Simulation

Computer Simulation

- Computer simulations are experiments performed on the computer using computer-generated random numbers.
- Simulation is used to
- study the behavior of complex systems such as
* biological systems
* ecosystems
* engineering systems
* computer networks
- compute values of otherwise intractable quantities such as integrals
- maximize or minimize the value of a complicated function
- study the behavior of statistical procedures
- implement novel methods of statistical inference
- Simulations need
- uniform random numbers
- non-uniform random numbers
- random vectors, stochastic processes, etc.
- techniques to design good simulations
- methods to analyze simulation results

Uniform Random Numbers

- The most basic distribution is the uniform distribution on $[0,1]$
- Ideally we would like to be able to obtain a sequence of independent draws from the uniform distribution on $[0,1]$.
- Since we can only use finitely many digits, we can also work with
- A sequence of independent discrete uniform random numbers on $\{0,1, \ldots, M-1\}$ or $\{1,2, \ldots, M\}$ for some large M.
- A sequence of independent random bits with equal probability for 0 and 1.
- Some methods are based on physical processes such as
- nuclear decay
http://www.fourmilab.ch/hotbits/
- atmospheric noise
http://www.random.org/

The R package random provides an interface.

- air turbulence over disk drives or thermal noise in a semiconductor (Toshiba Random Master PCI device)
- event timings in a computer (Linux / dev/random)

Using /dev/random from R

```
devRand <- file("/dev/random", open="rb")
U <- function()
    (as.double(readBin(devRand, "integer"))+2^31) / 2^32
x <-numeric(1000)
for (i in seq(along=x)) x[i] <- U()
hist(x)
y <- numeric(1000)
for (i in seq(along=x)) y[i] <- U()
plot(x,y)
close(devRand)
```

Histogram of x

Issues with Physical Generators

- can be very slow
- not reproducible except by storing all values
- distribution is usually not exactly uniform; can be off by enough to matter
- departures from independence may be large enough to matter
- mechanisms, defects, are hard to study
- can be improved by combining with other methods

Pseudo-Random Numbers

Pseudo-random number generators produce a sequence of numbers that is

- not random
- easily reproducible
- "unpredictable;" "looks random"
- behaves in many respects like a sequence of independent draws from a (discretized) uniform $[0,1]$ distribution
- fast to produce

Pseudo-random generators come in various qualities

- Simple generators
- easy to implement
- run very fast
- easy to study theoretically
- usually have known, well understood flaws
- More complex
- often based on combining simpler ones
- somewhat slower but still very fast
- sometimes possible to study theoretically, often not
- guaranteed to have flaws; flaws may not be well understood (yet)
- Cryptographic strength

> https://www.schneier.com/fortuna.html

- often much slower, more complex
- thought to be of higher quality
- may have legal complications
- weak generators can enable exploits, a recent issue in iOS 7

We use mostly generators in the first two categories.

General Properties

- Most pseudo-random number generators produce a sequence of integers x_{1}, x_{2}, \ldots in the range $\{0,1, \ldots, M-1\}$ for some M using a recursion of the form

$$
x_{n}=f\left(x_{n-1}, x_{n-2}, \ldots, x_{n-k}\right)
$$

- Values u_{1}, u_{2}, \ldots are then produced by

$$
u_{i}=g\left(x_{d i}, x_{d i-1}, \ldots, x_{d i-d+1}\right)
$$

- Common choices of M are
- $M=2^{31}$ or $M=2^{32}$
- $M=2^{31}-1$, a Mersenne prime
- $M=2$ for bit generators
- The value k is the order of the generator
- The set of the most recent k values is the state of the generator.
- The initial state x_{1}, \ldots, x_{k} is called the seed.
- Since there are only finitely many possible states, eventually these generators will repeat.
- The length of a cycle is called the period of a generator.
- The maximal possible period is on the order of M^{k}
- Needs change:
- As computers get faster, larger, more complex simulations are run.
- A generator with period 2^{32} used to be good enough.
- A current computer can run through 2^{32} pseudo-random numbers in under one minute.
- Most generators in current use have periods 2^{64} or more.
- Parallel computation also raises new issues.

Linear Congruential Generators

- A linear congruential generator is of the form

$$
x_{i}=\left(a x_{i-1}+c\right) \quad \bmod M
$$

with $0 \leq x_{i}<M$.

- a is the multiplier
- c is the increment
- M is the modulus
- A multiplicative generator is of the form

$$
x_{i}=a x_{i-1} \quad \bmod M
$$

with $0<x_{i}<M$.

- A linear congruential generator has full period M if and only if three conditions hold:
$-\operatorname{gcd}(c, M)=1$
- $a \equiv 1 \bmod p$ for each prime factor p of M
$-a \equiv 1 \bmod 4$ if 4 divides M
- A multiplicative generator has period at most $M-1$. Full period is achieved if and only if M is prime and a is a primitive root modulo M, i.e. $a \neq 0$ and $a^{(M-1) / p} \not \equiv 1 \bmod M$ for each prime factor p of $M-1$.

Examples

- Lewis, Goodman, and Miller ("minimal standard" of Park and Miller):

$$
x_{i}=16807 x_{i-1} \quad \bmod \left(2^{31}-1\right)=7^{5} x_{i-1} \quad \bmod \left(2^{31}-1\right)
$$

Reasonable properties, period $2^{31}-2 \approx 2.15 * 10^{9}$ is very short for modern computers.

- RANDU:

$$
x_{i}=65538 x_{i-1} \quad \bmod 2^{31}
$$

Period is only 2^{29} but that is the least of its problems:

$$
u_{i+2}-6 u_{i+1}+9 u_{i}=\text { an integer }
$$

so (u_{i}, u_{i+1}, u_{i+2}) fall on 15 parallel planes. Using the randu data set and the rgl package:

```
library(rgl)
points3d(randu)
par3d(FOV=1) ## removes perspective distortion
```

With a larger number of points:

```
seed <- as.double(1)
RANDU <- function() {
    seed <<- ((2^16 + 3) * seed) %% (2^31)
    seed/(2^31)
}
U <- matrix(replicate(10000 * 3, RANDU()), ncol = 3, byrow = TRUE)
clear3d()
points3d(U)
par3d(FOV=1)
```

This generator used to be the default generator on IBM 360/370 and DEC PDP11 machines.

Some examples are available in

```
http://www.stat.uiowa.edu/~luke/classes/STAT7400/
    examples/sim.Rmd
```


Lattice Structure

- All linear congruential sequences have a lattice structure
- Methods are available for computing characteristics, such as maximal distance between adjacent parallel planes
- Values of M and a can be chosen to achieve good lattice structure for $c=0$ or $c=1$; other values of c are not particularly useful.

Shift-Register Generators

- Shift-register generators take the form

$$
x_{i}=a_{1} x_{i-1}+a_{2} x_{i-2}+\cdots+a_{p} x_{i-p} \quad \bmod 2
$$

for binary constants a_{1}, \ldots, a_{p}.

- values in $[0,1]$ are often constructed as

$$
u_{i}=\sum_{s=1}^{L} 2^{-s} x_{t i+s}=0 \cdot x_{i t+1} x_{i t+2} \ldots x_{i t+L}
$$

for some t and $L \leq t . t$ is the decimation.

- The maximal possible period is $2^{p}-1$ since all zeros must be excluded.
- The maximal period is achieved if and only if the polynomial

$$
z^{p}+a_{1} z^{p-1}+\cdots+a_{p-1} z+a_{p}
$$

is irreducible over the finite field of size 2.

- Theoretical analysis is based on k-distribution: A sequence of M bit integers with period $2^{p}-1$ is k-distributed if every k-tuple of integers appears $2^{p-k M}$ times, except for the zero tuple, which appears one time fewer.
- Generators are available that have high periods and good k-distribution properties.

Lagged Fibonacci Generators

- Lagged Fibonacci generators are of the form

$$
x_{i}=\left(x_{i-k} \circ x_{i-j}\right) \quad \bmod M
$$

for some binary operator 0 .

- Knuth recommends

$$
x_{i}=\left(x_{i-100}-x_{i-37}\right) \quad \bmod 2^{30}
$$

- There are some regularities if the full sequence is used; one recommendation is to generate in batches of 1009 and use only the first 100 in each batch.
- Initialization requires some care.

Combined Generators

- Combining several generators may produce a new generator with better properties.
- Combining generators can also fail miserably.
- Theoretical properties are often hard to develop.
- Wichmann-Hill generator:

$$
\begin{array}{rlr}
x_{i} & =171 x_{i-1} & \bmod 30269 \\
y_{i} & =172 y_{i-1} & \bmod 30307 \\
z_{i} & =170 z_{i-1} & \bmod 30323
\end{array}
$$

and

$$
u_{i}=\left(\frac{x_{i}}{30269}+\frac{y_{i}}{30307}+\frac{z_{i}}{30232}\right) \quad \bmod 1
$$

The period is around 10^{12}.
This turns out to be equivalent to a multiplicative generator with modulus

$$
M=27817185604309
$$

- Marsaglia's Super-Duper used in S-PLUS and others combines a linear congruential and a feedback-shift generator.

