Simulation

Computer Simulation

- Computer simulations are experiments performed on the computer using computer-generated random numbers.
- Simulation is used to
 - study the behavior of complex systems such as
 - * biological systems
 - * ecosystems
 - * engineering systems
 - * computer networks
 - compute values of otherwise intractable quantities such as integrals
 - maximize or minimize the value of a complicated function
 - study the behavior of statistical procedures
 - implement novel methods of statistical inference
- Simulations need
 - uniform random numbers
 - non-uniform random numbers
 - random vectors, stochastic processes, etc.
 - techniques to design good simulations
 - methods to analyze simulation results

Uniform Random Numbers

- The most basic distribution is the uniform distribution on [0,1]
- Ideally we would like to be able to obtain a sequence of independent draws from the uniform distribution on [0, 1].
- Since we can only use finitely many digits, we can also work with
 - A sequence of independent discrete uniform random numbers on $\{0, 1, \dots, M-1\}$ or $\{1, 2, \dots, M\}$ for some large *M*.
 - A sequence of independent random bits with equal probability for 0 and 1.
- Some methods are based on physical processes such as
 - nuclear decay

```
http://www.fourmilab.ch/hotbits/
```

- atmospheric noise

http://www.random.org/

The R package random provides an interface.

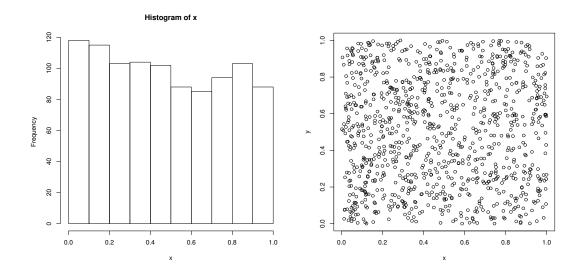
- air turbulence over disk drives or thermal noise in a semiconductor (Toshiba Random Master PCI device)
- event timings in a computer (Linux /dev/random)

Computer Intensive Statistics STAT:7400, Spring 2019

Tierney

Using /dev/random from R

```
devRand <- file("/dev/random", open="rb")
U <- function()
        (as.double(readBin(devRand, "integer"))+2^31) / 2^32
x <-numeric(1000)
for (i in seq(along=x)) x[i] <- U()
hist(x)
y <- numeric(1000)
for (i in seq(along=x)) y[i] <- U()
plot(x,y)
close(devRand)
```



Issues with Physical Generators

- can be very slow
- not reproducible except by storing all values
- distribution is usually not exactly uniform; can be off by enough to matter
- departures from independence may be large enough to matter
- mechanisms, defects, are hard to study
- can be improved by combining with other methods

Pseudo-Random Numbers

Pseudo-random number generators produce a sequence of numbers that is

- not random
- easily reproducible
- "unpredictable;" "looks random"
- behaves in many respects like a sequence of independent draws from a (discretized) uniform [0, 1] distribution
- fast to produce

Pseudo-random generators come in various qualities

- Simple generators
 - easy to implement
 - run very fast
 - easy to study theoretically
 - usually have known, well understood flaws
- More complex
 - often based on combining simpler ones
 - somewhat slower but still very fast
 - sometimes possible to study theoretically, often not
 - guaranteed to have flaws; flaws may not be well understood (yet)
- Cryptographic strength

https://www.schneier.com/fortuna.html

- often much slower, more complex
- thought to be of higher quality
- may have legal complications
- weak generators can enable exploits, a recent issue in iOS 7

We use mostly generators in the first two categories.

General Properties

• Most pseudo-random number generators produce a sequence of integers x_1, x_2, \ldots in the range $\{0, 1, \ldots, M-1\}$ for some *M* using a recursion of the form

$$x_n = f(x_{n-1}, x_{n-2}, \dots, x_{n-k})$$

• Values u_1, u_2, \ldots are then produced by

$$u_i = g(x_{di}, x_{di-1}, \ldots, x_{di-d+1})$$

• Common choices of *M* are

-
$$M = 2^{31}$$
 or $M = 2^{32}$

- $M = 2^{31} 1$, a Mersenne prime
- -M = 2 for bit generators
- The value *k* is the *order* of the generator
- The set of the most recent k values is the *state* of the generator.
- The initial state x_1, \ldots, x_k is called the *seed*.
- Since there are only finitely many possible states, eventually these generators will repeat.
- The length of a cycle is called the *period* of a generator.
- The maximal possible period is on the order of M^k
- Needs change:
 - As computers get faster, larger, more complex simulations are run.
 - A generator with period 2^{32} used to be good enough.
 - A current computer can run through 2³² pseudo-random numbers in under one minute.
 - Most generators in current use have periods 2^{64} or more.
 - Parallel computation also raises new issues.

Linear Congruential Generators

• A linear congruential generator is of the form

$$x_i = (ax_{i-1} + c) \mod M$$

with $0 \le x_i < M$.

- *a* is the *multiplier*
- *c* is the *increment*
- *M* is the *modulus*
- A multiplicative generator is of the form

$$x_i = a x_{i-1} \mod M$$

with $0 < x_i < M$.

- A linear congruential generator has full period *M* if and only if three conditions hold:
 - $\gcd(c, M) = 1$
 - $-a \equiv 1 \mod p$ for each prime factor p of M
 - $-a \equiv 1 \mod 4$ if 4 divides M
- A multiplicative generator has period at most M 1. Full period is achieved if and only if M is prime and a is a *primitive root modulo* M, i.e. $a \neq 0$ and $a^{(M-1)/p} \not\equiv 1 \mod M$ for each prime factor p of M 1.

Examples

• Lewis, Goodman, and Miller ("minimal standard" of Park and Miller):

$$x_i = 16807x_{i-1} \mod (2^{31} - 1) = 7^5x_{i-1} \mod (2^{31} - 1)$$

Reasonable properties, period $2^{31} - 2 \approx 2.15 * 10^9$ is very short for modern computers.

• RANDU:

$$x_i = 65538x_{i-1} \mod 2^{31}$$

Period is only 2^{29} but that is the least of its problems:

$$u_{i+2} - 6u_{i+1} + 9u_i =$$
an integer

so (u_i, u_{i+1}, u_{i+2}) fall on 15 parallel planes. Using the randu data set and the rgl package:

```
library(rgl)
points3d(randu)
par3d(FOV=1) ## removes perspective distortion
```

With a larger number of points:

```
seed <- as.double(1)
RANDU <- function() {
    seed <<- ((2^16 + 3) * seed) %% (2^31)
    seed/(2^31)
}
U <- matrix(replicate(10000 * 3, RANDU()), ncol = 3, byrow = TRUE)
clear3d()
points3d(U)
par3d(FOV=1)</pre>
```

This generator used to be the default generator on IBM 360/370 and DEC PDP11 machines.

