ′, where y 6= x, or of the form X : ∗,Γ′. Then Γ′(x) = T and
(σ, ρ) ∈ JΓ′K, and we use the induction hypothesis to conclude σx ∈ JT Kρ.

Case:
Γ, x : T ` t : T ′

Γ ` λx.t : T → T ′)

To prove (λx.σt) ∈ JT → T ′Kρ, it suffices to assume an abitrary t′ ∈ JT Kρ and prove (λx.σt) t′ ∈ JT ′Kρ. Since
JT ′Kρ is a reducibility candidate, it suffices to prove [t′/x]σt ∈ JT ′Kρ, since (λx.σt) t′  [t′/x](σt). But if
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we let σ′ = σ[x 7→ t′], then we have (σ′, ρ) ∈ JΓ, x : T K by Lemma 3, so we may apply the IH to conclude
σ′t ∈ JT ′Kρ, as required.

Case:
Γ ` t : T1 → T2 Γ ` t′ : T1

Γ ` t t′ : T2

By the IH, σt ∈ JT1 → T2Kρ and σt′ ∈ JT1Kρ. By the semantics of arrow types, this immediately implies
(σt) (σt′) ∈ JT2Kρ, as required.

Case:
Γ, X : ? ` t : T

Γ ` t : ∀X.T

We must prove σt ∈ J∀X.T Kρ. By the semantics of universal types, it suffices to assume an arbitrary R ∈ R,
and prove σt ∈ JT Kρ[X 7→R]. But this follows by the IH, which we can apply because (σ, ρ[X 7→ R]) ∈ JΓ, X :
?K, by Lemma 3.

Case:
Γ ` t : ∀X.T Γ ` T ′ : ?

Γ ` t : [T ′/X]T

By the IH, we know σt ∈ J∀X.T Kρ, which by the semantics of universal types is equivalent to

σt ∈
⋂
R∈R

Tρ[X 7→R] (1)

Since (σ, ρ) ∈ JΓK, we may easily observe that ρ is defined for all the free type variables of T ′. So by Lemma 2,
JT ′Kρ ∈ R. From the displayed formula above (1), we can conclude σt ∈ JT Kρ[X 7→JT ′Kρ]. Now we must apply
the following lemma, whose easy proof by induction on T we omit, to conclude σt ∈ J[T ′/X]T Kρ.

Lemma 5. J[T ′/X]T Kρ = JT Kρ[X 7→T ′]
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