Reasoning in the Bernays-Schonfinkel-Ramsey
Fragment of Separation Logic

Andrew Reynolds!, Radu Tosif?, and Cristina Serban?

' The University of Towa
2 Verimag/CNRS/Université de Grenoble Alpes

Abstract. Separation Logic (SL) is a well-known assertion language used in
Hoare-style modular proof systems for programs with dynamically allocated data
structures. In this paper we investigate the fragment of first-order SL restricted
to the Bernays-Schonfinkel-Ramsey quantifier prefix 3*V*, where the quantified
variables range over the set of memory locations. When this set is uninterpreted
(has no associated theory) the fragment is PSPACE-complete, which matches the
complexity of the quantifier-free fragment [7]. However, SL becomes undecid-
able when the quantifier prefix belongs to 3*V*3* instead, or when the memory
locations are interpreted as integers with linear arithmetic constraints, thus setting
a sharp boundary for decidability within SL. We have implemented a decision
procedure for the decidable fragment of 3*V*SL as a specialized solver inside a
DPLL(T) architecture, within the CVC4 SMT solver. The evaluation of our im-
plementation was carried out using two sets of verification conditions, produced
by (i) unfolding inductive predicates, and (ii) a weakest precondition-based ver-
ification condition generator. Experimental data shows that automated quantifier
instantiation has little overhead, compared to manual model-based instantiation.

1 Introduction

Separation Logic (SL) is a popular logical framework for program verification, used by
a large number of methods, ranging from static analysis [10, 27, 6] to Hoare-style proofs
[19] and property-guided abstraction refinement [1]. The salient features that make SL
particularly attractive for program verification are the ability of defining (i) recursive
data structures using small and natural inductive definitions, (ii) weakest pre- and post-
condition calculi that capture the semantics of programs with pointers, and (iii) com-
positional verification methods, based on the principle of local reasoning (analyzing
separately pieces of program working on disjoint heaps).

Consider, for instance, the following inductive definitions, describing an acyclic and
a possibly cyclic list segment, respectively:

E(X,y) =empAX=yY VX#yAdz. x—z *E(Z,y) acyclic list segment from x to y
Is(x,y)=empAx=y V Ju.xH uxls(u,y) list segment from X to y

Intuitively, an acyclic list segment is either empty, in which case the head and the tail
coincide (emp A X =Yy), or it contains at least one element which is disjoint from the rest
of the list segment. We denote by X — z the fact that X is an allocated memory location,

which points to z, and by X - z *E(z,y) the fact that x — z and E(z,thold over
disjoint parts of the heap. The constraint x # Y, in the inductive definition of Is, captures
the fact that the tail of the list segment is distinct from every allocated cell in the list
segment, which ensures the acyclicity condition. Since this constraint is omitted from
the definition of the second (possibly cyclic) list segment IS(X,y), its tail y is allowed to
point inside the set of allocated cells.

Automated reasoning is the key enabler of push-button program verification. Any
procedure that checks the validity of a logical entailment between inductive predicates
requires checking the satisfiability of formulae from the base (non-inductive) assertion
language, as shown by the example below. Consider a fragment of the inductive proof
showing that any acyclic list segment is also a list segment, given below:

18(z,y) + Is(z.y) X#YAXzEIU. XU
X#YAX > z#1s(z,y) F 3u. x> uxls(u,y) by instantiation U « z

IE(x,y) Fls(x,y)

The first (bottom) derivation in the proof corresponds to one of the two cases produced
by unfolding both the antecedent and consequent of the entailment (the second case
empAX=YFempAX=yY is trivial and omitted for clarity). The second derivation is
a simplification of the sequent obtained by unfolding, to a sequent matching the initial
one (by renaming z to x), and allows to conclude this branch of the proof by an inductive
argument, based on the principle of infinite descent [5].

The simplification applied by the second derivation above relies on the validity of
the entailment X # y AX = z |= Ju . X — u, which reduces to the (un)satisfiability of
the formula x # y AX = Z AVu . =x = u. The latter falls into the Bernays-Schonfinkel-
Ramsey fragment, defined by the 3*V* quantifier prefix, and can be proved unsatisfi-
able using the instantiation of the universally quantified variable u with the existentially
quantified variable z (or a corresponding Skolem constant). In other words, this for-
mula is unsatisfiable because the universal quantified subformula asks that no memory
location is pointed to by x, which is contradicted by x - z. The instantiation of u that
violates the universal condition is U < z, which is carried over in the rest of the proof.

The goal of this paper is mechanizing satisfiability of the Bernays-Schonfinkel-
Ramsey fragment of SL, without inductively defined predicates®. This fragment is de-
fined by the quantifier prefix of the formulae in prenex normal form. We consider for-
mulae dxy...3x, Yy ... VY, . (X1, .. Xms V15 - -5 Vn), Where ¢ is any quantifier-free for-
mula of SL, consisting of pure formulae from given base theory 7', and points-to atomic
propositions relating terms of 7', combined with unrestricted Boolean and separation
connectives, and the quantified variables range essentially over the set of memory loca-
tions. In a nutshell, the contributions of the paper are two-fold:

1. We draw a sharp boundary between decidability and undecidability, proving essen-
tially that the satisfiability problem for the Bernays-Schonfinkel-Ramsey fragment
of SL is PSPACE-complete, if the domain of memory locations is an uninterpreted

3 Strictly speaking, the Bernays-Schonfinkel-Ramsey class refers to the 3*V* fragment of first-
order logic with equality and predicate symbols, but no function symbols [17].

set, whereas interpreting memory locations as integers with linear arithmetic con-
straints, leads to undecidability. Moreover, undecidability occurs even for uninter-
preted memory locations, if we extend the quantifier prefix to 3*V*3*.

2. We have implemented an effective decision procedure for quantifier instantiation,
based on counterexample-driven learning of conflict lemmas, integrated within the
DPLL(T) architecture [12] of the CVC4 SMT solver [2]. Experimental evaluation
of our implementation shows that the overhead of the push-button quantifier in-
stantiation is negligible, compared to the time required to solve a quantifier-free
instance of the problem, obtained manually, by model inspection.

Related Work The first theoretical results on the decidability and computational com-
plexity of SL (without inductive definitions) were found by Calcagno, Yang and O’Hearn
[7]. They show that the satisfiability problem for SL is undecidable, in the presence of
quantifiers, assuming that each memory location can point to two other locations, i.e.
using atomic propositions of the form x + (y,z). Decidability can be recovered by con-
sidering the quantifier-free fragment, proved to be PSPACE-complete, by a small model
argument [7]. Refinements of these results consider decidable fragments of SL with one
record field (atomic points-to propositions X — y), and one or two quantified variables.
In a nutshell, SL with one record field and separating conjunction only is decidable
with non-elementary time complexity, whereas adding the magic wand adjoint leads to
undecidability [4]. Decidability, in the presence of the magic wand operator, is recov-
ered by restricting the number of quantifiers to one, in which case the logic becomes
PSPACE-complete [9]. This bound is sharp, because allowing two quantified variables
leads to undecidability, and decidability with non-elementary time complexity if the
magic wand is removed [8].

SMT techniques were applied to deciding the satisfiability of SL in the work of
Piskac, Wies and Zufferey [21,22]. They considered quantifier-free fragments of SL
with separating conjunction in positive form (not occurring under negation) and with-
out magic wand, and allow for hardcoded inductive predicates (list and tree segments).
In a similar spirit, we previously define a translation to multi-sorted second-order logic
combined with counterexample-driven instantiation for set quantifiers to define a deci-
sion procedure for the quantifier-free fragment of SL [24]. In a different vein, a tableau-
based semi-decision procedure is given by Méry and Galmiche [11]. Termination of
this procedure is guaranteed for the (decidable) quantifier-free fragment of SL, yet no
implementation is available for comparison.

A number of automated theorem provers have efficient and complete approaches
for the Bernays-Schonfinkel-Ramsey fragment of first-order-logic, also known as ef-
fectively propositional logic (EPR) [3, 16]. A dedicated approach for EPR in the SMT
solver Z3 was developed in [20]. A approach based on finite model finding is imple-
mented in CVC4 [25], which is model-complete for EPR. Our approach is based on
counterexample-guided quantifier instantiation, which has been used in the context of
SMT solving in previous works [13,23].

2 Preliminaries

We consider formulae in multi-sorted first-order logic, over a signature consisting of a
countable set of sort symbols and a set of function symbols, and we write T and L for
the Boolean constants frue and false. A signature X consists of a set 2 of sort symbols
and a set 2 of (sorted) function symbols fSl"'S"S, where n>0and S,...,5,,S €25,
If n =0, we call 5 a constant symbol. In this paper, we consider signatures where for
any finite sequence of sorts S,...,S, € 2%, the tuple sort S| X...Xx S, also belongs to
. For each k > 0, let S* denote the k-tuple sort S X...xS.