Some examples are available in

http://www.stat.uiowa.edu/~luke/classes/STAT7400/ examples/sim.Rmd

Lattice Structure

- All linear congruential sequences have a *lattice structure*
- Methods are available for computing characteristics, such as maximal distance between adjacent parallel planes
- Values of *M* and *a* can be chosen to achieve good lattice structure for c = 0 or c = 1; other values of *c* are not particularly useful.

Shift-Register Generators

• Shift-register generators take the form

$$x_i = a_1 x_{i-1} + a_2 x_{i-2} + \dots + a_p x_{i-p} \mod 2$$

for binary constants a_1, \ldots, a_p .

• values in [0, 1] are often constructed as

$$u_i = \sum_{s=1}^{L} 2^{-s} x_{ti+s} = 0.x_{it+1} x_{it+2} \dots x_{it+L}$$

for some *t* and $L \leq t$. *t* is the *decimation*.

- The maximal possible period is $2^p 1$ since all zeros must be excluded.
- The maximal period is achieved if and only if the polynomial

$$z^{p} + a_{1}z^{p-1} + \dots + a_{p-1}z + a_{p}$$

is irreducible over the finite field of size 2.

- Theoretical analysis is based on k-distribution: A sequence of M bit integers with period $2^p 1$ is k-distributed if every k-tuple of integers appears 2^{p-kM} times, except for the zero tuple, which appears one time fewer.
- Generators are available that have high periods and good *k*-distribution properties.

Lagged Fibonacci Generators

• Lagged Fibonacci generators are of the form

$$x_i = (x_{i-k} \circ x_{i-j}) \mod M$$

for some binary operator \circ .

• Knuth recommends

$$x_i = (x_{i-100} - x_{i-37}) \mod 2^{30}$$

- There are some regularities if the full sequence is used; one recommendation is to generate in batches of 1009 and use only the first 100 in each batch.
- Initialization requires some care.

Combined Generators

- Combining several generators may produce a new generator with better properties.
- Combining generators can also fail miserably.
- Theoretical properties are often hard to develop.
- Wichmann-Hill generator:

$$x_i = 171x_{i-1} \mod 30269$$

$$y_i = 172y_{i-1} \mod 30307$$

$$z_i = 170z_{i-1} \mod 30323$$

and

$$u_i = \left(\frac{x_i}{30269} + \frac{y_i}{30307} + \frac{z_i}{30232}\right) \mod 1$$

The period is around 10^{12} .

This turns out to be equivalent to a multiplicative generator with modulus

$$M = 27817185604309$$

• Marsaglia's Super-Duper used in S-PLUS and others combines a linear congruential and a feedback-shift generator.

Other Generators

- Mersenne twister
- Marsaglia multicarry
- Parallel generators
 - SPRNG http://sprng.cs.fsu.edu.
 - L'Ecuyer, Simard, Chen, and Kelton

http: //www.iro.umontreal.ca/~lecuyer/myftp/streams00/

Pseudo-Random Number Generators in R

R provides a number of different basic generators:

Wichmann-Hill: Period around 10¹²

Marsaglia-Multicarry: Period at least 10¹⁸

Super-Duper: Period around 10¹⁸ for most seeds; similar to S-PLUS

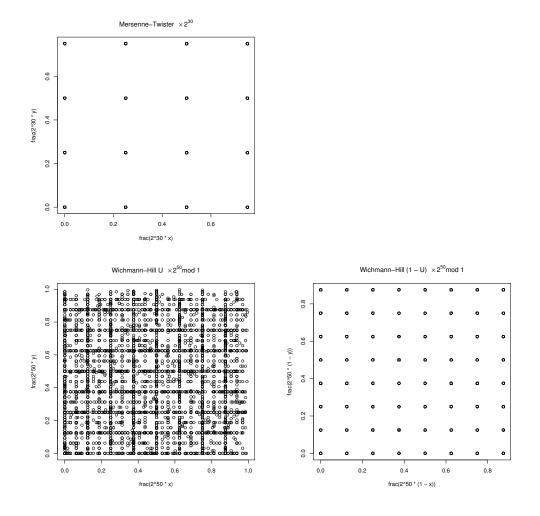
- **Mersenne-Twister:** Period $2^{19937} 1 \approx 10^{6000}$; equidistributed in 623 dimensions; current default in R.
- **Knuth-TAOCP:** Version from second edition of *The Art of Computer Pro*gramming, Vol. 2; period around 10³⁸.
- Knuth-TAOCP-2002: From third edition; differs in initialization.
- L'Ecuyer-CMRG: A combined multiple-recursive generator from L'Ecuyer (1999). The period is around 2¹⁹¹. This provides the basis for the multiple streams used in package parallel.
- **user-supplied:** Provides a mechanism for installing your own generator; used for parallel generation by
 - rsprng package interface to SPRNG
 - rlecuyer package interface to L'Ecuyer, Simard, Chen, and Kelton system
 - rstreams package, another interface to L'Ecuyer et al.

Testing Generators

- All generators have flaws; some are known, some are not (yet).
- Tests need to look for flaws that are likely to be important in realistic statistical applications.
- Theoretical tests look for
 - bad lattice structure
 - lack of *k*-distribution
 - other tractable properties
- Statistical tests look for simple simulations where pseudo-random number streams produce results unreasonably far from known answers.
- Some batteries of tests:
 - DIEHARD http://stat.fsu.edu/pub/diehard/
 - DIEHARDER http://www.phy.duke.edu/~rgb/General/ dieharder.php
 - NIST Test Suite http://csrc.nist.gov/groups/ST/toolkit/
 rng/
 - TestU01 http://www.iro.umontreal.ca/~lecuyer

Issues and Recommendations

- Good choices of generators change with time and technology.
 - Faster computers need longer periods.
 - Parallel computers need different methods.
- All generators are flawed
 - Bad simulation results due to poor random number generators are very rare; coding errors in simulations are not.
 - Testing a generator on a "similar" problem with known answers is a good idea (and may be useful to make results more accurate).
 - Using multiple generators is a good idea; R makes this easy to do.
 - Be aware that some generators can produce uniforms equal to 0 or 1 (I believe R's will not).
 - Avoid methods that are sensitive to low order bits



