
Mi-Cho-Coq, a Framework for Certifying
Tezos Smart Contracts

Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin,
and Julien Tesson(B)

Nomadic Labs, Paris, France
{bruno.bernardo,raphael.cauderlier,zhenlei.hu,
basile.pesin,julien.tesson}@nomadic-labs.com

Abstract. Tezos is a blockchain launched in June 2018. It is written
in OCaml and supports smart contracts. Its smart contract language
is called Michelson and it has been designed with formal verification
in mind. In this article, we present Mi-Cho-Coq, a Coq framework for
verifying the functional correctness of Michelson smart contracts. As a
case study, we detail the certification of a Multisig contract with the
Mi-Cho-Coq framework.

Keywords: Certified programming · Programming languages ·
Blockchains · Smart contracts

1 Introduction

Tezos is a public blockchain launched in June 2018. An open-source implemen-
tation, in OCaml [16], is available [3]. Tezos is an account based smart-contract
platform with a Proof-of-Stake consensus algorithm [2]. Each account has a
balance of tokens (called tez) and some of them, named smart contracts, can
also store code and data. A smart contract’s code is triggered when a transac-
tion is sent to the associated account. Tezos’ smart contracts language is called
Michelson.

Our long-term ambition is to propose certified code in the whole Tezos code-
base as well as certified smart contracts. The choice of OCaml as an imple-
mentation language is an interesting first step: OCaml gives Tezos good static
guarantees since it benefits from OCaml’s strong type system and memory man-
agement features. Furthermore, formally verified OCaml code can be produced
by a variety of tools such as F* [21], Coq [22], Isabelle/HOL [17], Why3 [13], and
FoCaLiZe [18]. Another specificity of Tezos is the use of formally verified cryp-
tographic primitives. Indeed the codebase uses the HACL* library [23], which is
certified C code extracted from an implementation of Low*, a fragment of F*.

This article presents Mi-Cho-Coq, a framework whose ultimate purpose is
two-sided: giving strong guarantees – down to the interpreter implementation –
related to the semantics of the Michelson language; and providing a tool able to
prove properties of smart contracts written in Michelson.
c� Springer Nature Switzerland AG 2020
E. Sekerinski et al. (Eds.): FM 2019 Workshops, LNCS 12232, pp. 368–379, 2020.
https://doi.org/10.1007/978-3-030-54994-7_28

Mi-Cho-Coq, a Framework for Certifying Tezos Smart Contracts 369

Currently, the correspondence between Mi-Cho-Coq’s Michelson interpreter
implemented in Coq and the Michelson interpreter from a Tezos node imple-
mented in OCaml is unproven. However, in the long run, we would like to lift
this limitation by replacing the interpreter in the node with the extraction of
Mi-Cho-Coq’s interpreter. It would provide a strong confidence that all prop-
erties proven in Mi-Cho-Coq would actually hold for on-chain executions. Note
that achieving this will not only require engineering efforts, but also the approval
of Tezos token holders. Indeed, Tezos has an on-chain governance mechanism:
changes to the economic ruleset, a subset of the codebase that contains amongst
other things the Michelson interpreter, must be approved by a vote of token
holders.

In this paper we will present how Mi-Cho-Coq can be used to prove func-
tional properties of smart contracts. It is organised as follows: Section 2 gives
an overview of the Michelson smart contract language, the Mi-Cho-Coq frame-
work is then presented in Sect. 3, a case study on a Multisig smart contract is
then conducted in Sect. 4, Sect. 5 presents some related work and finally Sect. 6
concludes the article by listing directions for future work.

The Mi-Cho-Coq framework, including the Multisig contract described
in Sect. 4, is available at https://gitlab.com/nomadic-labs/mi-cho-coq/tree/
FMBC 2019.

2 Overview of Michelson

Smart contracts are Tezos accounts of a particular kind. They have private access
to a memory space on the chain called the storage of the smart contract, each
transaction to a smart contract account contains some data, the parameter of the
transaction, and a script is run at each transaction to decide if the transaction
is valid, update the smart contract storage, and possibly emit new operations
on the Tezos blockchain.

Michelson is the language in which the smart contract scripts are written.
The Michelson language was designed before the launch of the Tezos blockchain.
The most important parts of the implementation of Michelson, the typechecker
and the interpreter, belong to the economic ruleset of Tezos so the language can
evolve through the Tezos amendment voting process.