Let Vars be a countable set of first-order variables, each x5 € Vars having an asso-
ciated sort S. First-order terms and formulae over the signature 2 (called 2-terms and
2-formulae) are defined as usual. For a 2-formula ¢, we denote by Fvc(y) the set of
free variables and constant symbols in ¢, and by writing ¢(x) we mean that x € Fvc(¢).
Whenever Fve(¢) NVars = (), we say that ¢ is a sentence, i.e. ¢ has no free variables. A
X-interpretation I maps: (1) each sort symbol S € X to a non-empty set S7, (2) each

and to an element of S¥ when n = 0, and (3) each variable x5 € Vars to an element of
ST For an interpretation 7 a sort symbol o~ and a variable x, we denote by 7[o- « S
and, respectively J[x « v], the interpretation associating the set S to o, respectively the
value v to x, and which behaves like 7 in all other cases. For a Z-term ¢, we write £ to
denote the interpretation of ¢ in 7, defined inductively, as usual. A satisfiability relation
between 2-interpretations and 2-formulas, written J [= ¢, is also defined inductively, as
usual. We say that 7 is a model of ¢ if I satisfies .

A (multi-sorted first-order) theory is a pair T = (X,I) where X' is a signature and I
is a non-empty set of 2-interpretations, the models of T. We assume that 2 contains
always the equality predicate, which we denote by =, as well as projection functions for
each tuple sort. A X-formula ¢ is T-satisfiable if it is satisfied by some interpretation
in I. We write E to denote the empty theory (with equality), whose signature consists
of a sort U with no additional function symbols, and LIA to denote the theory of linear
integer arithmetic, whose signature consists of the sort Int, the binary predicate symbol
>, function + denoting addition, and the constants 0, 1 of sort Int, interpreted as usual.
By ELIA we denote the theory obtained by extending the signature of LIA with the sort
U of E and equality over U.

Let T = (2,1) be a theory and let Loc and Data be two sorts from 2, with no restric-
tion other than the fact that Loc is always interpreted as a countable set. Also, we con-
sider that 2 has a designated constant symbol nil°®. The Separation Logic SL(T)Loc Data
is the set of formulae generated by the following syntax:

pi=¢lemp|tulei =@ |1 +@ | =i |1 Apx | xS . o1 (x)

where ¢ is a 2-formula, and t, u are 2-terms of sorts Loc and Data, respectively. As
usual, we write Vx5 . o(x) for =3x5 . =¢(x). We omit specifying the sorts of variables
and constants when they are clear from the context.

Given an interpretation 7, a heap is a finite partial mapping & : Loc” —, Data’.
For a heap h, we denote by dom(#) its domain. For two heaps /1 and h;, we write h#h;
for dom(h1) Ndom(hy) = 0 and h = hy W hy for hi#hy and h = h; U hy. We define the

satisfaction relation I,h =g ¢ inductively, as follows:

I, hiEs ¢ = I E¢if ¢is aX-formula

I,h s emp &= h=0

LhEgtu e h={t,u))}and t! #nil

I, hEs ¢1%¢y < there exist heaps hy,h; such that h = hy Why and 7, h; g ¢i,i=1,2
I,hEs ¢1 + ¢p < forall heaps i’ if W'#h and I,h’ |Eg. ¢1 then T,h Wh =g ¢

T, heg 35 .@(x) & I[x < s],h s @(x), for some s € S

The satisfaction relation for X'-formulae, Boolean connectives A, —, and linear arith-
metic atoms, are the classical ones from first-order logic. Notice that the range of a
quantified variable x° is the interpretation of its associated sort S .

A formula ¢ is said to be satisfiable if there exists an interpretation 7 and a heap
h such that 7, h g ¢. The (SL, T)-satisfiability problem asks, given an SL formula ¢,
whether there exists an interpretation 7 of T and a heap A such that 7,4 =g ¢. We write
¢ s Y if for every interpretation J and heap h, if 7,h =g ¢ then I,k =g ¢, and we
say that ¢ entails i in this case.

The Bernays-Schonfinkel-Ramsey Fragment of SL In this paper we address the sat-
isfiability problem for the class of sentences ¢ = Ax; ... Ax,Vy1 ... Vv, . (X1, .oy X,y V15
...,¥n), where @ is a quantifier-free formula of SL(7")|o¢c,pata- We shall denote this frag-
ment by 3*V*SL(T)Loc,pata. It is easy to see that any sentence ¢, as above, is satisfiable
if and only if the sentence Vy; ... Yy, . ¢[c1/X1,...,cm/Xn] s satisfiable, where c1,...,cp,
are (Skolem) constant symbols. The latter is called the functional form of ¢.

We address the satisfiability problem for 3*V*SL(T)oc pata in the following cases:

1. Loc is interpreted as the sort U of E and Data as U, for some k > 1. The satisfia-
bility problem for the fragment 3*Y*SL(E); ;x is PSPACE-complete, and the proof
follows a small model property argument.

2. as above, with the further constraint that U is interpreted as an infinite countable
set, i.e. of cardinality Ny. In this case, we prove a cut-off property stating that all lo-
cations not in the domain of the heap and not used in the interpretation of constants,
are equivalent from the point of view of an SL formula. This satisfiability problem
is reduced to unconstrained one above, and also found to be PSPACE-complete.

3. both Loc and Data are interpreted as Int, equipped with addition and total order, in
which case 3*V*SL(LIA)|nt Int is undecidable.

4. Loc is interpreted as the sort U of E, and Data as U x Int. Then 3*V*SL(ELIA)y yxint
is undecidable.

Additionally, we prove that the fragment 3*V*3*SL(E); «, with two quantifier alterna-
tions, is undecidable, if k > 2. The question whether the fragment 3*V*SL(ELIA)ynt is
decidable is currently open, and considered for future work.

3 Decidability and Complexity Results

This section defines the decidable cases of the Bernays-Schonfinkel-Ramsey fragment
of SL, with matching undecidable extensions. The decidable fragment 3*V*SL(E); «
relies on a small model property, given in section 3.1. Undecidability of 3*V*SL(LIA)int,int

is obtained by a refinement of the undecidability proof for Presburger arithmetic with
one monadic predicate [14], in section 3.4.

3.1 Small Model Property

For reasons of self-containment, we recall a number of definitions and results from [29].
Some of them are slightly modified for our purposes, but these changes have no effect
on the validity of their original proofs. In the rest of this section, we consider formulae
of SL(E)y, yx» meaning that (i) Loc = U, and (ii) there exists an integer k > 0 such that
Data = U*, where U is the (uninterpreted) sort of E. We fix k for the rest of this section.

Definition 1. [29, Definition 90] Given a set of locations S, the equivalence relation
=g between k-tuples of locations is defined as (vi,...,vk) =g (v’l, ... ,v,’() if and only if
- ifvi€S thenv; =V, and
— ifv; ¢S then v; ¢S,
foralli=1,...,k.

Intuitively, =g restricts the equality to the elements in S. Observe that =g is an equiv-
alence relation and that S C T implies =7 C =g. For a set S, we write |S| for its cardi-
nality, in the following.

Definition 2. [29, Definition 91] Given an interpretation I, an integer n > 0, a set of
variables X C Vars and a set of locations S C U?, for any two heaps h,h’ : U* —g,
(U, we define h ~ix’s W if and only if

1. I(X)Nndom(h) = Z(X)Ndom(h’),

2. forall € € 1(X)Ndom(h), we have h({) =rxyus h'(0),

3. if [dom(h) \ I(X)| < n then |[dom(h) \ Z(X)] = [dom(h") \ I(X)],

4. if |[dom(h)\ I(X)| = n then |dom(h')\ I (X)| > n.
Observe that, for any n <mand S C T we have ~i’ X.T C ~i Xs In addition, for any inte-
ger k>0, subset S C U7 and location € € UZ, we consider the function prun}‘;s ¢1,....,4),
which replaces each value ¢; ¢ S in its argument list by £.

Lemma 1. [29, Lemma 94] Given an interpretation I and a heap h : UL —gn (UD,
for each integer n > 0, each set of variables X C Vars, each set of locations L C U* such
that LN I(X) =0 and |L| = n, and each location v € UL\ (I(X)U{nil¥ }UL), there exists
a heap ' : UL =g, (UK, with the following properties:

L h~t o n,

2. dom(WH)\I(X)C L,

3. for all € € dom(h’), we have h'() = prun;, I(X)UL(h(f)).