Non-Uniform Random Variate Generation

- Starting point: Assume we can generate a sequence of independent uniform [0, 1] random variables.
- Develop methods that generate general random variables from uniform ones.
- Considerations:
 - Simplicity, correctness
 - Accuracy, numerical issues
 - Speed
 - * Setup
 - * Generation
- General approaches:
 - Univariate transformations
 - Multivariate transformations
 - Mixtures
 - Accept/Reject methods

Inverse CDF Method

Suppose F is a cumulative distribution function (CDF). Define the inverse CDF as

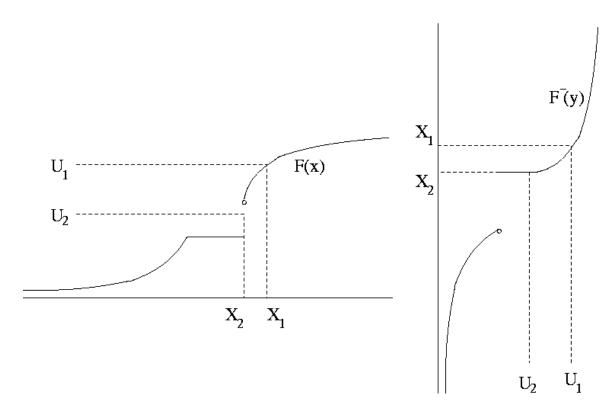
$$F^{-}(u) = \min\{x : F(x) \ge u\}$$

If $U \sim U[0,1]$ then $X = F^{-}(U)$ has CDF *F*.

Proof. Since *F* is right continuous, the minimum is attained. Therefore $F(F^{-}(u)) \ge u$ and $F^{-}(F(x)) = \min\{y : F(y) \ge F(x)\}$. So

$$\{(u,x): F^{-}(u) \le x\} = \{(u,x): u \le F(x)\}$$

and thus $P(X \le x) = P(F^{-}(U) \le x) = P(U \le F(x)) = F(x)$.



Example: Unit Exponential Distribution

The unit exponential CDF is

$$F(x) = \begin{cases} 1 - e^{-x} & \text{for } x > 0\\ 0 & \text{otherwise} \end{cases}$$

with inverse CDF

$$F^{-}(u) = -\log(1-u)$$

So $X = -\log(1 - U)$ has an exponential distribution.

Since $1 - U \sim U[0, 1]$, $-\log U$ also has a unit exponential distribution.

If the uniform generator can produce 0, then these should be rejected.

Example: Standard Cauchy Distribution

The CDF of the standard Cauchy distribution is

$$F(x) = \frac{1}{2} + \frac{1}{\pi}\arctan(x)$$

with inverse CDF

$$F^{-}(u) = \tan(\pi(u-1/2))$$

So $X = tan(\pi(U - 1/2))$ has a standard Cauchy distribution.

An alternative form is: Let U_1, U_2 be independent U[0, 1] random variables and set

$$X = \begin{cases} \tan(\pi(U_2/2) & \text{if } U_1 \ge 1/2 \\ -\tan(\pi(U_2/2)) & \text{if } U_1 < 1/2 \end{cases}$$

- U_1 produces a random sign
- U_2 produces the magnitude
- This will preserve fine structure of U_2 near zero, if there is any.

Example: Standard Normal Distribution

The CDF of the standard normal distribution is

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

and the inverse CDF is Φ^{-1} .

- Neither Φ nor Φ^{-1} are available in closed form.
- Excellent numerical routines are available for both.
- Inversion is currently the default method for generating standard normals in R.
- The inversion approach uses two uniforms to generate one higher-precision uniform via the code

```
case INVERSION:
#define BIG 134217728 /* 2^27 */
    /* unif_rand() alone is not of high enough precision */
    u1 = unif_rand();
    u1 = (int)(BIG*u1) + unif_rand();
    return qnorm5(u1/BIG, 0.0, 1.0, 1, 0);
```

Example: Geometric Distribution

The geometric distribution with PMF $f(x) = p(1-p)^x$ for x = 0, 1, ..., has CDF

$$F(x) = \begin{cases} 1 - (1 - p)^{\lfloor x + 1 \rfloor} & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

where |y| is the integer part of y. The inverse CDF is

$$F^{-}(u) = \lceil \log(1-u)/\log(1-p) \rceil - 1$$

= $\lfloor \log(1-u)/\log(1-p) \rfloor$ except at the jumps

for 0 < u < 1. So $X = \lfloor \log(1 - U) / \log(1 - p) \rfloor$ has a geometric distribution with success probability p.

Other possibilities:

$$X = \lfloor \log(U) / \log(1 - p) \rfloor$$

or

$$X = \lfloor -Y/\log(1-p) \rfloor$$

where *Y* is a unit exponential random variable.

Example: Truncated Normal Distribution

Suppose $X \sim N(\mu, 1)$ and

$$y \sim X | X > 0.$$

The CDF of *Y* is

$$F_Y(y) = \begin{cases} \frac{P(0 < X \le y)}{P(0 < X)} & \text{for } y \ge 0\\ 0 & \text{for } y < 0 \end{cases} = \begin{cases} \frac{F_X(y) - F_X(0)}{1 - F_X(0)} & \text{for } y \ge 0\\ 0 & \text{for } y < 0 \end{cases}.$$

The inverse CDF is

$$F_Y^{-1}(u) = F_X^{-1}(u(1 - F_X(0)) + F_X(0)) = F_X^{-1}(u + (1 - u)F_X(0)).$$

An R function corresponding to this definition is

Q1 <- function(p, m) qnorm(p + (1 - p) * pnorm(0, m), m)

This seems to work well for positive μ but not for negative values far from zero:

> Q1(0.5, c(1, 3, 5, 10, -10)) [1] 1.200174 3.001692 5.000000 10.000000 Inf

The reason is that pnorm(0, -10) is rounded to one.