2.1 Design Rationale

Smart contracts operate in a very constrained context: they need to be expres-
sive, evaluated efficiently, and their resource consumption should be accurately
measured in order to stop the execution of programs that would be too greedy,
as their execution time impacts the block construction and propagation. Smart
contracts are non-updatable programs that can handle valuable assets, there is
thus a need for strong guarantees on the correctness of these programs.

The need for efficiency and more importantly for accurate account of resource
consumption leans toward a low-level interpreted language, while the need for

370 B. Bernardo et al.

contract correctness leans toward a high level, easily auditable, easily formalis-
able language, with strong static guarantees.

To satisfy these constraints, Michelson was made a Turing-complete, low
level, stack based interpreted language (à la Forth), facilitating the measurement
of computation costs, but with some high level features à la ML: polymorphic
products, options, sums, lists, sets and maps data-structures with collection
iterators, cryptographic primitives and anonymous functions. Contracts are pure
functions that take a stack as input and return a stack as output. This side-effect
free design is an asset for the conception of verification tools.

The language is statically typed to ensure the well-formedness of the stack
at any point of the program. This means that if a program is well typed, and if
it is being given a well-typed stack that matches its input expectation, then at
any point of the program execution, the given instruction can be evaluated on
the current stack.

Moreover, to ease the formalisation of Michelson, ambiguous or hidden
behaviours have been avoided. In particular, unbounded integers are used to
avoid arithmetic overflows and division returns an option (which is None if and
only if the divisor is 0) so that the Michelson programmer has to specify the
behaviour of the program in case of division by 0; she can however still explicitly
reject the transaction using the FAILWITH Michelson instruction.

2.2 Quick Tour of the Language

The full language syntax, type system, and semantics are documented in [1], we
give here a quick and partial overview of the language.

Contracts’ Shape. A Michelson smart contract script is written in three parts:
the parameter type, the storage type, and the code of the contract. A contract’s
code consists of one block of code that can only be called with one parameter,
but multiple entry points can be encoded by branching on a nesting of sum types
and multiple parameters can be paired into one.

When the contract is deployed (or originated in Tezos lingo) on the chain, it
is bundled with a data storage which can then only be changed by a contract’s
successful execution. The parameter and the storage associated to the contract
are paired and passed to the contract’s code at each execution. The execution
of the code must return a list of operations and the updated storage.

Seen from the outside, the type of the contract is the type of its parameter,
as it is the only way to interact with it.

Michelson Instructions. As usual in stack-based languages, Michelson
instructions take their parameters on the stack. All Michelson instructions are
typed as a function going from the expected state of the stack, before the instruc-
tion evaluation, to the resulting stack. For example, the AMOUNT instruction
used to obtain the amount in μtez (i.e. a millionth of a tez, the smallest token
unit in Tezos) of the current transaction has type 'S → mutez:'S meaning that

Mi-Cho-Coq, a Framework for Certifying Tezos Smart Contracts 371

for any stack type 'S, it produces a stack of type mutez:'S. Some instructions,
like comparison or arithmetic operations, exhibit non-ambiguous ad-hoc poly-
morphism: depending on the input arguments’ type, a specific implementation
of the instruction is selected, and the return type is fixed. For example SIZE has

the following types: bytes:'S → nat:'S
string:'S → nat:'S

set 'elt:'S → nat:'S
map 'key 'val:'S → nat:'S
list 'elt:'S → nat:'S

While computing the size of a string or an array of bytes is similarly imple-
mented, under the hood, the computation of map size has nothing to do with
the computation of string size.

Finally, the contract’s code is required to take a stack with a pair parameter -
storage and returns a stack with a pair operation list-storage:
(parameter_ty*storage_ty):[] → (operation list*storage_ty):[].

The operations listed at the end of the execution can change the delegate
of the contract, originate new contracts, or transfer tokens to other addresses.
They will be executed right after the execution of the contract. The transfers
can have parameters and trigger the execution of other smart contracts: this is
the only way to perform inter-contract calls.