Other Generators

- Mersenne twister
- Marsaglia multicarry
- Parallel generators
- SPRNG http://sprng.cs.fsu.edu.
- L'Ecuyer, Simard, Chen, and Kelton
http:
//www.iro.umontreal.ca/~lecuyer/myftp/streams00/

Pseudo-Random Number Generators in \mathbf{R}

R provides a number of different basic generators:
Wichmann-Hill: Period around 10^{12}
Marsaglia-Multicarry: Period at least 10^{18}
Super-Duper: Period around 10^{18} for most seeds; similar to S-PLUS
Mersenne-Twister: Period $2^{19937}-1 \approx 10^{6000}$; equidistributed in 623 dimensions; current default in R.

Knuth-TAOCP: Version from second edition of The Art of Computer Programming, Vol. 2; period around 10^{38}.

Knuth-TAOCP-2002: From third edition; differs in initialization.
L'Ecuyer-CMRG: A combined multiple-recursive generator from L'Ecuyer (1999). The period is around 2^{191}. This provides the basis for the multiple streams used in package parallel.
user-supplied: Provides a mechanism for installing your own generator; used for parallel generation by

- rsprng package interface to SPRNG
- rlecuyer package interface to L'Ecuyer, Simard, Chen, and Kelton system
- rstreams package, another interface to L'Ecuyer et al.

Testing Generators

- All generators have flaws; some are known, some are not (yet).
- Tests need to look for flaws that are likely to be important in realistic statistical applications.
- Theoretical tests look for
- bad lattice structure
- lack of k-distribution
- other tractable properties
- Statistical tests look for simple simulations where pseudo-random number streams produce results unreasonably far from known answers.
- Some batteries of tests:
- DIEHARD http://stat.fsu.edu/pub/diehard/
- DIEHARDER http://www.phy.duke.edu/~rgb/General/ dieharder.php
- NIST Test Suitehttp://csrc.nist.gov/groups/ST/toolkit/ rng/
- TestU01 http://www.iro.umontreal.ca/~lecuyer

Issues and Recommendations

- Good choices of generators change with time and technology.
- Faster computers need longer periods.
- Parallel computers need different methods.
- All generators are flawed
- Bad simulation results due to poor random number generators are very rare; coding errors in simulations are not.
- Testing a generator on a "similar" problem with known answers is a good idea (and may be useful to make results more accurate).
- Using multiple generators is a good idea; R makes this easy to do.
- Be aware that some generators can produce uniforms equal to 0 or 1 (I believe R's will not).
- Avoid methods that are sensitive to low order bits

Non-Uniform Random Variate Generation

- Starting point: Assume we can generate a sequence of independent uniform $[0,1]$ random variables.
- Develop methods that generate general random variables from uniform ones.
- Considerations:
- Simplicity, correctness
- Accuracy, numerical issues
- Speed
* Setup
* Generation
- General approaches:
- Univariate transformations
- Multivariate transformations
- Mixtures
- Accept/Reject methods

Inverse CDF Method

Suppose F is a cumulative distribution function (CDF). Define the inverse CDF as

$$
F^{-}(u)=\min \{x: F(x) \geq u\}
$$

If $U \sim \mathrm{U}[0,1]$ then $X=F^{-}(U)$ has $\operatorname{CDF} F$.
Proof. Since F is right continuous, the minimum is attained. Therefore $F\left(F^{-}(u)\right) \geq$ u and $F^{-}(F(x))=\min \{y: F(y) \geq F(x)\}$. So

$$
\left\{(u, x): F^{-}(u) \leq x\right\}=\{(u, x): u \leq F(x)\}
$$

and thus $P(X \leq x)=P\left(F^{-}(U) \leq x\right)=P(U \leq F(x))=F(x)$.

Example: Unit Exponential Distribution

The unit exponential CDF is

$$
F(x)= \begin{cases}1-e^{-x} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

with inverse CDF

$$
F^{-}(u)=-\log (1-u)
$$

So $X=-\log (1-U)$ has an exponential distribution.
Since $1-U \sim \mathrm{U}[0,1],-\log U$ also has a unit exponential distribution.
If the uniform generator can produce 0 , then these should be rejected.

Example: Standard Cauchy Distribution

The CDF of the standard Cauchy distribution is

$$
F(x)=\frac{1}{2}+\frac{1}{\pi} \arctan (x)
$$

with inverse CDF

$$
F^{-}(u)=\tan (\pi(u-1 / 2))
$$

So $X=\tan (\pi(U-1 / 2))$ has a standard Cauchy distribution.
An alternative form is: Let U_{1}, U_{2} be independent $\mathrm{U}[0,1]$ random variables and set

$$
X= \begin{cases}\tan \left(\pi\left(U_{2} / 2\right)\right. & \text { if } U_{1} \geq 1 / 2 \\ -\tan \left(\pi\left(U_{2} / 2\right)\right. & \text { if } U_{1}<1 / 2\end{cases}
$$

- U_{1} produces a random sign
- U_{2} produces the magnitude
- This will preserve fine structure of U_{2} near zero, if there is any.

Example: Standard Normal Distribution

The CDF of the standard normal distribution is

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z
$$

and the inverse CDF is Φ^{-1}.

- Neither Φ nor Φ^{-1} are available in closed form.
- Excellent numerical routines are available for both.
- Inversion is currently the default method for generating standard normals in R.
- The inversion approach uses two uniforms to generate one higher-precision uniform via the code

```
    case INVERSION:
#define BIG 134217728 /* 2^27 */
    /* unif_rand() alone is not of high enough precision */
    u1 = unif_rand();
    u1 = (int)(BIG*u1) + unif_rand();
    return qnorm5(ul/BIG, 0.0, 1.0, 1, 0);
```


Example: Geometric Distribution

The geometric distribution with PMF $f(x)=p(1-p)^{x}$ for $x=0,1, \ldots$, has CDF

$$
F(x)= \begin{cases}1-(1-p)^{\lfloor x+1\rfloor} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

where $\lfloor y\rfloor$ is the integer part of y. The inverse CDF is

$$
\begin{aligned}
F^{-}(u) & =\lceil\log (1-u) / \log (1-p)\rceil-1 \\
& =\lfloor\log (1-u) / \log (1-p)\rfloor \quad \text { except at the jumps }
\end{aligned}
$$

for $0<u<1$. So $X=\lfloor\log (1-U) / \log (1-p)\rfloor$ has a geometric distribution with success probability p.

Other possibilities:

$$
X=\lfloor\log (U) / \log (1-p)\rfloor
$$

or

$$
X=\lfloor-Y / \log (1-p)\rfloor
$$

where Y is a unit exponential random variable.

Example: Truncated Normal Distribution

Suppose $X \sim \mathrm{~N}(\mu, 1)$ and

$$
y \sim X \mid X>0 .
$$

The CDF of Y is

$$
F_{Y}(y)=\left\{\begin{array}{ll}
\frac{P(0<X \leq y)}{P(0<X)} & \text { for } y \geq 0 \\
0 & \text { for } y<0
\end{array}=\left\{\begin{array}{ll}
\frac{F_{X}(y)-F_{X}(0)}{1-F_{X}(0)} & \text { for } y \geq 0 \\
0 & \text { for } y<0
\end{array} .\right.\right.
$$

The inverse CDF is

$$
F_{Y}^{-1}(u)=F_{X}^{-1}\left(u\left(1-F_{X}(0)\right)+F_{X}(0)\right)=F_{X}^{-1}\left(u+(1-u) F_{X}(0)\right) .
$$

An R function corresponding to this definition is

```
Q1 <- function(p, m) qnorm(p + (1 - p)* pnorm(0, m), m)
```

This seems to work well for positive μ but not for negative values far from zero:
> Q1 (0.5, c(1, 3, 5, 10, -10))
[1] 1.200174 3.001692 5.000000 10.000000 Inf

The reason is that pnorm $(0,-10)$ is rounded to one.

A mathematically equivalent formulation of the inverse CDF is

$$
F_{Y}^{-1}(u)=F_{X}^{-1}\left(1-(1-u)\left(1-F_{X}(0)\right)\right)
$$

which leads to

```
Q2 <- function(p, m)
    qnorm((1 - p)* pnorm(0, m, lower.tail = FALSE),
            m, lower.tail = FALSE)
```

and
$>\mathrm{Q} 2(0.5, \mathrm{c}(1,3,5,10,-10))$
[1] 1.20017369 3.00169185 5.0000003610.00000000 0.06841184

Issues

- In principle, inversion can be used for any distribution.
- Sometimes routines are available for F^{-}but are quite expensive:

```
> system.time(rbeta(1000000, 2.5, 3.5))
    user system elapsed
    0.206 0.000 0.211
> system.time(qbeta(runif(1000000), 2.5, 3.5))
    user system elapsed
    4.139 0.001 4.212
```

rbeta is about 20 times faster than inversion.

- If F^{-}is not available but F is, then one can solve the equation $u=F(x)$ numerically for x.
- Accuracy of F or F^{-}may be an issue, especially when writing code for a parametric family that is to work well over a wide parameter range.
- Even when inversion is costly,
- the cost of random variate generation may be a small fraction of the total cost of a simulation
- using inversion creates a simple relation between the variables and the underlying uniforms that may be useful

Multivariate Transformations

Many distributions can be expressed as the marginal distribution of a function of several variables.