A mathematically equivalent formulation of the inverse CDF is

$$F_Y^{-1}(u) = F_X^{-1}(1 - (1 - u)(1 - F_X(0)))$$

which leads to

```
Q2 <- function(p, m)
qnorm((1 - p) * pnorm(0, m, lower.tail = FALSE),
m, lower.tail = FALSE)</pre>
```

and

```
> Q2(0.5, c(1, 3, 5, 10, -10))
[1] 1.20017369 3.00169185 5.00000036 10.0000000 0.06841184
```

Issues

- In principle, inversion can be used for any distribution.
- Sometimes routines are available for F^- but are quite expensive:

```
> system.time(rbeta(1000000, 2.5, 3.5))
    user system elapsed
    0.206    0.000    0.211
> system.time(qbeta(runif(1000000), 2.5, 3.5))
    user system elapsed
    4.139    0.001    4.212
```

rbeta is about 20 times faster than inversion.

- If F^- is not available but F is, then one can solve the equation u = F(x) numerically for x.
- Accuracy of F or F^- may be an issue, especially when writing code for a parametric family that is to work well over a wide parameter range.
- Even when inversion is costly,
 - the cost of random variate generation may be a small fraction of the total cost of a simulation
 - using inversion creates a simple relation between the variables and the underlying uniforms that may be useful

Multivariate Transformations

Many distributions can be expressed as the marginal distribution of a function of several variables.

Box-Muller Method for the Standard Normal Distribution

Suppose X_1 and X_2 are independent standard normals. The polar coordinates θ and R are independent,

- θ is uniform on $[0, 2\pi)$
- R^2 is χ_2^2 , which is exponential with mean 2

So if U_1 and U_2 are independent and uniform on [0, 1], then

$$X_1 = \sqrt{-2\log U_1}\cos(2\pi U_2)$$
$$X_2 = \sqrt{-2\log U_1}\sin(2\pi U_2)$$

are independent standard normals. This is the Box-Muller method.

Polar Method for the Standard Normal Distribution

The trigonometric functions are somewhat slow to compute. Suppose (V_1, V_2) is uniform on the unit disk

$$\{(v_1, v_2): v_1^2 + v_2^2 \le 1\}$$

Let $R^2 = V_1^2 + V_2^2$ and

$$X_1 = V_1 \sqrt{-(2\log R^2)/R^2}$$
$$X_2 = V_2 \sqrt{-(2\log R^2)/R^2}$$

Then X_1, X_2 are independent standard normals.

This is the *polar method* of Marsaglia and Bray.

Generating points uniformly on the unit disk can be done using *rejection sampling*, or *accept/reject sampling*:

repeat generate independent $V_1, V_2 \sim U(-1, 1)$ until $V_1^2 + V_2^2 \le 1$ return (V_1, V_2)

- This independently generates pairs (V_1, V_2) uniformly on the square $(-1, 1) \times (-1, 1)$ until the result is inside the unit disk.
- The resulting pair is uniformly distributed on the unit disk.
- The number of pairs that need to be generated is a geometric variable with success probability

$$p = \frac{\text{area of disk}}{\text{area of square}} = \frac{\pi}{4}$$

The expected number of generations needed is $1/p = 4/\pi = 1.2732$.

• The number of generations needed is independent of the final pair.

Polar Method for the Standard Cauchy Distribution

The ratio of two standard normals has a Cauchy distribution.

Suppose two standard normals are generated by the polar method,

$$X_1 = V_1 \sqrt{-(2\log R^2)/R^2}$$
$$X_2 = V_2 \sqrt{-(2\log R^2)/R^2}$$

with $R^2 = V_1^2 + V_2^2$ and (V_1, V_2) uniform on the unit disk. Then

$$Y = \frac{X_1}{X_2} = \frac{V_1}{V_2}$$

is the ratio of the two coordinates of the pair that is uniformly distributed on the unit disk.

This idea leads to a general method, the Ratio-of-Uniforms method.

Student's t Distribution

Suppose

- *Z* has a standard normal distribution,
- *Y* has a χ_v^2 distribution,
- *Z* and *Y* are independent.

Then

$$X = \frac{Z}{\sqrt{Y/\nu}}$$

has a t distribution with v degrees of freedom.

To use this representation we will need to be able to generate from a χ_v^2 distribution, which is a Gamma(v/2, 2) distribution.

Beta Distribution

Suppose $\alpha > 0$, $\beta > 0$, and

- $U \sim \text{Gamma}(\alpha, 1)$
- $V \sim \text{Gamma}(\beta, 1)$
- U, V are independent

Then

$$X = \frac{U}{U+V}$$

has a Beta(α, β) distribution.

F Distribution

Suppose a > 0, b > 0, and

• $U \sim \chi_a^2$

•
$$V \sim \chi_b^2$$

• U, V are independent

Then

$$X = \frac{U/a}{V/b}$$

has an F distribution with *a* and *b* degrees of freedom. Alternatively, if $Y \sim \text{Beta}(a/2, b/2)$, then

iternatively, if
$$I \sim \text{Beta}(a/2, b/2)$$
, then

$$X = \frac{b}{a} \frac{Y}{1 - Y}$$

has an F distribution with *a* and *b* degrees of freedom.

Non-Central t Distribution

Suppose

- $Z \sim N(\mu, 1)$,
- $Y \sim \chi_v^2$,
- *Z* and *Y* are independent.

Then

$$X = \frac{Z}{\sqrt{Y/\nu}}$$

has non-central t distribution with v degrees of freedom and non-centrality parameter μ .

Non-Central Chi-Square, and F Distributions

Suppose

• Z_1, \ldots, Z_k are independent

•
$$Z_i \sim N(\mu_i, 1)$$

Then

$$Y = Z_1^2 + \dots + Z_k^2$$

has a non-central chi-square distribution with k degrees of freedom and non-centrality parameter

$$\delta = \mu_1^2 + \dots + \mu_k^2$$

An alternative characterization: if $\tilde{Z}_1, \ldots, \tilde{Z}_k$ are independent standard normals then

$$Y = (\widetilde{Z}_1 + \sqrt{\delta})^2 + \widetilde{Z}_2^2 \cdots + \widetilde{Z}_k^2 = (\widetilde{Z}_1 + \sqrt{\delta})^2 + \sum_{i=2}^k \widetilde{Z}_i^2$$

has a non-central chi-square distribution with k degrees of freedom and non-centrality parameter δ .

The non-central F is of the form

$$X = \frac{U/a}{V/b}$$

where U, V are independent, U is a non-central χ_a^2 and V is a central χ_b^2 random variable.