A Small Example - The Vote Contract. We want to allow users of the
blockchain to vote for their favorite formal verification tool. In order to do that,
we create a smart contract tasked with collecting the votes. We want any user
to be able to vote, and to vote as many times as they want, provided they pay a
small price (say 5 tez). We originate the contract with the names of a selection of
popular tools: Agda, Coq, Isabelle and the K framework, which are placed in the
long-term storage of the contract, in an associative map between the tool’s name
and the number of registered votes (of course, each tool starts with 0 votes).

In Fig. 1a, we present a voting contract, annotated with the state of the stack
after each line of code. When actually writing a Michelson contract, development
tools (including an Emacs Michelson mode) can interactively, for any point of
the code, give the type of the stack provided by the Michelson typecheck of a
Tezos node.

Let’s take a look at our voting program: First, the description of the storage
and parameter types is given on lines 1--2. Then the code of the contract is
given. On line 5, AMOUNT pushes on the stack the amount of (in μtez) sent to
the contract address by the user. The threshold amount (5 tez) is also pushed on
the stack on line 6 and compared to the amount sent: COMPARE pops the two
top values of the stack, and pushes either −1, 0 or 1 depending on the comparison
between the value. GT then pops this value and pushes true if the value is 1.
If the threshold is indeed greater than the required amount, the first branch of
the IF is executed and FAIL is called, interrupting the contract execution and
canceling the transaction.

If the value was false, the execution continues on line 9, where we prepare
the stack for the next action: DUP copies the top of the stack, we then manipulate
the tail of the stack while preserving it’s head using DIP: there, we take the right

372 B. Bernardo et al.

1 storage (map string int); # candidates
2 parameter string; # chosen
3 code {

4 # (chosen, candidates):[]
5 AMOUNT; # amount:(chosen, candidates):[]
6 PUSH mutez 5000000; COMPARE; GT;
7 # (5 tez > amount):(chosen, candidates):[]
8 IF { FAIL } {}; # (chosen, candidates):[]
9 DUP; DIP { CDR; DUP };

10 # (chosen, candidates):candidates:candidates:[]
11 CAR; DUP; # chosen:chosen:candidates:candidates:[]
12 DIP { # chosen:candidates:candidates:[]
13 GET; ASSERT SOME;
14 # candidates[chosen]:candidates:[]
15 PUSH int 1; ADD; SOME
16 # (Some (candidates[chosen]+1)):candidates:[]
17 }; # chosen:(Some (candidates[chosen]+1)):candidates:[]
18 UPDATE; # candidates' :[]
19 NIL operation; PAIR # (nil, candidates'):[]
20 }

(a)

{Elt "Agda" 0 ; Elt "Coq" 0 ; Elt "Isabelle" 0 ; Elt "K" 0}

(b)

Fig. 1. A simple voting contract a and an example of initial storage b

element of the (chosen, candidates) pair with CDR, and we duplicate it again.
By closing the block guarded by DIP we recover the former stack’s top, and the
following line takes its left element with CAR, and duplicates it.

On line 12, we use DIP to protect the top of the stack again. GET then
pops chosen and candidates from the stack, and pushes an option containing
the number of votes of the candidate, if it was found in the map. If it was not
found, ASSERT SOME makes the program fail. On line 15, the number of votes
is incremented by ADD, and packed into an option type by SOME.

We then leave the DIP block to regain access to value at the top of the stack
(chosen). On line 18, UPDATE pops the three values remaining on top of the
stack, and pushes the candidates map updated with the incremented value for
chosen. Finally, we push an empty list of operations with NIL operation, and
pair the two elements on top of the stack to get the correct return type.

3 Mi-Cho-Coq: A Verification Framework in Coq for
Michelson

Mi-Cho-Coq consists of an implementation of a Michelson interpreter in Coq as
well as a weakest precondition calculus à la Dijkstra [12].

Mi-Cho-Coq, a Framework for Certifying Tezos Smart Contracts 373

Michelson Syntax and Typing in Coq. Michelson’s type system, syntax
and semantics, as described in the main documentation, are fully formalised in
Mi-Cho-Coq.

The abstract syntax tree of a Michelson script is a term of an inductive type
which carries the script type:

Inductive instruction : list type → list type → Set :=
| NOOP {A} : instruction A A
| FAILWITH {A B a} : instruction (a :: A) B
| SEQ {A B C} : instruction A B → instruction B C → instruction A C
| IF {A B} : instruction A B → instruction A B → instruction (bool :: A) B
| LOOP {A} : instruction A (bool :: A) → instruction (bool :: A) A ...