Box-Muller Method for the Standard Normal Distribution

Suppose X_{1} and X_{2} are independent standard normals. The polar coordinates θ and R are independent,

- θ is uniform on $[0,2 \pi)$
- R^{2} is χ_{2}^{2}, which is exponential with mean 2

So if U_{1} and U_{2} are independent and uniform on $[0,1]$, then

$$
\begin{aligned}
& X_{1}=\sqrt{-2 \log U_{1}} \cos \left(2 \pi U_{2}\right) \\
& X_{2}=\sqrt{-2 \log U_{1}} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

are independent standard normals. This is the Box-Muller method.

Polar Method for the Standard Normal Distribution

The trigonometric functions are somewhat slow to compute. Suppose $\left(V_{1}, V_{2}\right)$ is uniform on the unit disk

$$
\left\{\left(v_{1}, v_{2}\right): v_{1}^{2}+v_{2}^{2} \leq 1\right\}
$$

Let $R^{2}=V_{1}^{2}+V_{2}^{2}$ and

$$
\begin{aligned}
& X_{1}=V_{1} \sqrt{-\left(2 \log R^{2}\right) / R^{2}} \\
& X_{2}=V_{2} \sqrt{-\left(2 \log R^{2}\right) / R^{2}}
\end{aligned}
$$

Then X_{1}, X_{2} are independent standard normals.
This is the polar method of Marsaglia and Bray.

Generating points uniformly on the unit disk can be done using rejection sampling, or accept/reject sampling:
repeat
generate independent $V_{1}, V_{2} \sim \mathrm{U}(-1,1)$
until $V_{1}^{2}+V_{2}^{2} \leq 1$
return $\left(V_{1}, V_{2}\right)$

- This independently generates pairs $\left(V_{1}, V_{2}\right)$ uniformly on the square $(-1,1) \times$ $(-1,1)$ until the result is inside the unit disk.
- The resulting pair is uniformly distributed on the unit disk.
- The number of pairs that need to be generated is a geometric variable with success probability

$$
p=\frac{\text { area of disk }}{\text { area of square }}=\frac{\pi}{4}
$$

The expected number of generations needed is $1 / p=4 / \pi=1.2732$.

- The number of generations needed is independent of the final pair.

Polar Method for the Standard Cauchy Distribution

The ratio of two standard normals has a Cauchy distribution.
Suppose two standard normals are generated by the polar method,

$$
\begin{aligned}
& X_{1}=V_{1} \sqrt{-\left(2 \log R^{2}\right) / R^{2}} \\
& X_{2}=V_{2} \sqrt{-\left(2 \log R^{2}\right) / R^{2}}
\end{aligned}
$$

with $R^{2}=V_{1}^{2}+V_{2}^{2}$ and $\left(V_{1}, V_{2}\right)$ uniform on the unit disk. Then

$$
Y=\frac{X_{1}}{X_{2}}=\frac{V_{1}}{V_{2}}
$$

is the ratio of the two coordinates of the pair that is uniformly distributed on the unit disk.

This idea leads to a general method, the Ratio-of-Uniforms method.

Student's t Distribution

Suppose

- Z has a standard normal distribution,
- Y has a χ_{v}^{2} distribution,
- Z and Y are independent.

Then

$$
X=\frac{Z}{\sqrt{Y / v}}
$$

has a t distribution with v degrees of freedom.
To use this representation we will need to be able to generate from a χ_{v}^{2} distribution, which is a $\operatorname{Gamma}(v / 2,2)$ distribution.

Beta Distribution

Suppose $\alpha>0, \beta>0$, and

- $U \sim \operatorname{Gamma}(\alpha, 1)$
- $V \sim \operatorname{Gamma}(\beta, 1)$
- U, V are independent

Then

$$
X=\frac{U}{U+V}
$$

has a $\operatorname{Beta}(\alpha, \beta)$ distribution.

F Distribution

Suppose $a>0, b>0$, and

- $U \sim \chi_{a}^{2}$
- $V \sim \chi_{b}^{2}$
- U, V are independent

Then

$$
X=\frac{U / a}{V / b}
$$

has an F distribution with a and b degrees of freedom.
Alternatively, if $Y \sim \operatorname{Beta}(a / 2, b / 2)$, then

$$
X=\frac{b}{a} \frac{Y}{1-Y}
$$

has an F distribution with a and b degrees of freedom.

Non-Central t Distribution

Suppose

- $Z \sim \mathrm{~N}(\mu, 1)$,
- $Y \sim \chi_{v}^{2}$,
- Z and Y are independent.

Then

$$
X=\frac{Z}{\sqrt{Y / v}}
$$

has non-central t distribution with v degrees of freedom and non-centrality parameter μ.

Non-Central Chi-Square, and F Distributions

Suppose

- Z_{1}, \ldots, Z_{k} are independent
- $Z_{i} \sim \mathrm{~N}\left(\mu_{i}, 1\right)$

Then

$$
Y=Z_{1}^{2}+\cdots+Z_{k}^{2}
$$

has a non-central chi-square distribution with k degrees of freedom and noncentrality parameter

$$
\delta=\mu_{1}^{2}+\cdots+\mu_{k}^{2}
$$

An alternative characterization: if $\widetilde{Z}_{1}, \ldots, \widetilde{Z}_{k}$ are independent standard normals then

$$
Y=\left(\widetilde{Z}_{1}+\sqrt{\delta}\right)^{2}+\widetilde{Z}_{2}^{2} \cdots+\widetilde{Z}_{k}^{2}=\left(\widetilde{Z}_{1}+\sqrt{\delta}\right)^{2}+\sum_{i=2}^{k} \widetilde{Z}_{i}^{2}
$$

has a non-central chi-square distribution with k degrees of freedom and noncentrality parameter δ.

The non-central F is of the form

$$
X=\frac{U / a}{V / b}
$$

where U, V are independent, U is a non-central χ_{a}^{2} and V is a central χ_{b}^{2} random variable.

Bernoulli and Binomial Distributions

Suppose $p \in[0,1], U \sim \mathrm{U}[0,1]$, and

$$
X= \begin{cases}1 & \text { if } U \leq p \\ 0 & \text { otherwise }\end{cases}
$$

Then X bas a $\operatorname{Bernoulli}(p)$ distribution.
If Y_{1}, \ldots, Y_{n} are independent $\operatorname{Bernoulli}(p)$ random variables, then

$$
X=Y_{1}+\cdots+Y_{n}
$$

has a $\operatorname{Binomial}(n, p)$ distribution.
For small n this is an effective way to generate binomials.

Mixtures and Conditioning

Many distributions can be expressed using a hierarchical structure:

$$
\begin{aligned}
X \mid Y & \sim f_{X \mid Y}(x \mid y) \\
Y & \sim f_{Y}(y)
\end{aligned}
$$

The marginal distribution of X is called a mixture distribution. We can generate X by

Generate Y from $f_{Y}(y)$.
Generate $X \mid Y=y$ from $f_{X \mid Y}(x, y)$.

Student's t Distribution

Another way to think of the t_{v} distribution is:

$$
\begin{aligned}
X \mid Y & \sim \mathrm{~N}(0, v / Y) \\
Y & \sim \chi_{v}^{2}
\end{aligned}
$$

The t distribution is a scale mixture of normals.
Other choices of the distribution of Y lead to other distributions for X.

Negative Binomial Distribution

The negative binomial distribution with PMF

$$
f(x)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x}
$$

for $x=0,1,2, \ldots$, can be written as a gamma mixture of Poissons: if

$$
\begin{aligned}
X \mid Y & \sim \operatorname{Poisson}(Y) \\
Y & \sim \operatorname{Gamma}(r,(1-p) / p)
\end{aligned}
$$

then $X \sim$ Negative $\operatorname{Binomial}(r, p)$.
[The notation $\operatorname{Gamma}(\alpha, \beta)$ means that β is the scale parameter.]
This representation makes sense even when r is not an integer.

Non-Central Chi-Square

The density of the non-central χ_{ν}^{2} distribution with non-centrality parameter δ is

$$
f(x)=e^{-\delta / 2} \sum_{i=0}^{\infty} \frac{(\delta / 2)^{i}}{i!} f_{v+2 i}(x)
$$

where $f_{k}(x)$ central χ_{k}^{2} density. This is a Poisson-weighted average of χ^{2} densities, so if

$$
\begin{aligned}
X \mid Y & \sim \chi_{V+2 Y}^{2} \\
Y & \sim \operatorname{Poisson}(\delta / 2)
\end{aligned}
$$

then X has a non-central χ_{ν}^{2} distribution with non-centrality parameter δ.

Composition Method

Suppose we want to sample from the density

$$
f(x)= \begin{cases}x / 2 & 0 \leq x<1 \\ 1 / 2 & 1 \leq x<2 \\ 3 / 2-x / 2 & 2 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

We can write f as the mixture

$$
f(x)=\frac{1}{4} f_{1}(x)+\frac{1}{2} f_{2}(x)+\frac{1}{4} f_{3}(x)
$$

with

$$
\begin{array}{ll}
f_{1}(x)=2 x & 0 \leq x<1 \\
f_{2}(x)=1 & 1 \leq x<2 \\
f_{3}(x)=6-2 x & 2 \leq x \leq 3
\end{array}
$$

and $f_{i}(x)=0$ for other values of x.
Generating from the f_{i} is straight forward. So we can sample from f using:
Generate I from $\{1,2,3\}$ with probabilities $1 / 4,1 / 2,1 / 4$.
Generate X from $f_{I}(x)$ by inversion.
This approach can be used in conjunction with other methods.
One example: The polar method requires sampling uniformly from the unit disk. This can be done by

- encloseing the unit disk in a regular hexagon
- using composition to sample uniformly from the hexagon until the result is in the unit disk.