Bernoulli and Binomial Distributions

Suppose $p \in [0, 1]$, $U \sim U[0, 1]$, and

$$X = \begin{cases} 1 & \text{if } U \le p \\ 0 & \text{otherwise} \end{cases}$$

Then X bas a Bernoulli(p) distribution.

If Y_1, \ldots, Y_n are independent Bernoulli(p) random variables, then

$$X = Y_1 + \dots + Y_n$$

has a Binomial(n, p) distribution.

For small *n* this is an effective way to generate binomials.

Mixtures and Conditioning

Many distributions can be expressed using a hierarchical structure:

$$X|Y \sim f_{X|Y}(x|y)$$
$$Y \sim f_Y(y)$$

The marginal distribution of X is called a *mixture distribution*. We can generate X by

Generate *Y* from $f_Y(y)$. Generate X|Y = y from $f_{X|Y}(x, y)$.

Student's t Distribution

Another way to think of the t_v distribution is:

$$X|Y \sim N(0, \nu/Y)$$
$$Y \sim \chi_{\nu}^{2}$$

The *t* distribution is a *scale mixture of normals*.

Other choices of the distribution of Y lead to other distributions for X.

Negative Binomial Distribution

The negative binomial distribution with PMF

$$f(x) = \binom{x+r-1}{r-1} p^r (1-p)^x$$

for x = 0, 1, 2, ..., can be written as a gamma mixture of Poissons: if

$$X|Y \sim \text{Poisson}(Y)$$
$$Y \sim \text{Gamma}(r, (1-p)/p)$$

then $X \sim \text{Negative Binomial}(r, p)$.

[The notation Gamma(α, β) means that β is the scale parameter.]

This representation makes sense even when r is not an integer.

Non-Central Chi-Square

The density of the non-central χ_v^2 distribution with non-centrality parameter δ is

$$f(x) = e^{-\delta/2} \sum_{i=0}^{\infty} \frac{(\delta/2)^i}{i!} f_{\nu+2i}(x)$$

where $f_k(x)$ central χ_k^2 density. This is a Poisson-weighted average of χ^2 densities, so if

$$X|Y \sim \chi^2_{\nu+2Y}$$

$$Y \sim \text{Poisson}(\delta/2)$$

then X has a non-central χ_v^2 distribution with non-centrality parameter δ .

Composition Method

Suppose we want to sample from the density

$$f(x) = \begin{cases} x/2 & 0 \le x < 1\\ 1/2 & 1 \le x < 2\\ 3/2 - x/2 & 2 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

We can write f as the mixture

$$f(x) = \frac{1}{4}f_1(x) + \frac{1}{2}f_2(x) + \frac{1}{4}f_3(x)$$

with

$$f_1(x) = 2x$$
 $0 \le x < 1$ $f_2(x) = 1$ $1 \le x < 2$ $f_3(x) = 6 - 2x$ $2 \le x \le 3$

and $f_i(x) = 0$ for other values of *x*.

Generating from the f_i is straight forward. So we can sample from f using:

Generate *I* from $\{1,2,3\}$ with probabilities 1/4, 1/2, 1/4. Generate *X* from $f_I(x)$ by inversion.

This approach can be used in conjunction with other methods.

One example: The polar method requires sampling uniformly from the unit disk. This can be done by

- encloseing the unit disk in a regular hexagon
- using composition to sample uniformly from the hexagon until the result is in the unit disk.

Tierney

Alias Method

Suppose f(x) is a probability mass function on $\{1, 2, ..., k\}$. Then f(x) can be written as

$$f(x) = \sum_{i=1}^{k} \frac{1}{k} f_i(x)$$

where

$$f_i(x) = \begin{cases} q_i & x = i \\ 1 - q_i & x = a_i \\ 0 & \text{otherwise} \end{cases}$$

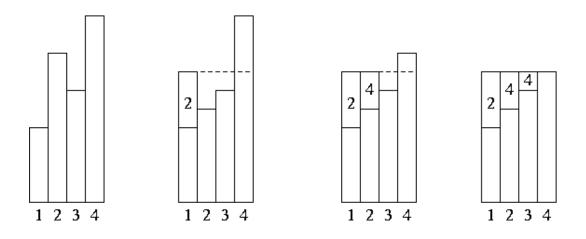
for some $q_i \in [0, 1]$ and some $a_i \in \{1, 2, ..., k\}$.

Once values for q_i and a_i have been found, generation is easy:

```
Generate I uniform on \{1, ..., k\}
Generate U uniform on [0, 1]
if U \le q_I
return I
else
return a_I
```

Tierney

The setup process used to compute the q_i and a_i is called *leveling the his-togram*:



This is Walker's alias method.

A complete description is in Ripley (1987, Alg 3.13B).

The alias method is an example of trading off a setup cost for fast generation.

The alias method is used by the sample function for unequal probability sampling with replacement when there are enough reasonably probable values.

```
https://svn.r-project.org/R/trunk/src/main/random.c
```

Accept/Reject Methods

Sampling Uniformly from the Area Under a Density

Suppose h is a function such that

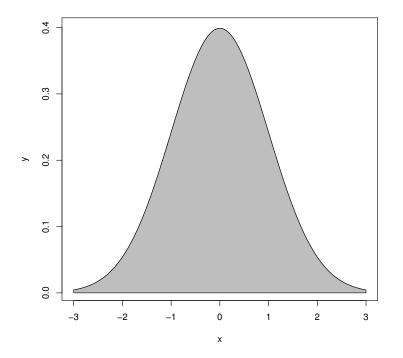
- $h(x) \ge 0$ for all x
- $\int h(x)dx < \infty$.

Let

$$\mathscr{G}_h = \{(x, y) : 0 < y \le h(x)\}$$

The area of \mathscr{G}_h is

$$|\mathscr{G}_h| = \int h(x) dx < \infty$$



Suppose (X, Y) is uniformly distributed on \mathcal{G}_h . Then

• The conditional distribution of Y|X = x is uniform on (0, h(x)).