Next, we define the following measure on quantifier-free SL formulae:

=yl =Bl + Il |-yl =yl | Al = max(|gl, 1) =gl = |gl
[t—ul=1 lemp| =1 |¢| = 0 if ¢ is a Z-formula

Intuitively, |¢| is the maximum number of invisible locations, that are not in Z (Fvc(yp)),
and which can be distinguished by the quantifier-free SL(E); ;« formula ¢. The crux of

the PSPACE-completeness proof for quantifier-free SL(E), ;« is that two heaps equiv-
alent up to |¢| invisible locations are also equivalent from the point of view of satisfia-
bility of ¢, which provides a small model property for this fragment [29, 7].

Lemma 2. [29, Prop. 95] Given a quantifier-free SL(E), y« formula ¢, an interpreta-

tion I, and two heaps h and W', if h ~|f;|’FVC(Lp),® W and I,hEg ¢ then 1,0 Eg .

Our aim is to extend this result to 3*V*SL(E); y«, in the first place. This new small
model property is given by the next lemma.

Lemma 3. Let go(xij,xY) be a quantifier-free SL(E)y,yx-formula, and @' = inj .
A QD(X{], ..., xY) be its universal closure. Then ¢" has a model if and only if there
exists an interpretation I and a heap h : UL —gn (UD* such that T,h s, <pv and.:

1 U] < lgl + [Bve(e))] +n,

2. dom(h) € LUTI(Fvc(eY)),

3. for all £ € dom(h), we have h(€) € (I(Fvc(e”)) U{nilf }U LU vk,
where L C U\ I(Fvc(gov)) is a set of locations such that |L| = |¢|+n and v € Uiy
(I (Fve(e')U (niF}U L) is an arbitrary location.

Proof. See Appendix A.1.

We are ready to prove two decidability results, based on the above small model
property, concerning the cases where (i) Loc is interpreted as a countable set with equal-
ity, and (ii) Loc is interpreted as an infinite countable set with no other operators than
equality.

3.2 Uninterpreted Locations without Cardinality Constraints

In this section, we consider the satisfiability problem for the fragment 3*V*SL(E), ;«,
where the location sort U can be interpreted by any (possibly finite) countable set, with
no other operations than the equality, and the data sort consists of k-tuples of locations.

Theorem 1. The satisfiability problem for 3*V*SL(E), yx, problem is PSPACE-complete.

Proof. PSPACE-hardness follows from the fact that satisfiability is PSPACE-complete
for quantifier-free SL(E); « [7]. To prove membership in PSPACE, consider the for-
mula ¢ = dx;...3x, Yy ... Yy, . ¢(X,y), where ¢ is a quantifier-free SL(E)U,Uk formula.
Let ¢ = {cy,...,c) be a tuple of constant symbols, and 5 =Vy1...Vy, . ¢(c,y) be the
functional form of ¢, obtained by replacing x; with ¢;, foralli = 1,...,m. By Lemma 3,
¢ has a model if and only if it has a model 7,/ such that:

- U1 <lel+n+m,

— dom(h) C Luc?,

— V¢ edom(h) . h(¢) € (Z(c)UinilF}U LU v},
where L € UL\ I(¢), |L] = |¢|+m and v € UL \ (Z(¢) U {nil! }U L). We describe below
a nondeterministic polynomial space algorithm that decides satisfiability of ¢. First,
nondeterministically chose a model 7,4 that meets the above requirements. Then we
check, for each tuple (uy,...,u,) € (U that Iy < ut]l...[yn < uyl,h s @. In order

to enumerate all tuples from (UYY" we need n - [log, (¢l + n+ m)] extra bits, and the
check for each such tuple can be done in PSPACE, according to [7, §5]. a

This result is somewhat surprising, because the classical Bernays-Schonfinkel frag-
ment of first-order formulae with predicate symbols (but no function symbols) and
quantifier prefix 3*V* is known to be NEXPTIME-complete [17, §7]. The explana-
tion lies in the fact that the interpretation of an arbitrary predicate symbol P(X,...,X,)
cannot be captured using only points-to atomic propositions, e.g. X| = (X2,...,X,), be-
tween locations and tuples of locations, due to the interpretation of points-to’s as heaps*
(finite partial functions).

The following lemma sets a first decidability boundary for SL(E); ;x, by showing
how extending the quantifier prefix to 3*¥V*3* leads to undecidability.

Lemma 4. The satisfiability problem for 3*V*3*SL(E)y, y« is undecidable, if k > 2.

Proof. See Appendix A.2.

Observe that the result of Lemma 4 sets a fairly tight boundary between the decid-
able and undecidable fragments of SL. On one hand, simplifying the quantifier prefix to
J*V* yields a decidable fragment (Theorem 1), whereas SL(E)y,y (k = 1) without the
magic wand (-+) is decidable with non-elementary time complexity, even when consid-
ering an unrestricted quantifier prefix [4].

3.3 Uninterpreted Locations with Cardinality X,

We consider the stronger version of the satisfiability problem for 3*V*SL(E); ;x, where
U is interpreted as an infinite countable set (of cardinality 8¢) with no function symbols,
other than equality. Instances of this problem occur when, for instance, the location sort
is taken to be Int, but no operations are used on integers, except for testing equality.

Observe that this restriction changes the satisfiability status of certain formulae. For
instance, XYy . y — X is satisfiable if U is interpreted as a finite set, but becomes
unsatisfiable when U is infinite. The reason is that this formula requires every location
from U7 to be part of the domain of the heap, which is impossible due the fact that only
finite heaps are considered by the semantics of SL.

In the following proof, we use the formula alloc(x) = x — x - T, expressing the fact
that a location variable X is allocated, i.e. its interpretation is part of the heap’s domain
[4]. Intuitively, we reduce any instance of the 3*V*SL(E) « satisfiability problem,
with U of cardinality N, to an instance the same problem without this restriction, by
the following cut-off argument: if a free variable is interpreted as a location which is
neither part of the heap’s domain, nor equal to the interpretation of some constant, then
it is not important which particular location is chosen for that interpretation.

Theorem 2. The satisfiability problem for 3*V*SL(E), i« is PSPACE-complete if U is
required to have cardinality N.

I X > (X, ..., Xy) and x| > (x},...,%;,) hold, this forces x; = x}, forall i =2,...,n.

Proof. PSPACE-hardness follows from the PSPACE-completeness of the satisfiability
problem for quantifier-free SL, with uninterpreted locations [7, §5.2]. Since the reduc-
tion from [7, §5.2] involves no universally quantified variables, the 8¢ cardinality con-
straint has no impact on this result.

Let Axy...3x,Vy1...Vy, . o(X,y) be a formula, and Vy;...Vy, . ¢(c,y) be its func-
tional form, obtained by replacing each x; with ¢;, for i = 1,...,m. We consider the
following formulae:

Yo(y) = alloc(y)

() = \/,r'ilyzci
Yo(y) =y= dy
external = AiL, (malloc(dy) A N\'L, dy; # ¢j)

where {dy, | y € y} is a set of constant symbols not occurring in Yy ... Yy, . ¢(c,y). Then
we show the following fact:

Fact 1 There exists an interpretation I and a heap h such that |U L) =Rg and I,h g
Vy1... ¥y, . @(c,y) iff there exists an interpretation I', not constraining the cardinality
of UL, and a heap I’ such that:

n
I Eg extemnal Ay Yy, N\ A\ (100 = eley)
(150t Y€{0,1,2}" i=1

y/(zl realn)

Proof. See Appendix A.3.

To show membership in PSPACE, consider a nondeterministic algorithm that choses
I’ and 1’ and uses 2n extra bits to check that 7', 1" |zg extern AVy ... Vy, . Yoy i)
separately, for each (7q,...,t,) € {0,1,2}". By Lemma 3, the sizes of I’ and i’ are
bounded by a polynomial in the size of ¥, ., which is polynomial in the size of
¢, and by Theorem 1, each of these checks can be done in polynomial space. O

3.4 Integer Locations with Linear Arithmetic

In the rest of this section we show that the Bernays-Schonfinkel-Ramsey fragment of
SL becomes undecidable as soon as we use integers to represent the set of locations and
combine SL with linear integer arithmetic (LIA). The proof relies on an undecidability
argument for a fragment of Presburger arithmetic with one monadic predicate symbol,
interpreted over finite sets. Formally, we denote by (I*V* NnV*3*) — LIA the set of for-
mulae consisting of a conjunction between two linear arithmetic formulae, one with
quantifier prefix in the language 3*V*, and another with quantifier prefix V*3*.