Alias Method

Suppose $f(x)$ is a probability mass function on $\{1,2, \ldots, k\}$. Then $f(x)$ can be written as

$$
f(x)=\sum_{i=1}^{k} \frac{1}{k} f_{i}(x)
$$

where

$$
f_{i}(x)= \begin{cases}q_{i} & x=i \\ 1-q_{i} & x=a_{i} \\ 0 & \text { otherwise }\end{cases}
$$

for some $q_{i} \in[0,1]$ and some $a_{i} \in\{1,2, \ldots, k\}$.
Once values for q_{i} and a_{i} have been found, generation is easy:
Generate I uniform on $\{1, \ldots, k\}$
Generate U uniform on $[0,1]$
if $U \leq q_{I}$
return I
else
return a_{I}

The setup process used to compute the q_{i} and a_{i} is called leveling the histogram:

This is Walker's alias method.
A complete description is in Ripley (1987, Alg 3.13B).
The alias method is an example of trading off a setup cost for fast generation.
The alias method is used by the sample function for unequal probability sampling with replacement when there are enough reasonably probable values.
https://svn.r-project.org/R/trunk/src/main/random.c

Accept/Reject Methods

Sampling Uniformly from the Area Under a Density

Suppose h is a function such that

- $h(x) \geq 0$ for all x
- $\int h(x) d x<\infty$.

Let

$$
\mathscr{G}_{h}=\{(x, y): 0<y \leq h(x)\}
$$

The area of \mathscr{G}_{h} is

$$
\left|\mathscr{G}_{h}\right|=\int h(x) d x<\infty
$$

Suppose (X, Y) is uniformly distributed on \mathscr{G}_{h}. Then

- The conditional distribution of $Y \mid X=x$ is uniform on $(0, h(x))$.
- The marginal distribution of X has density $f_{X}(x)=h(x) / \int h(y) d y$:

$$
f_{X}(x)=\int_{0}^{h(x)} \frac{1}{\left|\mathscr{G}_{h}\right|} d y=\frac{h(x)}{\int h(y) d y}
$$

Rejection Sampling Using an Envelope Density

Suppose g is a density and $M>0$ is a real number such that

$$
h(x) \leq M g(x) \quad \text { for all } x
$$

or, equivalently,

$$
\sup \frac{h(x)}{g(x)} \leq M \quad \text { for all } x
$$

$M g(x)$ is an envelope for $h(x)$.

Suppose

- we want to sample from a density proportional to h
- we can find a density g and a constant M such that
- $M g(x)$ is an envelope for $h(x)$
- it is easy to sample from g

Then

- we can sample X from g and $Y \mid X=x$ from $\mathrm{U}(0, M g(x))$ to get a pair (X, Y) uniformly distributed on $\mathscr{G}_{M g}$
- we can repeat until the pair (X, Y) satisfies $Y \leq h(X)$
- the resulting pair (X, Y) is uniformly distributed on \mathscr{G}_{h}
- so the marginal density of the resulting X is $f_{X}(x)=h(x) / \int h(y) d y$.
- the number of draws from the uniform distribution on $\mathscr{G}_{M g}$ needed until we obtain a pair in \mathscr{G}_{h} is independent of the final pair
- the number of draws has a geometric distribution with success probability

$$
p=\frac{\left|\mathscr{G}_{h}\right|}{\left|\mathscr{G}_{M g}\right|}=\frac{\int h(y) d y}{M \int g(y) d y}=\frac{\int h(y) d y}{M}
$$

since g is a probability density. p is the acceptance probability.

- the expected number of draws needed is

$$
E[\text { number of draws }]=\frac{1}{p}=\frac{M \int g(y) d y}{\int h(y) d y}=\frac{M}{\int h(y) d y}
$$

- if h is also a proper density, then $p=1 / M$ and

$$
E[\text { number of draws }]=\frac{1}{p}=M
$$

The Basic Algorithm

The rejection, or accept/reject, sampling algorithm:
repeat
generate independent $X \sim g$ and $U \sim \mathrm{U}[0,1]$
until $U M g(X) \leq h(X)$
return X

Alternate forms of the test:

$$
\begin{aligned}
U & \leq \frac{h(X)}{M g(X)} \\
\log (U) & \leq \log (h(X))-\log (M)-\log (g(X))
\end{aligned}
$$

Care may be needed to ensure numerical stability.

Example: Normal Distribution with Cauchy Envelope

Suppose

- $h(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ is the standard normal density
- $g(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ is the standard Cauchy density

Then

$$
\frac{h(x)}{g(x)}=\sqrt{\frac{\pi}{2}}\left(1+x^{2}\right) e^{-x^{2} / 2} \leq \sqrt{\frac{\pi}{2}}\left(1+1^{2}\right) e^{-1^{2} / 2}=\sqrt{2 \pi e^{-1}}=1.520347
$$

The resulting accept/reject algorithm is

repeat

generate independent standard Cauchy X and $U \sim \mathrm{U}[0,1]$
until $U \leq \frac{e^{1 / 2}}{2}\left(1+X^{2}\right) e^{-X^{2} / 2}$
return X

Squeezing

Performance can be improved by squeezing:

- Accept if point is inside the triangle:

- Squeezing can speed up generation.
- Squeezing will complicate the code (making errors more likely).

Rejection Sampling for Discrete Distributions

For simplicity, just consider integer valued random variables.

- If h and g are probability mass functions on the integers and $h(x) / g(x)$ is bounded, then the same algorithm can be used.
- If p is a probability mass function on the integers then

$$
h(x)=p(\lfloor x\rfloor)
$$

is a probability density.
If X has density h, then $Y=\lfloor X\rfloor$ has PMF p.

Example: Poisson Distribution with Cauchy Envelope

Suppose

- p is the PMF of a Poisson distribution with mean 5
- g is the Cauchy density with location 5 and scale 3 .
- $h(x)=p(\lfloor x\rfloor)$

Then, by careful analysis or graphical examination, $h(x) \leq 2 g(x)$ for all x.

Comments

- The Cauchy density is often a useful envelope.
- More efficient choices are often possible.
- Location and scale need to be chosen appropriately.
- If the target distribution is non-negative, a truncated Cauchy can be used.
- Careful analysis is needed to produce generators for a parametric family (e.g. all Poisson distributions).
- Graphical examination can be very helpful in guiding the analysis.
- Carefully tuned envelopes combined with squeezing can produce very efficient samplers.
- Errors in tuning and squeezing will produce garbage.

Ratio-of-Uniforms Method

Basic Method

- Introduced by Kinderman and Monahan (1977).
- Suppose
$-h(x) \geq 0$ for all x
- $\int h(x) d x<\infty$
- Let (V, U) be uniform on

$$
\mathscr{C}_{h}=\{(v, u): 0<u \leq \sqrt{h(v / u)}\}
$$

Then $X=V / U$ has density $f(x)=h(x) / \int h(y) d y$.

- For $h(x)=e^{-x^{2} / 2}$ the region \mathscr{C}_{h} looks like

- The region is bounded.
- The region is convex.

Properties

- The region \mathscr{C}_{h} is convex if h is \log concave.
- The region \mathscr{C}_{h} is bounded if $h(x)$ and $x^{2} h(x)$ are bounded.
- Let

$$
\begin{aligned}
u^{*} & =\max _{x} \sqrt{h(x)} \\
v_{-}^{*} & =\min _{x} x \sqrt{h(x)} \\
v_{+}^{*} & =\max _{x} x \sqrt{h(x)}
\end{aligned}
$$

Then \mathscr{C}_{h} is contained in the rectangle $\left[v_{-}^{*}, v_{+}^{*}\right] \times\left[0, u^{*}\right]$.

- The simple Ratio-of-Uniforms algorithm based on rejection sampling from the enclosing rectangle is
repeat
generate $U \sim \mathrm{U}\left[0, u^{*}\right]$
generate $V \sim \mathrm{U}\left[v_{-}^{*}, v_{+}^{*}\right]$
until $U^{2} \leq h(V / U)$
return $X=V / U$
- If $h=e^{-x^{2} / 2}$ then

$$
\begin{aligned}
u^{*} & =1 \\
v_{-}^{*} & =-\sqrt{2 e^{-1}} \\
v_{+}^{*} & =\sqrt{2 e^{-1}}
\end{aligned}
$$

and the expected number of draws is

$$
\frac{\text { area of rectangle }}{\text { area of } \mathscr{C}_{h}}=\frac{u^{*}\left(v_{+}^{*}-v_{-}^{*}\right)}{\frac{1}{2} \int h(x) d x}=\frac{2 \sqrt{2 e^{-1}}}{\sqrt{\pi / 2}}=1.368793
$$

- Various squeezing methods are possible.
- Other approaches to sampling from \mathscr{C}_{h} are also possible.