A Michelson code is usually a sequence of instructions (SEQ), which is one of
the instruction constructors. It has type instruction stA stB where stA and stB are
respectively the type of the input stack and of the output stack.

The stack type is a list of Michelson type constructions, defined in the type

inductive:

Inductive comparable_type : Set :=
| nat | int | string | bytes | bool | mutez | address | key_hash | timestamp.

Inductive type : Set :=
| Comparable_type (a : comparable_type) | key | unit | signature | operation
| option (a : type) | list (a : type) | set (a : comparable_type)
| contract (a : type) | pair (a b : type) | or (a b : type) | lambda (a b : type)
| map (key : comparable_type) (val : type)
| big_map (key : comparable_type) (val : type).

A full contract, for a given storage type storage and parameter type params is
an instruction of type

instruction ((pair params storage) :: nil) ((pair (list operation) storage) :: nil).

Thanks to the indexing of the instruction inductive by the input and output
stack types, only well-typed Michelson instructions are representable in Mi-Cho-
Coq. This is very similar to the implementation of Michelson in the Tezos node
which uses a similar feature in OCaml: generalised algebraic datatypes.

To ease the transcription of Michelson contracts into Mi-Cho-Coq AST we use
notations so that contracts in Mi-Cho-Coq look very similar to actual Michelson
code. The main discrepancy between Michelson and Mi-Cho-Coq syntax being
that due to parsing limitations, the Michelson semi-colon instruction terminator
has to be replaced by a double semi-colon instructions separator.

The ad-hoc polymorphism of Michelson instructions is handled by adding
an implicit argument to the corresponding instruction constructor in Mi-Cho-
Coq. This argument is a structure that carries an element identifying the actual
implementation of the instruction to be used. As the argument is implicit and
maximally inserted, Coq’s type unifier tries to fill it with whatever value can fit
with the known types surrounding it, i.e. the type of the input stack. Possible
values are declared through the Coq’s canonical structures mechanism, which is
very similar to (Coq’s or Haskell’s) typeclasses.

374 B. Bernardo et al.

Michelson Interpreter in Coq. Michelson semantics is formalised in Coq as
an evaluator eval of type forall {A B : list type}, instruction A B → nat → stack A

→ M (stack B) where M is the error monad used to represent the explicit failure
of the execution of a contract, and where stack A (resp. stack B) is the type of
a stack data whose type matches A (resp. B), the list of types. As the stack is
implemented as a tuple, stack constructs a product of types. The argument of
type nat is called the fuel of the evaluator. It represents a bound on the depth of
the execution of the contract and should not be confused with Michelson’s cost
model which is not yet formalised in Mi-Cho-Coq.

Some domain specific operations which are hard to define in Coq are axioma-
tised in the evaluator. These include cryptographic primitives, data serialisation,
and instructions to query the context of the call to the smart contract (amount
and sender of the transaction, current date, balance and address of the smart
contract).

A Framework for Verifying Smart Contracts. To ease the writing of correct-
ness proofs in Mi-Cho-Coq, a weakest precondition calculus is defined as a func-
tion eval precond of type forall {fuel A B}, instruction A B → (stack B → Prop) →
(stack A → Prop) that is a Coq function taking as argument an instruction and a
predicate over the possible output stacks of the instruction (the postcondition) and
producing a predicate on the possible input stacks of the instruction (the precon-
dition).

This function is proved correct with respect to the evaluator:

Lemma eval_precond_correct {A B} (i : instruction A B) fuel st psi :

eval_precond fuel i psi st <→
match eval i fuel st with Failed _ _ => False | Return _ a => psi a end.

Note that the right-hand side formula is the result of the monad transformer
of [5] which here yields a simple expression thanks to the absence of complex
effects (exceptions, state, etc.) in Michelson.

A Small Example - The Vote Contract. We give below a formal speci-
fication of the voting contract seen previously, written in pseudo-code to keep
it clear and concise. Section 4 presents a case study with a more detailed Coq
specification.