Theorem 3. The satisfiability problem is undecidable for the fragment (A*V* NV*3I*) —
LIA, with one monadic predicate symbol, interpreted over finite sets of integers.

Proof. We reduce from the following variant of Hilbert’s 10th Problem: given a multi-
variate Diophantine polynomial R(x1,...,x;), the problem “does R(x,...,x,) = 0 have
a solution in N ?”” is undecidable [18].

By introducing sufficiently many free variables, we encode the equation R(xy,...,x,) =
0 as an equi-satisfiable Diophantine system of degree at most two, containing only
equations of the form x = yz (resp. x = y*) and linear equations Zf:l aix; = b, where
ai,...,ax,b € Z. Next, we replace each equation of the form x = yz, with y and z distinct
variables, with the quadratic system 2x+t, + 1, =ty Aty = > At = 22 Aty = (¥ +2)7,
where t,,1, and ¢, are fresh (free) variables. In this way, we replace all multiplications
between distinct variables by occurrences of the squaring function. Let Pr(y,,....x,)=0 be
the conjunction of the above equations. It is manifest that R(xy, ..., x,) = 0 has a solution
in N iff YRy, ... x,)=0 is satisfiable, with all free variables ranging over N.

Now we introduce a monadic predicate symbol P, which is intended to denote a
(possibly finite) set of consecutive perfect squares, starting with 0. To capture this defi-
nition, we require the following:

PO)AP(I)AVXVYWZ . PXOAPO)APRQ)AX<Y<ZA

Mu.x<u<yVy<u<z=-Pu)=z-y=y—-x+2 (sar)

Observe that this formula is a weakening of the definition of the infinite set of perfect
squares given by Halpern [14], from which the conjunct Yx3dy . y > x A P(y), requiring
that P is an infinite set of natural numbers, has been dropped. Moreover, notice that sqr
has quantifier prefix V33, due to the fact that Vu occurs under negation, on the left-hand
side of an implication. If P is interpreted as a finite set Pl = {po,p1,...,pn} such that
(w.l.o.g.) po < p1 <...< pn, itis easy to show, by induction on N > 0, that p; = i2, for
alli=0,1,...,N.

The next step is encoding the squaring function using the monadic predicate P.
9x=y2 = PX)APx+2y+1)AVz . x<z<x+2y+1 = =P(z). Let us now prove the
following fact:

Fact 2 For each interpretation I mapping x and y into N, I = x = y* iff T can be
extended to an interpretation of P as a finite set of consecutive perfect squares such that
IE Qx:yz.

Proof. See Appendix A.4.

.....
,,,,
.....

.....

v*3* frzlgment of LIA, with P being the only monadic predicate symbol. Finally, we
prove that R(x1,...,x;) = 0 has a solution in N" iff @g(y, . x,=0 is satisfiable.
“=" Let 1 be a valuation mapping x1,...,x, into N, such that 7 | R(x1,...,x,) =0.

.....
.....

.....

.....

..........
.....

..........

and consequently J = R(xq,...,x,) =0. |

10

We consider now the satisfiability problem for the fragment 3*V*SL(LIA)nt int Where
both Loc and Data are taken to be the Int sort, equipped with addition and total order.
Observe that, in this case, the heap consists of a set of lists, possibly with aliases and
circularities. Without losing generality, we consider that Int is interpreted as the set of
positive integers>.

The above theorem cannot be directly used for the undecidability of 3*V*SL(LIA)nt,nt
by interpreting the (unique) monadic predicate as the (finite) domain of the heap. The
problem is with the sqr formula, that defines the interpretation of the monadic predi-
cate as a set of consecutive perfect squares 0, 1,... ,n%, and whose quantifier prefix lies
in the ¥*3* fragment. We overcome this problem by replacing the sqr formula above
with a definition of such sets in 3*V*SL(LIA)nt nt- Let us first consider the following
properties expressed in SL [4]:

Ix>1=Fu.u x=xT
X< 1=VYuvt. ~(U Xxt X*xT)

Intuitively, fix > 1 states that x has at least one predecessor in the heap, whereas #ix < 1
states that X has at most one predecessor. We use #ix = 0 and fx = 1 as shorthands for
—(fx > 1) and #x > 1 Afix < 1, respectively. The formula below states that the heap can
be decomposed into a list segment starting with X and ending in y, and several disjoint
cyclic lists:

+
x> y = fix = 0 Aalloc(x) Aly = 1 A —alloc(y) A
Yz.z#¢y=(#z=1=alloc(z))AVz.Hz<1

We forbid the existence of circular lists by adding the following arithmetic constraint:
YuvVt . ub-t«T=u<t (nocyc)

We ask, moreover, that the elements of the list segment starting in X are consecutive
perfect squares:

consgr(X) =x=0AXr— 1*TAVZYUYt. Z— UxU txT =>t—-u=u—-2z+2 (consqr)

®) +
Observe that the formula Ix3y . x — y Anocyc Aconsqr(x) belongs to 3*V*SL(LIA)nt int.

Theorem 4. The satisfiability problem for 3*V*SL(LIA)nt nt is undecidable.

Proof. We use the same reduction as in the proof of Theorem 3, with two differences:
+

— we replace sqgr by Ix3y . x 2) y Anocyc A consqr(x), and
— define 6,_» = alloc(x) Aalloc(x+2y+ 1) AVz. x <z<x+2y+1= -alloc(z). O
It is tempting, at this point to ask whether interpreting locations as integers and
considering subsets of LIA instead may help recover the decidability. For instance, it
has been found that the Bernays-Schonfinkel-Ramsey class is decidable in presence of

5 Extending the interpretation of Loc to include negative integers does not make any difference
for the undecidability result.

11

integers with difference bounds arithmetic [28], and the same type of question can be
asked about the fragment of 3*V*SL(LIA)nt int, With difference bounds constraints only.

Finally, we consider a variant of the previous undecidability result, in which loca-
tions are the (uninterpreted) sort U of E and the data consists of tuples of sort U X Int.
This fragment of SL can be used to reason about lists with integer data. The undecid-
ability of this fragment can be proved along the same lines as Theorem 4.

Theorem 5. The satisfiability problem for 3*V*SL(ELIA)y.uxint is undecidable.
Proof. Along the same lines as the proof of Theorem 4, with the following shorthands:

ix>1=3JuY3d™ u (d,x)*T
ix < 1= YuUVtUvat . —(u - (d,x)t - (d,X) % T)

nocyc = YuUVtVwWlvdMve™ uis (d,)t (e,v)x T=>d <e

consgr(x) = AyY3zY . x = (0,y)xy = (1,2)* TA
YuUvtlwlUywlvdantyelnty £ty s (d)t (e,v) *V i (£, W) T =
f-e=e—-d+2 |

4 A Procedure for 3°V* Separation Logic in an SMT Solver

In previous work [24], we developed a decision procedure for quantifier-free SL(7) ¢ pata
inputs where the satisfiability problem for quantifier-free T-constraints is decidable.
The procedure is implemented in the SMT solver CVC4 [2] ©. This section presents
a procedure for the satisfiability of 3*V*SL(E), y« inputs which builds on this proce-
dure. Like existing approaches for quantified formulas in SMT [13, 23], our approach
is based on incremental quantifier instantiation based on a stream of candidate models
returned by a solver for quantifier-free inputs. Our approach for this fragment exploits
the small model property given in Lemma 3 to restrict the set of quantifier instantiations
it considers to a finite set.

Figure 1 gives a counterexample-guided approach for establishing the satisfiability
of input IxVy ¢(x,y). We first introduce tuples of fresh constants k and e of the same
type as x and y respectively. Our procedure will be based on finding a set of instanti-
ations of Yy ¢(k,y) that are either collectively unsatisfiable or are satisfiable and entail
our input. Then, we construct a set L which is the union of constants k and a set L" of
fresh constants whose cardinality is equal to the cardinality of ¢(x,y) plus the number
of universal variables n in our input. Conceptually, L is a finite set of terms from which
the instantiations of y in Yy ¢(k,y) can be built.

After constructing L, we call the recursive subprocedure solve_rec on I (initially
empty) and L. This procedure incrementally adds instances of Yy (k,y) to I". In step
1, we first check if I" is (SL, T')-unsatisfiable using the procedure from [24]. If so, our

6 The procedure is incorporated into the master branch of CVC4 (https://github.com/
CVC4), and can be enabled by command line parameter --quant-epr.