Relation to Rejection Sampling

Ratio of Uniforms with rejection sampling from the enclosing rectangle is equivalent to ordinary rejection sampling using an envelope density

$$
g(x) \propto \begin{cases}\left(\frac{v_{-}^{*}}{x}\right)^{2} & \text { if } x<v_{-}^{*} / u^{*} \\ \left(u^{*}\right)^{2} & \text { if } v_{-}^{*} / u^{*} \leq x \leq v_{+}^{*} / u^{*} \\ \left(\frac{v_{+}^{*}}{x}\right)^{2} & \text { if } x>v_{+}^{*} / u^{*}\end{cases}
$$

This is sometimes called a table mountain density

Generalizations

A more general form of the basic result: For any μ and any $r>0$ let

$$
\mathscr{C}_{h, \mu, r}=\left\{(v, u): 0<u \leq h\left(v / u^{r}+\mu\right)^{1 /(r+1)}\right\}
$$

If (U, V) is uniform on $\mathscr{C}_{h, \mu, r}$, then $X=V / U^{r}+\mu$ has density $f(x)=h(x) / \int h(y) d y$.

- μ and r can be chosen to minimize the rejection probability.
- $r=1$ seems adequate for most purposes.
- Choosing μ equal to the mode of h can help.
- For the Gamma distribution with $\alpha=30$,

Adaptive Rejection Sampling

First introduced by Gilks and Wild (1992).

Convexity

- A set C is convex if $\lambda x+(1-\lambda) y \in C$ for all $x, y \in C$ and $\lambda \in[0,1]$.
- C can be a subset or \mathbb{R}, or \mathbb{R}^{n}, or any other set where the convex combination

$$
\lambda x+(1-\lambda) y
$$

makes sense.

- A real-valued function f on a convex set C is convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

$x, y \in C$ and $\lambda \in[0,1]$.

- $f(x)$ is concave if $-f(x)$ is convex, i.e. if

$$
f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y)
$$

$x, y \in C$ and $\lambda \in[0,1]$.

- A concave function is always below its tangent.

Log Concave Densities

- A density f is \log concave if $\log f$ is a concave function
- Many densities are log concave:
- normal densities
- $\operatorname{Gamma}(\alpha, \beta)$ with $\alpha \geq 1$
$-\operatorname{Beta}(\alpha, \beta)$ with $\alpha \geq 1$ and $\beta \geq 1$.
- Some are not but may be related to ones that are: The t densities are not, but if

$$
\begin{aligned}
X \mid Y=y & \sim \mathrm{~N}(0,1 / y) \\
Y & \sim \operatorname{Gamma}(\alpha, \beta)
\end{aligned}
$$

then

- the marginal distribution of X is t for suitable choice of β
- and the joint distribution of X and Y has density

$$
f(x, y) \propto \sqrt{y} e^{-\frac{y}{2} x^{2}} y^{\alpha-1} e^{-y / \beta}=y^{\alpha-1 / 2} e^{-y\left(\beta+x^{2} / 2\right)}
$$

which is \log concave for $\alpha \geq 1 / 2$

Tangent Approach

Suppose

- f is log concave
- f has an interior mode

Need log density, derivative at two points, one each side of the mode

- piece-wise linear envelope of log density
- piece-wise exponential envelope of density
- if first point is not accepted, can use to make better envelope

Secant Approach

- Need three points to start
- Do not need derivatives
- Get larger rejection rates
- Both approaches need numerical care

Notes and Comments

- Many methods depend on properties of a particular distribution.
- Inversion is one general method that can often be used.
- Other general-purpose methods are
- rejection sampling
- adaptive rejection sampling
- ratio-of-uniforms
- Some references:
- Devroye, L. (1986). Non-Uniform Random Variate Generation, SpringerVerlag, New York.
- Gentle, J. E. (2003). Random Number Generation and Monte Carlo Methods, Springer-Verlag, New York.
- Hörmann, W., Leydold, J., and Derflinger, G. (2004). Automatic Nonuniform Random Variate Generation, Springer-Verlag, New York.

A Recent Publication

Karney, C.F.F. (2016). "Sampling Exactly from the Normal Distribution." ACM Transactions on Mathematical Software 42 (1).

Random Variate Generators in \mathbf{R}

- Generators for most standard distributions are available
- rnorm: normal
- rgamma: gamma
-rt: t
- rpois: Poisson
- etc.
- Most use standard algorithms from the literature.
- Source code is in src/nmath/ in the source tree,
https://svn.r-project.org/R/trunk
- The normal generator can be configured by RNGkind. Options are
- Kinderman-Ramage
- Buggy Kinderman-Ramage (available for reproducing results)
- Ahrens-Dieter
- Box-Muller
- Inversion (the current default)
- user-supplied

Generating Random Vectors and Matrices

- Sometimes generating random vectors can be reduced to a series of univariate generations.
- One approach is conditioning:

$$
f(x, y, z)=f_{Z \mid X, Y}(z \mid x, y) f_{Y \mid X}(y \mid x) f_{X}(x)
$$

So we can generate

- X from $f_{X}(x)$
- $Y \mid X=x$ from $f_{Y \mid X}(y \mid x)$
$-Z \mid X=x, Y=y$ from $f_{Z \mid X, Y}(z \mid x, y)$
- One example: $\left(X_{1}, X_{2}, X_{3}\right) \sim \operatorname{Multinomial}\left(n, p_{1}, p_{2}, p_{3}\right)$ Then

$$
\begin{aligned}
X_{1} & \sim \operatorname{Binomial}\left(n, p_{1}\right) \\
X_{2} \mid X_{1}= & x_{1}
\end{aligned} \sim \operatorname{Binomial}\left(n-x_{1}, p_{2} /\left(p_{2}+p_{3}\right)\right)
$$

- Another example: X, Y bivariate normal $\left(\mu_{X}, \mu_{Y}, \sigma_{X}^{2}, \sigma_{Y}^{2}, \rho\right)$. Then

$$
\begin{aligned}
X & \sim \mathrm{~N}\left(\mu_{X}, \sigma_{X}^{2}\right) \\
Y \mid X=x & \sim \mathrm{~N}\left(\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right), \sigma_{Y}^{2}\left(1-\rho^{2}\right)\right)
\end{aligned}
$$

- For some distributions special methods are available.
- Some general methods extend to multiple dimensions.

Multivariate Normal Distribution

- Marginal and conditional distributions are normal; conditioning can be used in general.
- Alternative: use linear transformations.

Suppose Z_{1}, \ldots, Z_{d} are independent standard normals, $\mu_{1}, \ldots \mu_{d}$ are constants, and A is a constant $d \times d$ matrix. Let

$$
Z=\left[\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{d}
\end{array}\right] \quad \mu=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{d}
\end{array}\right]
$$

and set

$$
X=\mu+A Z
$$

Then X is multivariate normal with mean vector μ and covariance matrix $A A^{T}$,

$$
X \sim \operatorname{MVN}_{d}\left(\mu, A A^{T}\right)
$$

- To generate $X \sim \operatorname{MVN}_{d}(\mu, \Sigma)$, we can
- find a matrix A such that $A A^{T}=\Sigma$
- generate elements of Z as independent standard normals
- compute $X=\mu+A Z$
- The Cholesky factorization is one way to choose A.
- If we are given Σ^{-1}, then we can
- decompose $\Sigma^{-1}=L L^{T}$
- solve $L^{T} Y=Z$
- compute $X=\mu+Y$

Spherically Symmetric Distributions

- A joint distribution with density of the form

$$
f(x)=g\left(x^{T} x\right)=g\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)
$$

is called spherically symmetric (about the origin).

- If the distribution of X is spherically symmetric then

$$
\begin{aligned}
& R=\sqrt{X^{T} X} \\
& Y=X / R
\end{aligned}
$$

are independent,

- Y is uniformly distributed on the surface of the unit sphere.
$-R$ has density proportional to $g(r) r^{d-1}$ for $r>0$.
- We can generate $X \sim f$ by
- generating $Z \sim \operatorname{MVN}_{d}(0, I)$ and setting $Y=Z / \sqrt{Z^{T} Z}$
- generating R from the density proportional to $g(r) r^{d-1}$ by univariate methods.

Elliptically Contoured Distributions

- A density f is elliptically contoured if

$$
f(x)=\frac{1}{\sqrt{\operatorname{det} \Sigma}} g\left((x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

for some vector μ and symmetric positive definite matrix Σ.

- Suppose Y has spherically symmetric density $g\left(y^{T} y\right)$ and $A A^{T}=\Sigma$. Then $X=\mu+A Y$ has density f.

Wishart Distribution

- Suppose $X_{1}, \ldots X_{n}$ are independent and $X_{i} \sim \operatorname{MVN}_{d}\left(\mu_{i}, \Sigma\right)$. Let

$$
W=\sum_{i=1}^{n} X_{i} X_{i}^{T}
$$

Then W has a non-central Wishart distribution $\mathrm{W}(n, \Sigma, \Delta)$ where $\Delta=$ $\sum \mu_{i} \mu_{i}^{T}$.

- If $X_{i} \sim \operatorname{MVN}_{d}(\mu, \Sigma)$ and

$$
S=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}
$$

is the sample covariance matrix, then $(n-1) S \sim \mathrm{~W}(n-1, \Sigma, 0)$.