Computer Intensive Statistics STAT:7400, Spring 2019

Tierney

• The marginal distribution of *X* has density $f_X(x) = h(x) / \int h(y) dy$:

$$f_X(x) = \int_0^{h(x)} \frac{1}{|\mathscr{G}_h|} dy = \frac{h(x)}{\int h(y) dy}$$

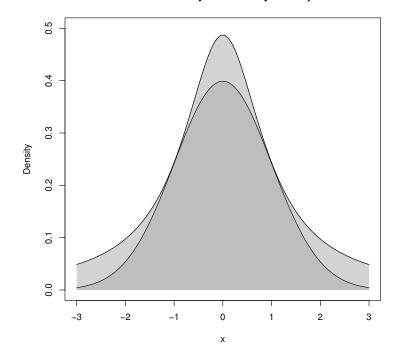
Rejection Sampling Using an Envelope Density

Suppose g is a density and M > 0 is a real number such that

$$h(x) \le Mg(x)$$
 for all x

or, equivalently,

$$sup \frac{h(x)}{g(x)} \le M \quad \text{for all } x$$



Mg(x) is an *envelope* for h(x).

Suppose

- we want to sample from a density proportional to h
- we can find a density g and a constant M such that
 - Mg(x) is an envelope for h(x)
 - it is easy to sample from g

Then

- we can sample X from g and Y|X = x from U(0, Mg(x)) to get a pair (X, Y) uniformly distributed on \mathscr{G}_{Mg}
- we can repeat until the pair (X, Y) satisfies $Y \le h(X)$
- the resulting pair (X, Y) is uniformly distributed on \mathscr{G}_h
- so the marginal density of the resulting X is $f_X(x) = h(x) / \int h(y) dy$.
- the number of draws from the uniform distribution on \mathcal{G}_{Mg} needed until we obtain a pair in \mathcal{G}_h is independent of the final pair
- the number of draws has a geometric distribution with success probability

$$p = \frac{|\mathscr{G}_h|}{|\mathscr{G}_{Mg}|} = \frac{\int h(y)dy}{M \int g(y)dy} = \frac{\int h(y)dy}{M}$$

since g is a probability density. p is the acceptance probability.

• the expected number of draws needed is

$$E[\text{number of draws}] = \frac{1}{p} = \frac{M \int g(y) dy}{\int h(y) dy} = \frac{M}{\int h(y) dy}$$

• if h is also a proper density, then p = 1/M and

$$E[\text{number of draws}] = \frac{1}{p} = M$$

The Basic Algorithm

The rejection, or accept/reject, sampling algorithm:

repeat generate independent $X \sim g$ and $U \sim U[0, 1]$ **until** $UMg(X) \leq h(X)$ **return** X

Alternate forms of the test:

$$\begin{split} U \leq \frac{h(X)}{Mg(X)} \\ \log(U) \leq \log(h(X)) - \log(M) - \log(g(X)) \end{split}$$

Care may be needed to ensure numerical stability.

Example: Normal Distribution with Cauchy Envelope

Suppose

- $h(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ is the standard normal density
- $g(x) = \frac{1}{\pi(1+x^2)}$ is the standard Cauchy density

Then

$$\frac{h(x)}{g(x)} = \sqrt{\frac{\pi}{2}}(1+x^2)e^{-x^2/2} \le \sqrt{\frac{\pi}{2}}(1+1^2)e^{-1^2/2} = \sqrt{2\pi e^{-1}} = 1.520347$$

The resulting accept/reject algorithm is

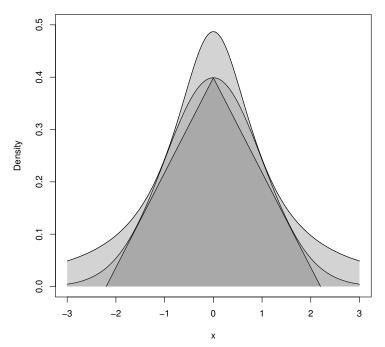
repeat

generate independent standard Cauchy X and $U \sim U[0,1]$ until $U \leq \frac{e^{1/2}}{2}(1+X^2)e^{-X^2/2}$ return X

Squeezing

Performance can be improved by *squeezing*:

• Accept if point is inside the triangle:



Normal Density with Cauchy Envelope and Squeezing

- Squeezing *can* speed up generation.
- Squeezing *will* complicate the code (making errors more likely).

Rejection Sampling for Discrete Distributions

For simplicity, just consider integer valued random variables.

- If *h* and *g* are probability mass functions on the integers and h(x)/g(x) is bounded, then the same algorithm can be used.
- If *p* is a probability mass function on the integers then

$$h(x) = p(\lfloor x \rfloor)$$

is a probability density.

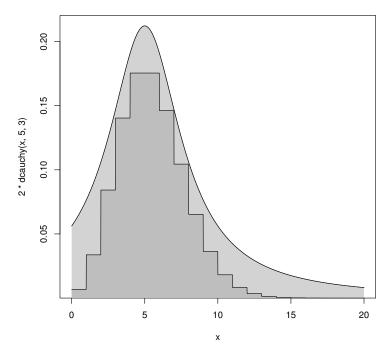
If *X* has density *h*, then Y = |X| has PMF *p*.

Example: Poisson Distribution with Cauchy Envelope

Suppose

- *p* is the PMF of a Poisson distribution with mean 5
- *g* is the Cauchy density with location 5 and scale 3.
- $h(x) = p(\lfloor x \rfloor)$

Then, by careful analysis or graphical examination, $h(x) \le 2g(x)$ for all *x*.



Poisson PMF with Cauchy Envelope

Comments

- The Cauchy density is often a useful envelope.
- More efficient choices are often possible.
- Location and scale need to be chosen appropriately.
- If the target distribution is non-negative, a truncated Cauchy can be used.
- Careful analysis is needed to produce generators for a parametric family (e.g. all Poisson distributions).
- Graphical examination can be very helpful in guiding the analysis.
- Carefully tuned envelopes combined with squeezing can produce very efficient samplers.
- Errors in tuning and squeezing will produce garbage.

Ratio-of-Uniforms Method

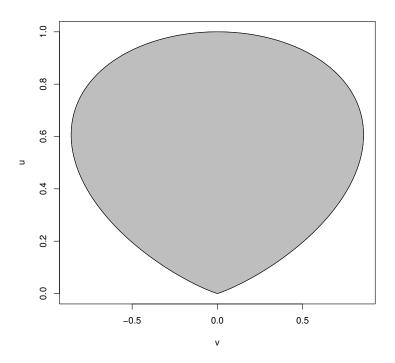
Basic Method

- Introduced by Kinderman and Monahan (1977).
- Suppose
 - $h(x) \ge 0$ for all x
 - $\int h(x)dx < \infty$
- Let (V, U) be uniform on

$$\mathscr{C}_h = \{(v, u) : 0 < u \le \sqrt{h(v/u)}\}$$

Then X = V/U has density $f(x) = h(x)/\int h(y)dy$.