12

solve(Ix Yy ¢(x,y)) where X = (x1,...,Xy) and y = (¥,...,Yn):

Letk = (ky,...,k,) and e = (ey,...,ey) be fresh constants of the same type as x and y.
Let L=L"U{ky,...,ky,} where L’ is a set of fresh constants s.t. [L| = [o(x,y)| +n.
Return solve_rec(IxVy ¢(x,y), 0, L).

solve_rec(IxVy ¢(x,y), I, L):

1. If I' is (SL, E)-unsat, return “unsat”.
2. Assume IxVyp(X,y) is equivalent to IXVy @ (X,y) A... AVyp,(X,y).

n
It F} =T'U{-¢pjk,e)A /\ \/ ej ~ t} is (SL,E)-unsat for all j = 1,..., p, return “sat”.
i=1 teL
3. Otherwise, let 7,h =g I“} for some j e {l1,...,p}.
Lett=(#1,...,1,;) be such that ei] = tl.I andt; € Lforeachi=1,...,n.
Return solve_rec(IxVy ¢(x,y), " U{p;(k,0)},L).

Fig. 1. A counterexample-guided procedure for 3*¥*SL(E)y « formulas Ix Yy ¢(x,y), where U
is an uninterpreted sort in the signature of E.

input is (SL, T)-unsatisfiable. Otherwise, in step 2 we consider the miniscoped form of
our input AXVy¢((X,y) A... AVy@,(x,y). In the following, we may omit quantification
on conjunctions ¢; that do not contain variables from y. Given this formula, for each
j=1,...,p, we check the (SL,T)-satisfiability of set I ; containing I, the negation of
Yy ;(k,y) where y is replaced by fresh contants e, and a conjunction of constraints that
says each e¢; must be equal to at least one term in L for i = 1,...,n. If I“;. is (SL,T)-
unsatisfiable for each j = 1,...,p, our input is (SL,T)-satisfiable. Otherwise in step
3, given an interpretation 7 and heap # satisfying I, we construct a tuple of terms
t = (#1,...,1,) used for instantiating Vy¢;(k,y). For each i = 1,...,n, we choose ¢; to
be a term from L whose interpretation is the same as e;. The existence of such a #; is
guaranteed by the fact that J satisfies the constraint from I” ; that tells us e; is equal
to at least one such term. This selection ensures that instantiations on each iteration
are chosen from a finite set of possibilities and are unique. In practice, the procedure
terminates, both for unsatisfiable and satisfiable inputs, before considering all t from L"
for each Yy ¢;(x,y).

Theorem 6. Let U be an uninterpreted sort belonging to the signature of E. For all
A*V*SL(E)y y« formulae i of the form IxVy ¢(x,y), solve(y):

1. Answers “unsat” only if ¥ is (SL, E)-unsatisfiable.
2. Answers “sat” only if y is (SL, E)-satisfiable.
3. Terminates.

Proof. To show (1), note that I" contains only formulas of the form ¢;(k,t), which are
consequences of our input. Thus, when I" is (SL, E)-unsatisfiable, our input is (SL, E)-
unsatisfiable as well.

13

To show (2), we have that I" is (SL, E)-satisfiable and I" = I'U {—¢;(k,e) A A} is
(SL, E)-unsatisfiable for each j =1,..., p, where:

A:/n\\/e,-zt

i=1 teL

where L = L' U {ky,...,k,} and L’ is a set of fresh constants s.t. |[L'| = |¢(X,y)| + n.
In other words, we have that all models of I" satisfy (¢1(k,e) A... A ppk,e)) Vv —A,
which is equivalent to ¢(k,e) vV —A. Since e is not contained in I, we have that all
models of I" satisfy Yy (¢(k,y) V —A{e y}). Since I" is (SL, E)-satisfiable, we have that
Yy (¢o(k,y) vV -A{e — y}) is (SL, E)-satisfiable as well. Consider the formula Yy ¢(k,y).
By Lemma 3, Vy¢(k,y) has a model if and only if there exists an interpretation 7 and
heap A such that 7,k =g Vye(k,y) and UL < lol + [Fve(Vy ¢(x,y))| + n. Due to the
construction of L, this implies that Yy (¢(k,y) V —A{e - y}) is (SL, E)-satisfiable if and
only if Yy (K, y) is (SL, E)-satisfiable. Thus, IxVy ¢(x,y) is (SL, E)-satisfiable.

To show (3), clearly only a finite number of possible formulas can be added to I
as a result of the procedure, since all terms t belong to the finite set L and p is finite.
Furthermore, on every iteration, for any j, I satisfies I" and —¢;(k,e). Since ef = tlfr
foreach i =1,...,n, we have that ¢;(k,t) ¢ I', and thus a new formula is added to /" on
every call. Thus, only a finite number of recursive calls are made to solve_rec. Since
the (SL, E)-satisfiability of quantifier-free is decidable, all steps in the procedure are
terminating, and thus solve terminates. O

We discuss a few important details regarding our implementation of the procedure.
Matching Heuristics When constructing the terms t for instantiation, it may be the case
that ef =u! for multiple u € L for some i € {1,...,n}. In such cases, the procedure will
choose one such u for instantiation. To increase the likelihood of the instantiation being
relevant to the satisfiability of our input, we use heuristics for selecting the best possible

u among those whose interpretation is equal to e; in Z. In particular, if ef = u‘lr = uir ,
and I’ contains predicates of the form e; — v and u; + v; for some v,v; where vl = vlj

but no predicate of the form u, +— v, for some v, where v

term u1 over term up when choosing term ¢; for e;.

Finding Minimal Models Previous work [25] developed efficient techniques for find-
ing small models for uninterpreted sorts in CVC4. We have found these techniques to
be beneficial to the performance of the procedure in Figure 1. In particular, we use
these techniques to find X-interpretations 7 in solve_rec that interpret U as a finite set
of minimal size. When combined with the aforementioned matching heuristics, these
techniques lead to finding useful instantiations more quickly, since more terms are con-
strained to be equal to e; for i = 1,...,n in interpretations J.

Symmetry Breaking The procedure in Figure 1 introduces a set of fresh constants
L, which in turn introduce the possibility of discovering 2Z-interpretations 7 that are
isomorphic, that is, identical up to renaming of constants in L’. Our procedure adds
additional constraints to I” that do not affect its satisfiability, but reduce the number of
isomorphic models. In particular, we consider an ordering < on the constants from L’,
and add constraints that ensure that all models (7, %) of I" are such that if Z{ ¢ dom(h),

then é’g ¢ dom(h) for all ¢, such that £; < ¢.

= vg , then we strictly prefer

14

Example 1. Say we wish to show the validity of the entailment X # Yy AX > Z =g
Judx - u, from the introductory example (section 1), where X, Y, z, u are of the (uninter-
preted) sort U of E. This entailment is valid iff the 3*V*SL(E); ;« formula IxJydzVu . x #
Yy AX > zZA =X U is (SL, E)-unsatisfiable. A run of the procedure in Figure 1 on this
input constructs tuples k = (ky,ky,k;) and e = (e,), and set L = {ky,ky,k;, 1,2}, noting
that [X £ y AX — z A =X — u| = 1. We then call solve_rec where I is initially empty. By
miniscoping, our input is equivalent to Axdydz . x £ yAX+—> zA VYU . =X — u. On the
first two recursive calls to solve_rec, we may add k, # k, and ky + k; to I" by trivial in-
stantiation of the first two conjuncts. On the third recursive call, I" is (SL, E)-satisfiable,
and we check the satisfiability of:

I =\{ky £ kyky =k ke ey ANey =k Ve, ~kyVe, =k, Ve, ~ {1 Ve, =)}

Since k, — k, and k, > e, are in I, all X-interpretations 7 and heaps /& such that
I,h g I are such that e‘ur = kZ] . Since k; € L, we may choose to add the instantia-
tion =k, - k; to I, after which I' is (SL, E)-unsatisfiable on the next recursive call to
solve_rec. Thus, our input is (SL, E)-unsatisfiable and the entailment is valid.]

A modified version of the procedure in Figure 1 can be used for 3*V*SL(T)Loc Data-
satisfiability for theories 7 beyond equality, and where Loc and Data are not restricted
to uninterpreted sorts. Notice that in such cases, we cannot restrict 2-interpretations
7 in solve_rec to interpret each e¢; as a member of finite set L, and hence we modify
solve_rec to omit the constraint restricting variables in e to be equal to a term from L
in the check in Step 2. This modification results in a procedure that is sound both for
“unsat” and “sat”, but is no longer terminating in general. Nevertheless, it may be used
as a heuristic for determining 3*V*SL(T")Loc Data-(un)satisfiability.