- Suppose $\mu_{i}=0, \Sigma=A A^{T}$, and $X_{i}=A Z_{i}$ with $Z_{i} \sim \operatorname{MVN}_{d}(0, I)$. Then $W=A V A^{T}$ with

$$
V=\sum_{i=1}^{n} Z_{i} Z_{i}^{T}
$$

- Bartlett decomposition: In the Cholesky factorization of V
- all elements are independent
- the elements below the diagonal are standard normal
- the square of the i-th diagonal element is χ_{n+1-i}^{2}
- If $\Delta \neq 0$ let $\Delta=B B^{T}$ be its Cholesky factorization, let b_{i} be the columns of B and let Z_{1}, \ldots, Z_{n} be independent $\operatorname{MVN}_{d}(0, I)$ random vectors. Then for $n \geq d$

$$
W=\sum_{i=1}^{d}\left(b_{i}+A Z_{i}\right)\left(b_{i}+A Z_{i}\right)^{T}+\sum_{i=d+1}^{n} A Z_{i} Z_{i}^{T} A^{T} \sim \mathrm{~W}(n, \Sigma, \Delta)
$$

Rejection Sampling

- Rejection sampling can in principle be used in any dimensions
- A general envelope that is sometimes useful is based on generating X as

$$
X=b+A Z / Y
$$

where

- Z and Y are independent
$-Z \sim \operatorname{MVN}_{d}(0, I)$
- $Y^{2} \sim \operatorname{Gamma}(\alpha, 1 / \alpha)$, a scalar
- b is a vector of constants
$-A$ is a matrix of constants
This is a kind of multivariate t random vector.
- This often works in modest dimensions.
- Specially tailored envelopes can sometimes be used in higher dimensions.
- Without special tailoring, rejection rates tend to be too high to be useful.

Ratio of Uniforms

- The ratio-of-uniforms method also works in \mathbb{R}^{d} : Suppose
- $h(x) \geq 0$ for all x
$-\int h(x) d x<\infty$
Let

$$
\mathscr{C}_{h}=\left\{(v, u): v \in \mathbb{R}^{d}, 0<u \leq \sqrt[d+1]{h(v / u+\mu)}\right\}
$$

for some μ. If (V, U) is uniform on \mathscr{C}_{h}, then $X=V / U+\mu$ has density $f(x)=h(x) / \int h(y) d y$.

- If $h(x)$ and $\|x\|^{d+1} h(x)$ are bounded, then \mathscr{C}_{h} is bounded.
- If $h(x)$ is \log concave then \mathscr{C}_{h} is convex.
- Rejection sampling from a bounding hyper rectangle works in modest dimensions.
- It will not work for dimensions larger than 8 or so:
- The shape of \mathscr{C}_{h} is vaguely spherical.
- The volume of the unit sphere in d dimensions is

$$
V_{d}=\frac{\pi^{d / 2}}{\Gamma(d / 2+1)}
$$

- The ratio of this volume to the volume of the enclosing hyper cube, 2^{d} tends to zero very fast:

Order Statistics

- The order statistics for a random sample X_{1}, \ldots, X_{n} from F are the ordered values

$$
X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}
$$

- We can simulate them by ordering the sample.
- Faster $O(n)$ algorithms are available for individual order statistics, such as the median.
- If $U_{(1)} \leq \cdots \leq U_{(n)}$ are the order statistics of a random sample from the $\mathrm{U}[0,1]$ distribution, then

$$
\begin{aligned}
X_{(1)} & =F^{-}\left(U_{(1)}\right) \\
& \vdots \\
X_{(n)} & =F^{-}\left(U_{(n)}\right)
\end{aligned}
$$

are the order statistics of a random sample from F.

- For a sample of size n the marginal distribution of $U_{(k)}$ is

$$
U_{(k)} \sim \operatorname{Beta}(k, n-k+1) .
$$

- Suppose $k<\ell$.
- Then $U_{(k)} / U_{(\ell)}$ is independent of $U_{(\ell)}, \ldots, U_{(n)}$
- $U_{(k)} / U_{(\ell)}$ has a $\operatorname{Beta}(k, \ell-k)$ distribution.

We can use this to generate any subset or all order statistics.

- Let V_{1}, \ldots, V_{n+1} be independent exponential random variables with the same mean and let

$$
W_{k}=\frac{V_{1}+\cdots+V_{k}}{V_{1}+\cdots+V_{n+1}}
$$

Then W_{1}, \ldots, W_{n} has the same joint distribution as $U_{(1)}, \ldots, U_{(n)}$.

Homogeneous Poisson Process

- For a homogeneous Poisson process with rate λ
- The number of points $N(A)$ in a set A is Poisson with mean $\lambda|A|$.
- If A and B are disjoint then $N(A)$ and $N(B)$ are independent.
- Conditional on $N(A)=n$, the n points are uniformly distributed on A.
- We can generate a Poisson process on $[0, t]$ by generating exponential variables T_{1}, T_{2}, \ldots with rate λ and computing

$$
S_{k}=T_{1}+\cdots+T_{k}
$$

until $S_{k}>t$. The values S_{1}, \ldots, S_{k-1} are the points in the Poisson process realization.

Inhomogeneous Poisson Processes

- For an inhomogeneous Poisson process with rate $\lambda(x)$
- The number of points $N(A)$ in a set A is Poisson with mean $\int_{A} \lambda(x) d x$.
- If A and B are disjoint then $N(A)$ and $N(B)$ are independent.
- Conditional on $N(A)=n$, the n points in A are a random sample from a distribution with density $\lambda(x) / \int_{A} \lambda(y) d y$.
- To generate an inhomogeneous Poisson process on $[0, t]$ we can
- let $\Lambda(s)=\int_{0}^{s} \lambda(x) d x$
- generate arrival times S_{1}, \ldots, S_{N} for a homogeneous Poisson process with rate one on $[0, \Lambda(t)]$
- Compute arrival times of the inhomogeneous process as

$$
\Lambda^{-1}\left(S_{1}\right), \ldots, \Lambda^{-1}\left(S_{N}\right)
$$

- If $\lambda(x) \leq M$ for all x, then we can generate an inhomogeneous Poisson process with rate $\lambda(x)$ by thinning:
- generate a homogeneous Poisson process with rate M to obtain points X_{1}, \ldots, X_{N}.
- independently delete each point X_{i} with probability $1-\lambda\left(X_{i}\right) / M$.

The remaining points form a realization of an inhomogeneous Poisson process with rate $\lambda(x)$.

- If N_{1} and N_{2} are independent inhomogeneous Poisson processes with rates $\lambda_{1}(x)$ and $\lambda_{2}(x)$, then their superposition $N_{1}+N_{2}$ is an inhomogeneous Poisson process with rate $\lambda_{1}(x)+\lambda_{2}(x)$.

Other Processes

- Many other processes can be simulated from their definitions
- Cox processes (doubly stochastic Poisson process)
- Poisson cluster processes
- ARMA, ARIMA processes
- GARCH processes
- Continuous time processes, such as Brownian motion and diffusions, require discretization of time.
- Other processes may require Markov chain methods
- Ising models
- Strauss process
- interacting particle systems

Variance Reduction

Most simulations involve estimating integrals or expectations:

$$
\begin{array}{lr}
\theta=\int h(x) f(x) d x & \text { mean } \\
\theta=\int 1_{\{X \in A\}} f(x) d x & \text { probability } \\
\theta=\int(h(x)-E[h(X)])^{2} f(x) d x & \text { variance }
\end{array}
$$

- The crude simulation, or crude Monte Carlo, or naïve Monte Carlo, approach:
- Sample X_{1}, \ldots, X_{N} independently from f
- Estimate θ by $\widehat{\theta}_{N}=\frac{1}{N} \sum h\left(X_{i}\right)$.

If $\sigma^{2}=\operatorname{Var}(h(X))$, then $\operatorname{Var}\left(\widehat{\theta}_{N}\right)=\frac{\sigma^{2}}{N}$.

- To reduce the error we can
- increase N : requires CPU time and clock time; diminishing returns.
- try to reduce σ^{2} : requires thinking time, programming effort.
- Methods that reduce σ^{2} are called
- tricks
- swindles
- Monte Carlo methods

Control Variates

Suppose we have a random variable Y with mean θ and a correlated random variable W with known mean $E[W]$. Then for any constant b

$$
\widetilde{Y}=Y-b(W-E[W])
$$

has mean θ.

- W is called a control variate.
- Choosing $b=1$ often works well if the correlation is positive and θ and $E[W]$ are close.
- The value of b that minimizes the variance of \widetilde{Y} is $\operatorname{Cov}(Y, W) / \operatorname{Var}(W)$.
- We can use a guess or a pilot study to estimate b.
- We can also estimate b from the same data used to compute Y and W.
- This is related to the regression estimator in sampling.

Example

Suppose we want to estimate the expected value of the sample median T for a sample of size 10 from a $\operatorname{Gamma}(3,1)$ population.