We want the contract to take into account every vote sent in a transaction
with an amount greater than 5 tez. Moreover, we want to only take into account
the votes toward an actual available choice (the contract should fail if the wrong
name is sent as a parameter). Finally, the contract should not emit any operation.

In the following specification, the precondition is the condition that must
be verified for the contract to succeed. The postcondition fully describes the
new state of the storage at the end of the execution, as well as the potentially
emitted operations. amount refers to the quantity of μtez sent by the caller for
the transaction.

Mi-Cho-Coq, a Framework for Certifying Tezos Smart Contracts 375

Precondition: amount ≥ 5000000 ∧ chosen ∈ Keys(storage)
Postconditions: returned operations = [] ∧

∀ c, c ∈ Keys(storage) ⇐⇒ c ∈ Keys(new storage) ∧
new storage[chosen] = storage[chosen] + 1 ∧
∀ c ∈ Keys(storage), c 	= chosen ⇒ new storage[c] = storage[c]

Despite looking simple, proving the correctness of the vote contract still needs
a fair number of properties about the map data structure. In particular we need
some lemmas about the relations between the mem, get and update functions,
which we added to the Mi-Cho-Coq library to prove this contract.

Once these lemmas are available, the contract can easily be proved by study-
ing the three different situations that can arise during the execution: the contract
can fail (either because the sender has not sent enough tez or because they have
not selected one of the possible candidates), or the execution can go smoothly.

4 A Case Study: The Multisig Contract

The Multisig contract is a typical example of access-control smart contract. A
Multisig contract is used to share the ownership of an account between several
owners. The owners are represented by their cryptographic public keys in the
contract storage and a pre-defined threshold (a natural number between 1 and
the number of owners) of them must agree for any action to be performed by
the Multisig contract.

Agreement of an owner is obtained by requiring a cryptographic signature
of the action to be performed. To ensure that this signature cannot be replayed
by an attacker to authenticate in another call to a Multisig contract (the same
contract or another one implementing the same authentication protocol), a nonce
is appended to the operation before signing. This nonce consists of the address
of the contract on the blockchain and a counter incremented at each call.

Michelson Implementation. To be as generic as possible, the possible actions
of our Multisig contract are:

– produce a list of operations to be run atomically
– change the threshold and the list of owner public keys

The contract features two entrypoints named default and main1. The
default entrypoint takes no parameter (it has type unit) and lets unauthenti-
cated users send funds to the Multisig contract. The main entrypoint takes as
parameters an action, a list of optional signatures, and a counter value. It checks
the validity and the number of signatures and, in case of successful authentica-
tion, it executes the required action and increment the counter.

The Michelson script of the Multisig contract is available at [9]. The code
of the default entrypoint is trivial. The code for the main entrypoint can be
divided in three parts: the header, the loop, and the tail.
1 i.e. the parameter of the contract is a sum type branching two elements, cf. Sect. 2.2.

376 B. Bernardo et al.

The header packs together the required action and the nonce and checks that
the counter given as parameter matches the one stored in the contract.

The loop iterates over the stored public keys and the optional signatures
given in parameter. It counts and checks the validity of all the signatures.

Finally the contract tail checks that the number of provided signatures is
at least as large as the threshold, it increments the stored counter, and it runs
the required action (it either evaluates the anonymous function passed in the
contract parameter and emits the resulting operations or modifies the contract
storage to update the list of owner public keys and the threshold).

Specification and Correctness Proof. Mi-Cho-Coq is a functional verifica-
tion framework. It is well suited to specify the relation between the input and
output stacks of a contract such as Multisig but it is currently not expressive
enough to state properties about the lifetime of a smart contract nor the inter-
action between smart contracts. For this reason, we have not proved that the
Multisig contract is resistant to replay attacks. However, we fully characterise
the behaviour of each call to the Multisig contract using the following specifica-
tion of the Multisig contract, where env is the evaluation environment containing
among other data the address of the contract (self env) and the amount of the
transaction (amount env).