5 Experimental Evaluation

We implemented the solve procedure from Figure 1 within the CVC4 SMT solver’
(version 1.5 prerelease). This implementation was tested on two kinds of benchmarks:
(i) finite unfoldings of inductive predicates, mostly inspired by benchmarks used in the
SL-COMP’ 14 solver competition [26], and (ii) verification conditions automatically
generated by applying the weakest precondition calculus of [15] to the program loops
in Figure 2. All experiments were run on a 2.80GHz Intel(R) Core(TM) i7 CPU machine
with with 8MB of cache 8.

We compared our implementation with the results of applying the CVC4 decision
procedure for the quantifier-free fragment of SL [24] to a variant of the benchmarks,
obtained by manual quantifier instantiation, as follows. Consider checking the validity
of the entailment 3x . ¢(x) =5 Ay . ¥(y), which is equivalent to the unsatisfiability of the
formula AxVy . ¢(x) A (y). We first check the satisfiability of ¢. If ¢ is not satisfiable,
the entailment holds trivially, so let us assume that ¢ has a model. Second, we check the

7 Available at http://cvcd.cs.nyu.edu/web/.
8 The CVC4 binary and examples used in these experiments are available at
http://cs.uiowa.edu/~ajreynol /VMCAI2017-seplog-epr.

15

1: while w # nil do 1: while u # nil do

2: assert(w.data = ¢g) 2: assert(u.data = ¢p)

3 vi=w; 3: w:=u.next;

4: w:=w.next; 4: u.next:=v;

5: dispose(v); 5: v:i=u;

6: do 6: u:=w;

7. do
(z)disp (z)rev

list?(x) £ emp A x = nil zlist?(x) £ emp A x = nil
list"(x) £ dy.x — y=list"™ 1(y) zlist"(x) = Jy.x - (cg,y) = zlist"™ 1(y)

Fig. 2. Program Loops

satisfiability of ¢ Ay. Again, if this is unsatisfiable, the entailment cannot hold, because
there exists a model of ¢ which is not a model of . Else, if ¢ Ay has a model, we add an
equality x = y for each pair of variables (x,y) € x Xy that are mapped to the same term
in this model, the result being a conjunction E(x,y) of equalities. Finally, we check the
satisfiability of the formula ¢ A =y A E. If this formula is unsatisfiable, the entailment is
valid, otherwise, the check is inconclusive. The times in Table 1 correspond to checking
satisfiability of IxVy . ¢(x) A ~(y) using the solve procedure (Figure 1), compared to
checking satisfiability of ¢ A =y A E, where E is manually generated.

In the first set of experiments (Table 1) we have considered inductive predicates
commonly used as verification benchmarks [26]. Here we check the validity of the en-
tailment between |hs and rhs, where both predicates are unfolded n = 1,2,3,4,8 times.
The entailment between pos; and neg}L is skipped because it is not valid (since the
negated formula is satisfiable, we cannot generate the manual instantiation).

The second set of experiments considers the verification conditions of the forms
¢ = wp(l,¢) and ¢ = wp"(l, ¢), where wp(l,) denotes the weakest precondition of the
SL formula ¢ with respect to the sequence of statements 1, and wp”(l, ¢) = wp(l,...wp(l,
wp(l,¢))...) denotes the iterative application of the weakest precondition n times in a
row. We consider the loops depicted in Figure 2, where, for each loop 1, we consider the
variant zl as well, which tests that the data values contained within the memory cells
are equal to a constant ¢ of sort Loc, by the assertions on line 2. The postconditions
are specified by finite unfoldings of the inductive predicates list and zlist.

We observed that the fully automated solver was less than 1.5 seconds slower than
checking the manual instantiation, on 82% of the test cases. The automated solver ex-
perienced 3 timeouts, where the manual instantiation succeeds (for tree vs tree with
n=8,1s vsts with n = 3, and list"(u) * list’(v) vs wp"(rev, u = nil A list"(v)) with n = 8).
These timeouts are caused by the first call to the quantifier-free SL decision procedure,
which fails to produce a model in less than 300 seconds (time not accounted for in the
manually produced instance of the problem).

6 Conclusions and Future Work

We present theoretical and practical results for the existence of effective decision pro-
cedures for the fragment of Separation Logic obtained by restriction of formulae to

16

lhs rhs \ In=1[n=2[n=3[n=4[n=38
Unfoldings of inductive predicates
Ig(x,y)%emp/\x:yv Is(x,y)ZempAx=yVv solve |<0.01s| 0.02s | 0.03s | 0.05s | 0.21s
HZ.x;ty/\.m—»z*E(z,y) Jz. x>zxIs(z,y) manual | < 0.01s[< 0.01s|<0.01s [< 0.01s|< 0.01s
t?&e(x)éempr:nilv tree(x)ZempAx=nilv solve |<0.01s| 0.04s | 1.43s |23.42s | > 300s
A3r. l#rAx—(Lr)stree(l)«tree(r) | A3r.x—(l,r)xtree(l)«tree(r) |manual |< 0.01s{<0.01s|<0.01s|<0.01s| 0.09s
fé(x,a)éempr=niIv ts(x,a)=empAx=nilv solve |<0.01s| 0.81s | > 300s | > 300s | > 300s
Hlﬂr.x#:y/\x»—>(l,r)*t’é(l,y)*tree(r)v A3r. Ax—(1,r)«ts(l,y)*tree(r)V |manual | < 0.01s| 0.03s |103.89s| > 300s | > 300s
AE3r. x;—"y/\)n—>(l,r)*tree(l)*g(r,y) A3r. Ax—= (L r)*tree(l)«ts(r,y)
pos1 (x,a)=x—avIyIb. neg (x,a)2-xr>aviy3b. solve | 0.34s | 0.01s | 0.31s | 0.76s |21.19s
x>a*posy (y,b) x>axneg (v,b) manual| 0.04s | 0.05s | 0.08s | 0.12s | 0.53s
posi (x,a)=x—aVIydb. negz(x,a)=x—aVviydb. solve | 0.03s | 0.12s | 0.23s | 0.46s | 3.60s
x—a*posy (y,b) —x—axnegz(y,b) manual| 0.05s | 0.08s | 0.08s | 0.12s | 0.54s
posa(x,a)=x—avIy. negs(x,a)=-x—avly. solve | 0.04s | 0.13s | 0.28s | 0.48s | 4.20s
x—a*posa(a,y) x—axnegs(a,y) manual| 0.01s | 0.03s | 0.05s | 0.09s | 0.45s
posa(x,a)=x—avdy. nega(x,a)=x—aviy. solve | — 0.08s | 0.15s | 0.26s | 1.33s
X>a*posy(a,y) —x—axnegs(a,y) manual| — 0.03s | 0.06s | 0.09s | 0.46s
Verification conditions
list" (w) Wp(disp,list”'I (w)) solve | 0.01s | 0.03s | 0.08s | 0.19s | 1.47s
manual |<0.01s| 0.01s | 0.02s | 0.05s | 0.26s
list" (w) wp” (disp,empAw=nil) solve | 0.01s | 0.06s | 0.17s | 0.53s | 7.08s
manual | < 0.01s| 0.02s | 0.08s | 0.14s | 2.26s
zlist" (w) wp(zdisp,zlist"" w)) solve | 0.04s | 0.05s | 0.09s | 0.19s | 1.25s
manual | < 0.01s| 0.01s | 0.02s | 0.04s | 0.29s
zlist"(w) wp' (zdisp,empAw=nil) solve | 0.01s | 0.10s | 0.32s | 0.87s | 11.88s
manual| 0.01s | 0.02s | 0.07s | 0.15s | 2.20s
list" (u)«list’(v) wp(rev,list" ™! (u)=list! (v)) solve | 0.38s | 0.06s | 0.11s | 0.16s | 0.56s
manual| 0.07s | 0.03s | 0.07s | 0.11s | 0.43s
list" (u)«list’(v) wp” (rev,u=nilAlist” (v)) solve | 0.38s | 0.07s | 0.30s | 68.68s | > 300s
manual| 0.08s | 0.06s | 0.11s | 0.23s | 1.79s
zlist" (u)zlist’ (v) wp(zrev,zlist"™! (u)+zlist' (v)) | solve | 0.22s | 0.07s | 0.15s | 0.21s | 0.75s
manual| 0.04s | 0.02s | 0.04s | 0.06s | 0.31s
zlist" (u)+zlist® (v) wp” (zrev,u=nilAzlist" (v)) solve | 0.23s | 0.09s | 0.17s | 0.30s | 2.06s
manual| 0.04s | 0.02s | 0.05s | 0.09s | 0.48s

Table 1. Experimental results

quantifier prefixes in the set 3*V*. The theoretical results range from undecidability,
when the set of memory locations is taken to be the set of integers and linear arith-
metic constraints are allowed, to PSPACE-completeness, when locations and data in
the cells belong to an uninterpreted sort, equipped with equality only. We have imple-
mented a decision procedure for the latter case in the CVC4 SMT solver, using an ef-
fective counterexample-driven instantiation of the universal quantifiers. The procedure
is shown to be sound, complete and termination is guaranteed when the input belongs
to a decidable fragment of SL.