- Crude estimate:

$$
Y=\frac{1}{N} \sum T_{i}
$$

- Using the sample mean as a control variate with $b=1$:

```
                                    \widehat { Y } = \frac { 1 } { N } \sum ( T _ { i } - \overline { X } _ { i } ) + E [ \overline { X } _ { i } ] = \frac { 1 } { N } \sum ( T _ { i } - \overline { X } _ { i } ) + \alpha
> x <- matrix(rgamma(10000, 3), ncol = 10)
> md <- apply(x, 1, median)
> mn <- apply(x, 1, mean)
> mean (md)
[1] 2.711137
> mean(md - mn) + 3
[1] 2.694401
> sd(md)
[1] 0.6284996
> sd(md-mn)
[1] 0.3562479
```

The standard deviation is cut roughly in half. The optimal b seems close to 1 .

Control Variates and Probability Estimates

- Suppose T is a test statistic and we want to estimate $\theta=P(T \leq t)$.
- Crude Monte Carlo:

$$
\widehat{\theta}=\frac{\#\left\{T_{i} \leq t\right\}}{N}
$$

- Suppose S is "similar" to T and $P(S \leq t)$ is known. Use

$$
\widehat{\theta}=\frac{\#\left\{T_{i} \leq t\right\}-\#\left\{S_{i} \leq t\right\}}{N}+P(S \leq t)=\frac{1}{N} \sum Y_{i}+P(S \leq t)
$$

with $Y_{i}=1_{\left\{T_{i} \leq t\right\}}-1_{\left\{S_{i} \leq t\right\}}$.

- If S mimics T, then Y_{i} is usually zero.
- Could use this to calibrate

$$
T=\frac{\text { median }}{\text { interquartile range }}
$$

for normal data using the t statistic.

Importance Sampling

- Suppose we want to estimate

$$
\theta=\int h(x) f(x) d x
$$

for some density f and some function h.

- Crude Mote Carlo samples X_{1}, \ldots, X_{N} from f and uses

$$
\widehat{\boldsymbol{\theta}}=\frac{1}{N} \sum h\left(X_{i}\right)
$$

If the region where h is large has small probability under f then this can be inefficient.

- Alternative: Sample $X_{1}, \ldots X_{n}$ from g that puts more probability near the "important" values of x and compute

$$
\widetilde{\theta}=\frac{1}{N} \sum h\left(X_{i}\right) \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)}
$$

Then, if $g(x)>0$ when $h(x) f(x) \neq 0$,

$$
E[\widetilde{\theta}]=\int h(x) \frac{f(x)}{g(x)} g(x) d x=\int h(x) f(x) d x=\theta
$$

and

$$
\operatorname{Var}(\widetilde{\boldsymbol{\theta}})=\frac{1}{N} \int\left(h(x) \frac{f(x)}{g(x)}-\theta\right)^{2} g(x) d x=\frac{1}{N}\left(\int\left(h(x) \frac{f(x)}{g(x)}\right)^{2} g(x) d x-\theta^{2}\right)
$$

The variance is minimized by $g(x) \propto|h(x) f(x)|$

Importance Weights

- Importance sampling is related to stratified and weighted sampling in sampling theory.
- The function $w(x)=f(x) / g(x)$ is called the weight function.
- Alternative estimator:

$$
\theta^{*}=\frac{\sum h\left(X_{i}\right) w\left(X_{i}\right)}{\sum w\left(X_{i}\right)}
$$

This is useful if f or g or both are unnormalized densities.

- Importance sampling can be useful for computing expectations with respect to posterior distributions in Bayesian analyses.
- Importance sampling can work very well if the weight function is bounded.
- Importance sampling can work very poorly if the weight function is unbounded-it is easy to end up with infinite variances.

Computing Tail Probabilities

- Suppose $\theta=P(X \in R)$ for some region R.
- Suppose we can find g such that $f(x) / g(x)<1$ on R. Then

$$
\widetilde{\theta}=\frac{1}{N} \sum 1_{R}\left(X_{i}\right) \frac{f\left(X_{i}\right)}{g\left(X_{i}\right)}
$$

and

$$
\begin{aligned}
\operatorname{Var}(\widetilde{\theta}) & =\frac{1}{N}\left(\int_{R}\left(\frac{f(x)}{g(x)}\right)^{2} g(x) d x-\theta^{2}\right) \\
& =\frac{1}{N}\left(\int_{R} \frac{f(x)}{g(x)} f(x) d x-\theta^{2}\right) \\
& <\frac{1}{N}\left(\int_{R} f(x) d x-\theta^{2}\right) \\
& =\frac{1}{N}\left(\theta-\theta^{2}\right)=\operatorname{Var}(\widehat{\theta})
\end{aligned}
$$

- For computing $P(X>2)$ where X has a standard Cauchy distribution we can use a shifted distribution:

```
> y <- rcauchy(10000,3)
> tt <- ifelse(y > 2, 1, 0) * dcauchy(y) / dcauchy(y,3)
> mean(tt)
[1] 0.1490745
> sd(tt)
[1] 0.1622395
```

- The asymptotic standard deviation for crude Monte Carlo is approximately

```
> sqrt(mean(tt) * (1 - mean(tt)))
[1] 0.3561619
```

- A tilted density $g(x) \propto f(x) e^{\beta x}$ can also be useful.

Antithetic Variates

- Suppose S and T are two unbiased estimators of θ with the same variance σ^{2} and correlation ρ, and compute

$$
V=\frac{1}{2}(S+T)
$$

Then

$$
\operatorname{Var}(V)=\frac{\sigma^{2}}{4}(2+2 \rho)=\frac{\sigma^{2}}{2}(1+\rho)
$$

- Choosing $\rho<0$ reduces variance.
- Such negatively correlated pairs are called antithetic variates.
- Suppose we can choose between generating independent T_{1}, \ldots, T_{N}

$$
\widehat{\theta}=\frac{1}{N} \sum_{i=1}^{N} T_{i}
$$

or independent pairs $\left(S_{1}, T_{1}\right), \ldots,\left(S_{N / 2}, T_{N / 2}\right)$ and computing

$$
\widetilde{\boldsymbol{\theta}}=\frac{1}{N} \sum_{i=1}^{N / 2}\left(S_{i}+T_{i}\right)
$$

If $\rho<0$, then $\operatorname{Var}(\widetilde{\boldsymbol{\theta}})<\operatorname{Var}(\widehat{\boldsymbol{\theta}})$.

- If $T=f(U), U \sim \mathrm{U}[0,1]$, and f is monotone, then $S=f(1-U)$ is negatively correlated with T and has the same marginal distribution.
- If inversion is used to generate variates, computing T from U_{1}, \ldots and S from $1-U_{1}, \ldots$ often works.
- Some uniform generators provide an option in the seed to switch between returning U_{i} and $1-U_{i}$.

Example

For estimating the expected value of the median for samples of size 10 from the $\operatorname{Gamma}(3,1)$ distribution:

```
> u <- matrix(runif(5000), ncol = 10)
> xl <- qgamma(u, 3)
> x2 <- qgamma(1 - u, 3)
> md1 <- apply(x1, 1, median)
> md2 <- apply(x2, 1, median)
> sqrt(2) * sd((md1 + md2) / 2)
[1] 0.09809588
```

Control variates helps further a bit but need $b=0.2$ or so.

```
> mn1 <- apply(x1, 1, mean)
> mn2 <- apply(x2, 1, mean)
> sqrt(2) * sd((md1 + md2 - 0.2 * (mn1 + mn2)) / 2)
[1] 0.09216334
```


Latin Hypercube Sampling

- Suppose we want to compute

$$
\theta=E\left[f\left(U_{1}, \ldots, U_{d}\right)\right]
$$

with $\left(U_{1}, \ldots, U_{d}\right)$ uniform on $[0,1]^{d}$.

- For each i
- independently choose permutation π_{i} of $\{1, \ldots, N\}$
- generate $U_{i}^{(j)}$ uniformly on $\left[\pi_{i}(j) / N,\left(\pi_{i}(j)+1\right) / N\right]$.
- For $d=2$ and $N=5$:

This is a random Latin square design.

- In many cases this reduces variance compared to unrestricted random sampling (Stein, 1987; Avramidis and Wilson, 1995; Owen, 1992, 1998)

Common Variates and Blocking

- Suppose we want to estimate $\theta=E[S]-E[T]$
- One approach is to chose independent samples T_{1}, \ldots, T_{N} and S_{1}, \ldots, S_{M} and compute

$$
\widehat{\boldsymbol{\theta}}=\frac{1}{M} \sum_{i=1}^{M} S_{i}-\frac{1}{N} \sum_{i=1}^{N} T_{i}
$$

- Suppose $S=S(X)$ and $T=T(X)$ for some X. Instead of generating independent X values for S and T we may be able to
- use the common X values to generate pairs $\left(S_{1}, T_{1}\right), \ldots,\left(S_{N}, T_{N}\right)$
- compute

$$
\widetilde{\boldsymbol{\theta}}=\frac{1}{N} \sum_{i=1}^{N}\left(S_{i}-T_{i}\right)
$$

- This use of paired comparisons is a form of blocking.
- This idea extends to comparisons among more than two statistics.
- In simulations, we can often do this by using the same random variates to generate S_{i} and T_{i}. This is called using common variates.
- This is easiest to do if we are using inversion; this, and the ability to use antithetic variates, are two strong arguments in favor of inversion.
- Using common variates may be harder when rejection-based methods are involved.
- In importance sampling, using

$$
\theta^{*}=\frac{\sum h\left(X_{i}\right) w\left(X_{i}\right)}{\sum w\left(X_{i}\right)}
$$

can be viewed as a paired comparison; for some forms of h is can have lower variance than the estimator that does not normalize by the sum of the weights.