Definition multisig spec (parameter : data parameter ty) (stored counter : N)
(threshold : N) (keys : Datatypes.list (data key))
(new stored counter : N) (new threshold : N)
(new keys : Datatypes.list (data key))
(returned operations : Datatypes.list (data operation))
(fuel : Datatypes.nat) :=

let storage : data storage ty := (stored counter, (threshold, keys)) in

match parameter with
| inl tt ⇒

new stored counter = stored counter ∧ new threshold = threshold ∧
new keys = keys ∧ returned operations = nil

| inr ((counter, action), sigs) ⇒
amount env = (0 Mutez) ∧ counter = stored counter ∧
length sigs = length keys ∧
check all signatures sigs keys (fun k sig ⇒

check signature env k sig
(pack env pack ty (address env parameter ty (self env),

(counter, action)))) ∧
(count signatures sigs >= threshold)%N ∧
new stored counter = (1 + stored counter)%N ∧
match action with

| inl lam ⇒
match (eval lam fuel (tt, tt)) with

| Return (operations, tt) ⇒
new threshold = threshold ∧ new keys = keys ∧
returned operations = operations

| ⇒ False

Mi-Cho-Coq, a Framework for Certifying Tezos Smart Contracts 377

end

| inr (nt, nks) ⇒
new threshold = nt ∧ new keys = nks ∧ returned operations = nil

end end.

Using the Mi-Cho-Coq framework, we have proved the following theorem:

Lemma multisig_correct (params : data parameter_ty)

(stored_counter new_stored_counter threshold new_threshold : N)

(keys new_keys : list (data key))

(returned_operations : list (data operation)) (fuel : nat) :

let storage : data storage_ty := (stored_counter, (threshold, keys)) in

let new_storage : data storage_ty :=

(new_stored_counter, (new_threshold, new_keys)) in

17 * length keys + 14 \leq fuel →
eval multisig (23 + fuel) ((params, storage), tt)

= Return _ ((returned_operations, new_storage), tt) <→
multisig_spec params stored_counter threshold keys

new_stored_counter new_threshold new_keys returned_operations fuel.

The proof relies heavily on the correctness of the precondition calculus. The
only non-trivial part of the proof is the signature checking loop. Indeed, for
efficiency reasons, the Multisig contract checks the equality of length between
the optional signature list and the public key list only after checking the validity
of the signature; an optional signature and a public key are consumed at each
loop iteration and the list of remaining optional signatures after the loop exit
is checked for emptiness afterward. For this reason, the specification of the loop
has to allow for remaining unchecked signatures.

5 Related Work

Formal verification of smart contracts is a recent but active field. The K frame-
work has been used to formalise [15] the semantics of both low-level and high-
level smart contract languages for the Ethereum and Cardano blockchains. These
formalisations have been used to verify common smart contracts such as Casper,
Uniswap, and various implementations of the ERC20 and ERC777 standards.

Note also a formalisation of the EVM in the F* dependently-typed lan-
guage [14], that was validated against the official Ethereum test suite. This
formalisation effort led to formal definitions of security properties for smart con-
tracts (call integrity, atomicity, etc).

Ethereum smart contracts, written in the Solidity high-level language, can
also be certified using a translation to F* [7].

The Zen Protocol [4] directly uses F* as its smart contract language so that
smart contracts of the Zen Protocol can be proved directly in F*. Moreover,
runtime tracking of resources can be avoided since computation and storage
costs are encoded in the dependent types.

The Scilla [19,20] language of the Zilliqa blockchain has been formalised
in Coq as a shallow embedding. This intermediate language is higher-level (it

378 B. Bernardo et al.

is based on λ-calculus) but also less featureful (it is not Turing-complete as
it does not feature unbounded loops nor general recursion) than Michelson. Its
formalisation includes inter-contract interaction and contract lifespan properties.
This has been used to show safety properties of a crowdfunding smart contract.
To the best of our knowledge, no tool currently exists for interactive functional
verification of Scilla smart contracts but Scilla’s framework for writing static
analyses can be used for automated verification of some specific properties.

6 Limits and Future Work

As we have seen, the Mi-Cho-Coq verification framework can be used to certify
the functional correctness of non-trivial smart contracts of the Tezos blockchain
such as the Multisig contract. We are currently working on several improvements
to extend the expressivity of the framework; Michelson’s cost model and the
semantics of inter-contract interactions are being formalised.

In order to prove security properties, such as the absence of signature replay
in the case of the Multisig contract, an adversarial model has to be defined. This
task should be feasible in Coq but our current plan is to use specialised tools
such as Easycrypt [6] and ProVerif [8].