As future work, we aim at refining the decidability chart for 3*V*SL(T")Loc Datas
by considering the case where the locations are interpreted as integers, with weaker
arithmetics, such as sets of difference bounds, or octagonal constraints. These results
are likely to extend the application range of our tool, to e.g. solvers working on SL
with inductive definitions and data constraints. The current implementation should also
benefit from improvements of the underlying quantifier-free SL and set theory solvers.

17

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Albargouthi, A., Berdine, J., Cook, B., Kincaid, Z.: Spatial Interpolants, pp. 634—660.

Springer (2015)

. Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A.,

Tinelli, C.: CVC4. In: Computer Aided Verification (CAV). Springer (2011)

. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Interna-

tional Journal on Artificial Intelligence Tools 15(1), 21-52 (2006)

. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Information and Computation

211, 106 — 137 (2012)

. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. Journal of

Logic and Computation 21(6), 1177-1216 (December 2011)

. Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory safety of ¢

programs. In: Proc. of NASA Formal Methods’11. LNCS, vol. 6617. Springer (2011)

. Calcagno, C., Yang, H., Ohearn, P.W.: Computability and complexity results for a spatial as-

sertion language for data structures. In: FST TCS 2001, Proceedings, pp. 108-119. Springer
(2001)

. Demri, S., Deters, M.: Two-variable separation logic and its inner circle. ACM Transactions

on Computational Logic 16(2:15) (2015)

. Demri, S., Galmiche, D., Larchey-Wendling, D., Méry, D.: Separation logic with one quan-

tified variable. In: Proceedings of the 9th International Computer Science Symposium in
Russia (CSR’14). Lecture Notes in Computer Science, vol. 8476, pp. 125-138. Springer
(2014)

Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for checking manipulation
of dynamic data structures using separation logic. In: Proc. of CAV’11. LNCS, vol. 6806.
Springer (2011)

Galmiche, D., Méry, D.: Tableaux and resource graphs for separation logic. Journal of Logic
and Computation 20(1), 189-231 (2010)

Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Dpll (t): Fast decision
procedures. In: CAV 2004, Proceedings, pp. 175-188 (2004)

Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiability modulo
theories. In: Proceedings of CAV’09. LNCS, vol. 5643 (2009)
Halpern, J.Y.: Presburger arithmetic with unary predicates is m
Symbolic Logic 56(2), 637-642 (1991)

Ishtiag, S.S., O’Hearn, P.W.: Bi as an assertion language for mutable data structures. In:
ACM SIGPLAN Notices. vol. 36, pp. 14-26 (2001)

Korovin, K.: iprover - an instantiation-based theorem prover for first-order logic (system
description). In: Automated Reasoning, 4th International Joint Conference, IICAR 2008,
Sydney, Australia, August 12-15, 2008, Proceedings. pp. 292-298 (2008)

Lewis, H.R.: Complexity results for classes of quantificational formulas. Journal of Com-
puter and System Sciences 21(3), 317 — 353 (1980)

Matiyasevich, Y.: Enumerable sets are diophantine. Journal of Sovietic Mathematics 11, 354
—358 (1970)

Nguyen, H.H., Chin, W.N.: Enhancing program verification with lemmas. In: Proc of
CAV’08. LNCS, vol. 5123. Springer (2008)

Piskac, R., de Moura, L.M., Bjgrner, N.: Deciding effectively propositional logic using DPLL
and substitution sets. J. Autom. Reasoning 44(4), 401-424 (2010)

Piskac, R., Wies, T., Zufferey, D.: Automating Separation Logic Using SMT, chap. CAV
2013, Proceedings, pp. 773-789 (2013)

1

| complete. The Journal of

18

22. Piskac, R., Wies, T., Zufferey, D.: Automating Separation Logic with Trees and Data, pp.
711-728 (2014)

23. Reynolds, A., Deters, M., Kuncak, V., Barrett, C.W., Tinelli, C.: Counterexample guided
quantifier instantiation for synthesis in CVC4. In: CAV. Springer (2015)

24. Reynolds, A., Iosif, R., King, T., Serban, C.: A decision procedure for separation logic in
SMT. CoRR abs/1603.06844 (2016)

25. Reynolds, A., Tinelli, C., Goel, A., Krsti¢, S.: Finite model finding in SMT. In: Sharygina,
N., Veith, H. (eds.) Computer Aided Verification, Lecture Notes in Computer Science, vol.
8044, pp. 640-655. Springer Berlin Heidelberg (2013)

26. Sighireanu, M., Cok, D.: Report on sl-comp 2014. Journal on Satisfiability, Boolean Model-
ing and Computation 1 (2014)

27. Toubhans, A., Chang, B.Y.E., Rival, X.: An Abstract Domain Combinator for Separately
Conjoining Memory Abstractions, pp. 285-301. Springer (2014)

28. Voigt, M., Weidenbach, C.: Bernays-schonfinkel-ramsey with simple bounds is nexptime-
complete. CoRR abs/1501.07209 (2015)

29. Yang, H.: Local Reasoning for Stateful Programs. Ph.D. thesis, University of Illinois at
Urbana-Champaign (2001)

A Additional Material

A.1 Proof of Lemma 3

“=” Suppose that ¢" has a model, i.e. I’/ g Vx1...VX,.0(x1,...,X,) for some in-
terpretation 7’ and some heap /' : UY —g, (UY)*. We consider the case in which
ldom(A")\ I’ (Fve(p”))| > || + n — the other case [dom(h’) \ I (Fve(e”))] < ¢l +n is an
easy check left to the reader. Because U T’ s countable, we can choose a subset consist-
ing of |¢| + n locations from dom(k")\ I’(Fvc(ep”)), and let L = {£1,... » €igl+n} e this set.

By Lemma 1, there exists a heap /4 : UL =g, (UL)F such that:
T ’

lgl+n,Fve(pY),L K,
— dom(h)\ I’ (Fve(e’)) € L and

- h() = prun—Vr, (Eve (t,oV))UL(h’(f))’ for all £ € dom(h).

We define 7 = I'[U « dom(h) U I’ (Fve(p?))] and prove that 7,4 g 7. Clearly the
pair 7, h satisfies the requirements from the statement of the lemma. We have to prove
that I[x; < ui]...[x, « u,l,h EsL @(x1,...,x,), for all uy,...,u, € U' = dom(h) U
I '(FVC((,OV)). By Lemma 2, it is sufficient to prove that:

I ol Xn n
h ~|¢[|fgvj(’;)f® Lnend 7 for all uy,...,u, € dom(h) U I’ (Fve(p"))

Since I and I’ agree on all variables from Vars, and J'[x; < ui]...[x;, < un],h EsL
@(x1,...,x,), forall uy,...,u, € vr, by the hypothesis, we obtain 7, h =g Vx; ... VX, . ().
The proof is by induction on n > 0.

The base case n = 1. Let us prove the requirements of Definition 2:

1. I[x; « u1](Fve(p)) Ndom(h) = I'{x; < u;](Fve(e)) Ndom(h’): observe first that
Fvc(p) = Fvc(cpv) U{x1}, thus we have:

T[x1 « w)(Fve(g)) = T(Fve(p”) Ulur} = I’ (Fve(p”) Ufur} .

19

If u; € dom(h)\ I '(FVC(«,DV)), then u; € L, because dom(h) C L, and implicitly u; €
dom(h’), since L C dom(h’)\ I’ (Fvc(e")). In this case, we have:

Ix1 < ur](Fve(p)) ndom(h) = (I'(Fve(p”)) U fur}) N dom(h)
= (I"(Fve(g”)) ndom(h)) U {u)
= (I’ (Fve(e?)) ndom(R')) U {u; } since h ~|{0 enpvees
= I[x; < u1](Fve(p)) Ndom(h')

On the other hand, if u; € I’ (Fvc(e)), we have T[x; « u;](Fve(p)) = I’ (Fve(eY))
and the result follows immediately.
2. h(€') =11x; uy 1(Fve(ey ' (€), for all £ € T[x; < u](Fve(p)) Ndom(h): by the defi-

nition of 4 (Lemma 1), we have h(¢’) = prun;, (Eve (‘p\,))UL(h’(f’)), for all £’ € dom(h).