• For
$$h(x) = e^{-x^2/2}$$
 the region \mathcal{C}_h looks like



- The region is bounded.
- The region is convex.

Properties

- The region \mathcal{C}_h is convex if h is log concave.
- The region \mathscr{C}_h is bounded if h(x) and $x^2h(x)$ are bounded.
- Let

$$u^* = \max_x \sqrt{h(x)}$$
$$v^*_- = \min_x x \sqrt{h(x)}$$
$$v^*_+ = \max_x x \sqrt{h(x)}$$

Then \mathscr{C}_h is contained in the rectangle $[v_-^*, v_+^*] \times [0, u^*]$.

• The simple Ratio-of-Uniforms algorithm based on rejection sampling from the enclosing rectangle is

repeat

generate $U \sim U[0, u^*]$ generate $V \sim U[v_-^*, v_+^*]$ until $U^2 \le h(V/U)$ return X = V/U

• If
$$h = e^{-x^2/2}$$
 then

$$u^* = 1$$

 $v_-^* = -\sqrt{2e^{-1}}$
 $v_+^* = \sqrt{2e^{-1}}$

and the expected number of draws is

$$\frac{\text{area of rectangle}}{\text{area of }\mathcal{C}_h} = \frac{u^*(v_+^* - v_-^*)}{\frac{1}{2}\int h(x)dx} = \frac{2\sqrt{2e^{-1}}}{\sqrt{\pi/2}} = 1.368793$$

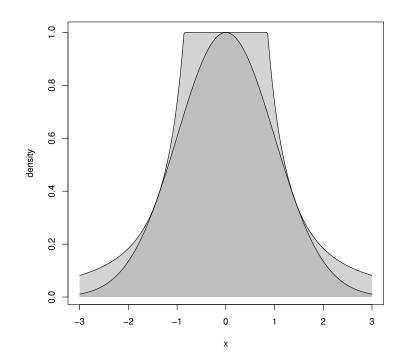
- Various squeezing methods are possible.
- Other approaches to sampling from \mathcal{C}_h are also possible.

Relation to Rejection Sampling

Ratio of Uniforms with rejection sampling from the enclosing rectangle is equivalent to ordinary rejection sampling using an envelope density

$$g(x) \propto \begin{cases} \left(\frac{v_{-}^{*}}{x}\right)^{2} & \text{if } x < v_{-}^{*}/u^{*} \\ (u^{*})^{2} & \text{if } v_{-}^{*}/u^{*} \le x \le v_{+}^{*}/u^{*} \\ \left(\frac{v_{+}^{*}}{x}\right)^{2} & \text{if } x > v_{+}^{*}/u^{*} \end{cases}$$

This is sometimes called a *table mountain density*



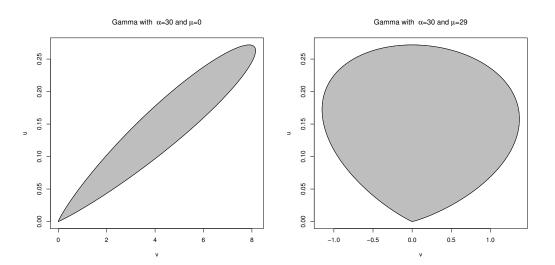
Generalizations

A more general form of the basic result: For any μ and any r > 0 let

$$\mathscr{C}_{h,\mu,r} = \{(v,u): 0 < u \le h(v/u^r + \mu)^{1/(r+1)}\}$$

If (U, V) is uniform on $\mathcal{C}_{h,\mu,r}$, then $X = V/U^r + \mu$ has density $f(x) = h(x)/\int h(y)dy$.

- μ and *r* can be chosen to minimize the rejection probability.
- r = 1 seems adequate for most purposes.
- Choosing μ equal to the mode of *h* can help.
- For the Gamma distribution with $\alpha = 30$,



Adaptive Rejection Sampling

First introduced by Gilks and Wild (1992).

Convexity

- A set *C* is convex if $\lambda x + (1 \lambda)y \in C$ for all $x, y \in C$ and $\lambda \in [0, 1]$.
- *C* can be a subset or \mathbb{R} , or \mathbb{R}^n , or any other set where the *convex combination*

$$\lambda x + (1 - \lambda)y$$

makes sense.

• A real-valued function f on a convex set C is convex if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

 $x, y \in C$ and $\lambda \in [0, 1]$.

• f(x) is concave if -f(x) is convex, i.e. if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

 $x, y \in C$ and $\lambda \in [0, 1]$.

• A concave function is always below its tangent.

Log Concave Densities

- A density f is log concave if log f is a concave function
- Many densities are log concave:
 - normal densities
 - Gamma(α, β) with $\alpha \geq 1$
 - Beta(α , β) with $\alpha \ge 1$ and $\beta \ge 1$.
- Some are not but may be related to ones that are: The *t* densities are not, but if

$$X|Y = y \sim N(0, 1/y)$$
$$Y \sim \text{Gamma}(\alpha, \beta)$$

then

- the marginal distribution of X is t for suitable choice of β
- and the joint distribution of *X* and *Y* has density

$$f(x,y) \propto \sqrt{y}e^{-\frac{y}{2}x^2}y^{\alpha-1}e^{-y/\beta} = y^{\alpha-1/2}e^{-y(\beta+x^2/2)}$$

which is log concave for $\alpha \ge 1/2$

Tangent Approach

Suppose

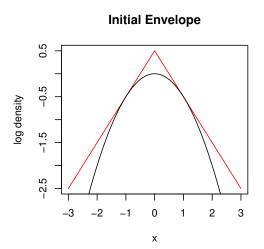
- f is log concave
- *f* has an interior mode

Need log density, derivative at two points, one each side of the mode

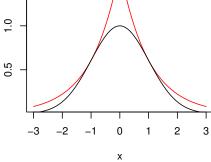
- piece-wise linear envelope of log density
- piece-wise exponential envelope of density
- if first point is not accepted, can use to make better envelope