Conditioning or Rao-Blackwellization

- Suppose we want to estimate $\theta=E[X]$
- If X, W are jointly distributed, then

$$
\theta=E[X]=E[E[X \mid W]]
$$

and

$$
\operatorname{Var}(X)=E[\operatorname{Var}(X \mid W)]+\operatorname{Var}(E[X \mid W]) \geq \operatorname{Var}(E[X \mid W])
$$

- Suppose we can compute $E[X \mid W]$. Then we can
- generate W_{1}, \ldots, W_{N}
- compute

$$
\widetilde{\theta}=\frac{1}{N} \sum E\left[X \mid W_{i}\right]
$$

- This is often useful in Gibbs sampling.
- Variance reduction is not guaranteed if W_{1}, \ldots, W_{N} are not independent.
- Conditioning is particularly useful for density estimation: If we can compute $f_{X \mid W}(x \mid w)$ and generate W_{1}, \ldots, W_{N}, then

$$
\widehat{f}_{X}(x)=\frac{1}{N} \sum f_{X \mid W}\left(x \mid W_{i}\right)
$$

is much more accurate than, say, a kernel density estimate based on a sample X_{1}, \ldots, X_{N}.

Example

Suppose we want to estimate $\theta=P(X>t)$ where $X=Z / W$ with Z, W independent, $Z \sim \mathrm{~N}(0,1)$ and $W>0$. Then

$$
P(X>t \mid W=w)=P(Z>t w)=1-\Phi(t w)
$$

So we can estimate θ by generating W_{1}, \ldots, W_{N} and computing

$$
\widetilde{\theta}=\frac{1}{N} \sum\left(1-\Phi\left(t W_{i}\right)\right)
$$

Independence Decomposition

- Suppose X_{1}, \ldots, X_{n} is a random sample from a $\mathrm{N}(0,1)$ distribution and

$$
\widetilde{X}=\operatorname{median}\left(X_{1}, \ldots, X_{n}\right)
$$

We want to estimate $\theta=\operatorname{Var}(\widetilde{X})=E\left[\widetilde{X}^{2}\right]$.

- Crude Monte Carlo estimate: generate independent medians $\widetilde{X}_{1}, \ldots, \widehat{X}_{N}$ and compute

$$
\widehat{\theta}=\frac{1}{N} \sum \widetilde{X}_{i}^{2}
$$

- Alternative: Write

$$
\widetilde{X}=(\widetilde{X}-\bar{X})+\bar{X}
$$

$(\widetilde{X}-\bar{X})$ and \bar{X} are independent, for example by Basu's theorem. So

$$
E\left[\widetilde{X}^{2} \mid \bar{X}\right]=\bar{X}^{2}+E\left[(\widetilde{X}-\bar{X})^{2}\right]
$$

and

$$
\theta=\frac{1}{n}+E\left[(\widetilde{X}-\bar{X})^{2}\right]
$$

- So we can estimate θ by generating pairs $\left(\widetilde{X}_{i}, \bar{X}_{i}\right)$ and computing

$$
\widetilde{\theta}=\frac{1}{n}+\frac{1}{N} \sum\left(\widetilde{X}_{i}-\bar{X}_{i}\right)^{2}
$$

- Generating these pairs may be more costly than generating medians alone.

Example

```
> x <- matrix(rnorm(10000), ncol = 10)
> mn <- apply(x, 1, mean)
> md <- apply(x, 1, median)
> # estimates:
> mean(md^2)
[1] 0.1446236
> 1 / 10 + mean ((md - mn)^2)
[1] 0.1363207
> # asymptotic standard errors:
> sd(md^2)
[1] 0.2097043
> sd((md - mn) ^2)
[1] 0.0533576
```


Princeton Robustness Study

D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey, Robustness of Location Estimates, Princeton University Press, 1972.

- Suppose X_{1}, \ldots, X_{n} are a random sample from a symmetric density

$$
f(x-m) .
$$

- We want an estimator $T\left(X_{1}, \ldots, X_{n}\right)$ of m that is
- accurate
- robust (works well for a wide range of f 's)
- Study considers many estimators, various different distributions.
- All estimators are unbiased and affine equivariant, i.e.

$$
\begin{aligned}
E[T] & =m \\
T\left(a X_{1}+b, \ldots, a X_{n}+b\right) & =a T\left(X_{1}, \ldots, X_{n}\right)+b
\end{aligned}
$$

for any constants a, b. We can thus take $m=0$ without loss of generality.

Distributions Used in the Study

- Distributions considered were all of the form

$$
X=Z / V
$$

with $Z \sim \mathrm{~N}(0,1), V>0$, and Z, V independent.

- Some examples:
- $V \equiv 1$ gives $X \sim \mathrm{~N}(0,1)$.
- Contaminated normal:

$$
V= \begin{cases}c & \text { with probability } \alpha \\ 1 & \text { with probability } 1-\alpha\end{cases}
$$

- Double exponential: $V \sim f_{V}(v)=v^{-3} e^{-v^{-2} / 2}$
- Cauchy: $V=|Y|$ with $Y \sim \mathrm{~N}(0,1)$.
- $t_{v}: V \sim \sqrt{\chi_{v}^{2} / v}$.
- The conditional distribution $X \mid V=v$ is $\mathrm{N}\left(0,1 / v^{2}\right)$.
- Study generates X_{i} as Z_{i} / V_{i}.
- Write $X_{i}=\widehat{X}+\widehat{S} C_{i}$ with

$$
\widehat{X}=\frac{\sum X_{i} V_{i}^{2}}{\sum V_{i}^{2}} \quad \widehat{S}^{2}=\frac{1}{n-1} \sum\left(X_{i}-\widehat{X}\right)^{2} V_{i}^{2}
$$

Then

$$
T(X)=\widehat{X}+\widehat{S} T(C)
$$

- Can show that $\widehat{X}, \widehat{S}, C$ are conditionally independent given V.

Estimating Variances

- Suppose we want to estimate $\theta=\operatorname{Var}(T)=E\left[T^{2}\right]$. Then

$$
\begin{aligned}
\theta & =E\left[(\widehat{X}+\widehat{S} T(C))^{2}\right] \\
& =E\left[\widehat{X}^{2}+2 \widehat{S} \widehat{X} T(C)+\widehat{S}^{2} T(C)^{2}\right] \\
& =E\left[E\left[\widehat{X}^{2}+2 \widehat{S} \widehat{X} T(C)+\widehat{S}^{2} T(C)^{2} \mid V\right]\right]
\end{aligned}
$$

and

$$
\begin{aligned}
E\left[\widehat{X}^{2} \mid V\right] & =\frac{1}{\sum V_{i}^{2}} \\
E[\widehat{X} \mid V] & =0 \\
E\left[\widehat{S}^{2} \mid V\right] & =1
\end{aligned}
$$

So

$$
\theta=E\left[\frac{1}{\sum V_{i}^{2}}\right]+E\left[T(C)^{2}\right]
$$

- Strategy:
- Compute $E\left[T(C)^{2}\right]$ by crude Monte Carlo
- Compute $E\left[\frac{1}{\Sigma V_{i}^{2}}\right]$ the same way or analytically.

Exact calculations:

- If $V_{i} \sim \sqrt{\chi_{v}^{2} / v}$, then

$$
E\left[\frac{1}{\sum V_{i}^{2}}\right]=E\left[\frac{v}{\chi_{n v}^{2}}\right]=\frac{v}{n v-2}
$$

- Contaminated normal:

$$
E\left[\frac{1}{\sum V_{i}^{2}}\right]=\sum_{r=0}^{n}\binom{n}{r} \alpha^{r}(1-\alpha)^{n-r} \frac{1}{n-r+r c}
$$

Comparing Variances

If T_{1} and T_{2} are two estimators, then

$$
\operatorname{Var}\left(T_{1}\right)-\operatorname{Var}\left(T_{2}\right)=E\left[T_{1}(C)^{2}\right]-E\left[T_{2}(C)^{2}\right]
$$

We can reduce variances further by using common variates.

Estimating Tail Probabilities

- Suppose we want to estimate

$$
\begin{aligned}
\theta & =P(T(X)>t) \\
& =P(\widehat{X}+\widehat{S} T(C)>t) \\
& =E\left[P\left(\left.\sqrt{\sum V_{i}^{2}} \frac{t-\widehat{X}}{\widehat{S}}<\sqrt{\sum V_{i}^{2}} T(C) \right\rvert\, V, C\right)\right] \\
& =E\left[F_{t, n-1}\left(\sqrt{\sum V_{i}^{2}} T(C)\right)\right]
\end{aligned}
$$

where $F_{t, n-1}$ is the CDF of a non-central t distribution (t is not the usual non-centrality parameter).

- This CDF can be evaluated numerically, so we can estimate θ by

$$
\widehat{\theta}_{N}=\frac{1}{N} \sum_{k=1}^{N} F_{t, n-1}\left(T\left(C^{(k)}\right) \sqrt{\sum V_{i}^{(k)^{2}}}\right)
$$

- An alternative is to condition on V, C, \widehat{S} and use the conditional normal distribution of \widehat{X}.