Hence we have A(l') = (pye(pyur 7' () and, consequently h(L") =7/ pye(pt)y
I ("), for all £’ € dom(h), since u; € I’ (Fve(p?))UL.
3. ldom(h")\ Ix1 « u](Fve(p))l = ldom(h') \ (L (Fve(e”) U{u Hl = [dom (k') \ Z(Eve(p”))l-

1 > ||, by the previous assumption. Since i’ ~|‘; L Fve(eY) L h, we get [dom(h) \ I (Fve(p”))] >

Il + 1, thus [dom(/2) \ Z[x; & u1](Fve(e)l = Idom(h) \ (L (Fve(e”) U {ur Dl > Igl-

u}

The induction step n > 1. We prove the points of Definition 2, similar to the base case:
1. I[x; «u]...[x, < upJ(Fve(p))Ndom(h) = I[x) < uy]...[x, < u,J(Fvc(p))Ndom(h’):
we distinguish the case (i) u; € dom(h) \ I[x; « up]...[x, <« u](Fvc(p)) from
(1) uy € I[xp <« un]...[x, < uy](Fvc(p)). In the first case, we have:

Ilxy < url...[xn < upl(Fve(p)) Ndom(h) = (Z[x2 < uzl... [xn < upl(Fve(p)) Ufur }) Ndom(h)
= (Z[x2 < uz]...[xy < up](Fve(p)) Nndom(h)) N{ug}
by the induction hypothesis = (I[xp « us]...[x, < u,](Fve(e)) Nndom(h’)) N{u}

= I[x) « u1]...[x; < uy](Fve(p)) Ndom(h’)

Ifu € Ixy —uo)...[x, « uy](Fvc(p)), we have I'[x) «—up]...[x,; « u,](Fvc(p)) =
I[xy « up]...[x, <« u,](Fve(p)) and an application of the induction hypothesis
concludes the proof.
2. By the construction of &, we have h(€) = rgyep)uL KW ({), for all £ € dom(h), thus
h(6) =Ixy ey]...[xn —un](Fve(p)) R (€), forall £ € dom(h)N I [x1 < ut]...[x, < u,](Fvc(p)).
3. Similar to the base case, we have:

[dom(k")\ ITx1 = u1]...[x, « u](Fve()] = Idom(h")\ (Z(Eve(e”)) U ur, ..., un)l
> |dom(k’)\ Z(Fve(p”)l—n

> |¢l, and
[dom(M)\ Z[x1 ¢ u1]...[%, ¢ up(Eve(@)] = ldom(h")\ (L (Fve(e?) Ului, ..., un)l
2ol
Since the direction “«<" is trivial, this concludes our proof. O

A.2 Proof of Lemma 4

By reduction from the undecidability of the following tiling problem. Let 7~ = {Ty,..., T}
be a set of tile types and H,V C 7 X7 be two relations between tile types. Given
n,m > 1, a tiling of the n xXm square is a function 7 : [1,n] X [1,m] — 7 such that:

20

- 7(1,1) =Ty,

- (t(,)),7(@+1,j))e H, forallie[l,n—1] and j € [1,m],

- (1,), 7@, j+ 1) eV, forallie[l,n] and je [1,m—1].
The existence of n,m > 1 and of a tiling of the n X m square is a well-known undecidable
problem. We encode this as the satisfiability of a formula in 3*V*3*SL(E); ;x. Let
£o,€1,10,...,ts be constant symbols of sort U.

The basic idea is to represent each cell of the n X m grid by a heap cell, defined by
the atomic proposition X — (b,r,y,z,T), where:
— b,r € {€y, {1} act as binary flags indicating whether the cell belongs to the bottom n
row (b = {1), and the righmost m column (r = £), respectively,
— y and z are the horizontal (right) and vertical (below) successors of X, and
- T e{ty,...,t5} is the type of the tile covering the cell pointed to by Xx.
The finite relations H,V C 7 X7 are defined by the finite disjunctions A(x,y),v(x,y)
of equalities involving fo,...,t;. We write X — (b,r,y,z,T) for X — (b,r,y,2,T)* T,
X = (,nY,2,T) for Ve ey X < (0,1,Y,2,T), X = (b, ,y,2,T) for Ve 0,1X —
dydz . x — (b,r,y,z,T). We define thé formula @ as the conjunction of the formulae
below, with the pairwise disequality constraint A ez, ¢, 0.0 € # €

Auv¥yv¥z . u = (0,0,_,_,00) A=y = (-, ,U,-, JA=Z = (_,_,-,u,)(1)
YXYyVz . /\ [x = (0,0,y,z,)=2y—= (b,-,-,-,)AX#Y](2)
beflo. 6y}

VXYyVz . x = (., 1,y,2,) = x~y(3)

YXVyVz . /\ x> 0,1,y,2,) =y = (L.,)AX#Z](4)
re{bo.l1)
VxV¥yVz . x — (1,_,y,z,.) = x = z(5)

YXYYVY'VY'VZVZ'VZ" x> (C,_,y,Z2,)xy e (C,-,Y., 2,)=z (C,_.,y".2",)
=7 ~y"(6)

VXVyVz . /\ X (2T sy (cyeuey T = KT, T')T)
T, ltg, .15}

VXVyVz . A X (2T sz (Lyesey T = WT,TS)
T.T'€lty, .. t5}

The intuition of these formulae is as follows: (1) is the initial constraint, asking that the
top-left corner is labeled with T, (2) requires that each cell not on the rightmost column
has a distinct left successor, (3) is the dual constraint, asking that the left successor of
each cell on the rightmost column is the cell itself, (4) and (5) are the similar constraints
for the bottom successors, (6) is the grid constraint, and (7), (8) are the horizontal and
vertical constraints on the types of tiles. Observe that the quantifier prefix of @ belongs
to the language of the regular expression 3*V*3*,

21

Observe that the formulae (1 - 8) use k = 5 record fields. We can reduce the value of
k to 2, by using the following encoding of the atomic propositions in @:

X = (b,r,y,z,T) = AxgAx; X2 AX3 . X = (X0, X1) * X1 > (Y,2)x*
Xo > (X2,b) %Xz b (X3,7) x X3 = (T, nil)

It is easy to show now that @ has a model iff there exists n,/m > 1 and a tiling of the n xm
grid, which proves the undecidability of the satisfiability problem for 3*V*3*SL(E); «,
when k > 2. O

A.3 Proof of Theorem 2

Fact 3 There exists an interpretation I and a heap h such that | UL =Ry and T,h s,
Yy1...¥Yyu . @(c,y) iff there exists an interpretation I’, not constraining the cardinality
of UL, and a heap W' such that:

I’ I kg external AVy;...¥y, /\ /\ (z//,,.(yl-) = go(c,y))

(t1,..tn)€(0,1,2)" i=1

Pt ntn)

Proof. “=” This direction is immediate, because for each location ¢ € UL, we have
Iy « €], h Es. wo(y) Vi (y) Vi (y) and Ily; « €1]...[yn < €], h EsL ¢(c,y), for all
(1,...,L,) € (UY)". “<” Because the cardinality of U?" is unconstrained, by Lemma
3, there exists an interpretation 7/ and a heap & such that 7"/ = I'[U « dom(h) U
I’ (Fve(¥))] and I, h s extern Ay ... ¥y Agyiyeto.1.2n Pey....ny- We obtain that
I [y1 « €1]...[yn < €1] EsL (e,y) for each tuple (£y,...,¢,;) € (UL")" where either
(i) ¢; € dom(h), (ii) ¢; = I"”(c;) for some j=1,...,m, or (iii) {; = I"(d,) for some j =
1,...,n and neither of the previous hold. Because it is not important which location is
used for the interpretation of d;j, j=1,...,n, we have I,h =g Vy;...Vy, . ¢(c,y) for
every extension 7 of 7" such that [U7| = No.]

A.4 Proof of Theorem 3

Fact 4 For each interpretation I mapping x and y into N, I = x = y*> iff T can be
extended to an interpretation of P as a finite set of consecutive perfect squares such that
ITE Qx:yz.

Proof. “=” If T £ x = y* then we have (yX + 1) = x + 2y’ + 1. Let P be the set
{0,1,..., (yf + 1)2}. Clearly oo+ 2yI +1 € P! and, since they are consecutive perfect
squares, every number in between x’ and x? +2y” + 1 does not belong to P/. Thus I ¢
Qx:yz. “="If T E Hx:yz and P? is a set of consecutive perfect squares, it follows that X
and x¥ + 2y + 1 are consecutive perfect squares, i.e. x =n? and x¥ + 2y +1=(n+1)?
for some n € N. Then y = n, thus 7 | x = y2. i

22