No code is currently shared between Mi-Cho-Coq and the Michelson eval-
uator written in OCaml that is executed by the Tezos nodes. We would like
to raise the level of confidence in the fact that both evaluators implement the
same operational semantics. We could achieve this either by proposing to the
Tezos stakeholders to amend the economic protocol to replace the Michelson
evaluator by a version extracted from Mi-Cho-Coq or by translating to Coq the
OCaml code of the Michelson evaluator using a tool such as CoqOfOCaml [11]
or CFML [10] and then prove the resulting Coq function equivalent to the Mi-
Cho-Coq evaluator.

Last but not least, to ease the development of certified compilers from high-
level languages to Michelson, we are working on the design of an intermediate
compilation language called Albert that abstracts away the Michelson stack.

References

1. Michelson: the language of Smart Contracts in Tezos. https://tezos.gitlab.io/
whitedoc/michelson.html

2. Proof-of-stake in Tezos. https://tezos.gitlab.io/whitedoc/proof of stake.html
3. Tezos code repository. https://gitlab.com/tezos/tezos
4. An introduction to the zen protocol. https://www.zenprotocol.com/files/zen

protocol white paper.pdf (2017)
5. Ahman, D., et al.: Dijkstra monads for free. CoRR abs/1608.06499 (2016). http://

arxiv.org/abs/1608.06499
6. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:

EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

Mi-Cho-Coq, a Framework for Certifying Tezos Smart Contracts 379

7. Bhargavan, K., et al.: Formal verification of smart contracts: short paper, pp. 91–
96. PLAS 2016. ACM, New York (2016). https://doi.org/10.1145/2993600.2993611

8. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and proverif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016). https://doi.org/10.
1561/3300000004

9. Breitman, A.: Multisig contract in Michelson. https://github.com/murbard/smart-
contracts/blob/master/multisig/michelson/generic multisig.tz

10. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: ICFP 2011, pp. 418–430. ACM, New York (2011)

11. Claret, G.: Program in Coq. Theses, Université Paris Diderot - Paris 7, September
2018. https://hal.inria.fr/tel-01890983

12. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975). https://doi.org/10.1145/360933.
360975

13. Filliâtre, Jean-Christophe, Paskevich, Andrei: Why3—where programs meet
provers. In: Felleisen, Matthias, Gardner, Philippa (eds.) ESOP 2013. LNCS, vol.
7792, pp. 125–128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6 8. https://hal.inria.fr/hal-00789533

14. Grishchenko, Ilya, Maffei, Matteo, Schneidewind, Clara: A semantic framework
for the security analysis of ethereum smart contracts. In: Bauer, Lujo, Küsters,
Ralf (eds.) POST 2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89722-6 10

15. Hildenbrandt, E., et al.: KEVM: a complete semantics of the ethereum virtual
machine. In: 2018 IEEE 31st Computer Security Foundations Symposium, pp.
204–217. IEEE (2018)

16. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 4.08: documentation and user’s manual. User manual, Inria, June
2019. http://caml.inria.fr/pub/docs/manual-ocaml/

17. Nipkow, Tobias, Wenzel, Markus, Paulson, Lawrence C. (eds.): Isabelle/HOL: A
Proof Assistant forHigher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45949-9

18. Pessaux, F.: FoCaLiZe: inside an F-IDE. In: Workshop F-IDE 2014. Proceedings
F-IDE 2014, Grenoble, France, May 2014. https://doi.org/10.4204/EPTCS.149.7

19. Sergey, I., Kumar, A., Hobor, A.: Scilla: a smart contract intermediate-level lan-
guage. CoRR abs/1801.00687 (2018). http://arxiv.org/abs/1801.00687

20. Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., Hao, K.C.G.: Safer
smart contract programming with scilla. PACMPL 3(OOPSLA), 185:1–185:30
(2019). https://doi.org/10.1145/3360611

21. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: POPL,
pp. 256–270. ACM, January 2016. https://www.fstar-lang.org/papers/mumon/

22. The Coq development team: The Coq Reference Manual, version 8.9, November
2018. http://coq.inria.fr/doc

23. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: a ver-
ified modern cryptographic library. Cryptology ePrint Archive, Report 2017/536