1.5

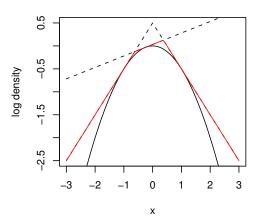
density



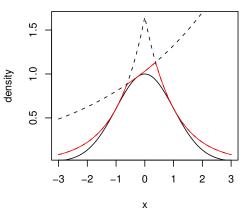
Initial Envelope



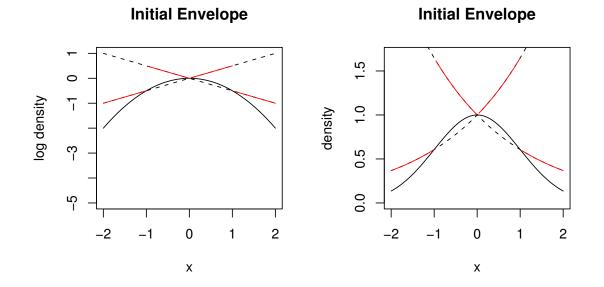
With Additional Point at x = -1/4



With Additional Point at x = -1/4



Secant Approach



- Need three points to start
- Do not need derivatives
- Get larger rejection rates
- Both approaches need numerical care

Notes and Comments

- Many methods depend on properties of a particular distribution.
- Inversion is one general method that can often be used.
- Other general-purpose methods are
 - rejection sampling
 - adaptive rejection sampling
 - ratio-of-uniforms
- Some references:
 - Devroye, L. (1986). *Non-Uniform Random Variate Generation*, Springer-Verlag, New York.
 - Gentle, J. E. (2003). *Random Number Generation and Monte Carlo Methods*, Springer-Verlag, New York.
 - Hörmann, W., Leydold, J., and Derflinger, G. (2004). *Automatic Nonuniform Random Variate Generation*, Springer-Verlag, New York.

A Recent Publication

Karney, C.F.F. (2016). "Sampling Exactly from the Normal Distribution." *ACM Transactions on Mathematical Software* 42 (1).

Random Variate Generators in R

- Generators for most standard distributions are available
 - rnorm: normal
 - rgamma: gamma
 - rt:*t*
 - rpois: Poisson
 - etc.
- Most use standard algorithms from the literature.
- Source code is in src/nmath/ in the source tree,

https://svn.r-project.org/R/trunk

- The normal generator can be configured by RNGkind. Options are
 - Kinderman-Ramage
 - Buggy Kinderman-Ramage (available for reproducing results)
 - Ahrens-Dieter
 - Box-Muller
 - Inversion (the current default)
 - user-supplied

Generating Random Vectors and Matrices

- Sometimes generating random vectors can be reduced to a series of univariate generations.
- One approach is conditioning:

$$f(x, y, z) = f_{Z|X,Y}(z|x, y)f_{Y|X}(y|x)f_X(x)$$

So we can generate

- X from f_X(x)
 Y|X = x from f_{Y|X}(y|x)
 Z|X = x, Y = y from f_{Z|X,Y}(z|x,y)
- One example: $(X_1, X_2, X_3) \sim \text{Multinomial}(n, p_1, p_2, p_3)$ Then

$$X_1 \sim \text{Binomial}(n, p_1)$$

 $X_2 | X_1 = x_1 \sim \text{Binomial}(n - x_1, p_2/(p_2 + p_3))$
 $X_3 | X_1 = x_1, X_2 = x_2 = n - x_1 - x_2$

• Another example: *X*, *Y* bivariate normal $(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$. Then

$$X \sim N(\mu_X, \sigma_X^2)$$

$$Y|X = x \sim N\left(\mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(x - \mu_X), \sigma_Y^2(1 - \rho^2)\right)$$

- For some distributions special methods are available.
- Some general methods extend to multiple dimensions.

Multivariate Normal Distribution

- Marginal and conditional distributions are normal; conditioning can be used in general.
- Alternative: use linear transformations.

Suppose Z_1, \ldots, Z_d are independent standard normals, μ_1, \ldots, μ_d are constants, and A is a constant $d \times d$ matrix. Let

$$Z = \begin{bmatrix} Z_1 \\ \vdots \\ Z_d \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_d \end{bmatrix}$$

and set

$$X = \mu + AZ$$

Then X is multivariate normal with mean vector μ and covariance matrix AA^{T} ,

$$X \sim \text{MVN}_d(\mu, AA^T)$$

- To generate $X \sim \text{MVN}_d(\mu, \Sigma)$, we can
 - find a matrix *A* such that $AA^T = \Sigma$
 - generate elements of Z as independent standard normals
 - compute $X = \mu + AZ$
- The Cholesky factorization is one way to choose *A*.
- If we are given Σ^{-1} , then we can
 - decompose $\Sigma^{-1} = LL^T$
 - solve $L^T Y = Z$
 - compute $X = \mu + Y$

Spherically Symmetric Distributions

• A joint distribution with density of the form

$$f(x) = g(x^T x) = g(x_1^2 + \dots + x_d^2)$$

is called spherically symmetric (about the origin).

• If the distribution of *X* is spherically symmetric then

$$R = \sqrt{X^T X}$$
$$Y = X/R$$

are independent,

- *Y* is uniformly distributed on the surface of the unit sphere.
- *R* has density proportional to $g(r)r^{d-1}$ for r > 0.
- We can generate $X \sim f$ by
 - generating $Z \sim \text{MVN}_d(0, I)$ and setting $Y = Z/\sqrt{Z^T Z}$
 - generating *R* from the density proportional to $g(r)r^{d-1}$ by univariate methods.

Elliptically Contoured Distributions

• A density f is elliptically contoured if

$$f(x) = \frac{1}{\sqrt{\det \Sigma}}g((x-\mu)^T \Sigma^{-1}(x-\mu))$$

for some vector μ and symmetric positive definite matrix Σ .

• Suppose *Y* has spherically symmetric density $g(y^T y)$ and $AA^T = \Sigma$. Then $X = \mu + AY$ has density *f*.

Wishart Distribution

• Suppose X_1, \ldots, X_n are independent and $X_i \sim \text{MVN}_d(\mu_i, \Sigma)$. Let

$$W = \sum_{i=1}^{n} X_i X_i^T$$

Then *W* has a non-central Wishart distribution $W(n, \Sigma, \Delta)$ where $\Delta = \sum \mu_i \mu_i^T$.

• If $X_i \sim \text{MVN}_d(\mu, \Sigma)$ and

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}) (X_i - \overline{X})^T$$

is the sample covariance matrix, then $(n-1)S \sim W(n-1,\Sigma,0)$.

• Suppose $\mu_i = 0$, $\Sigma = AA^T$, and $X_i = AZ_i$ with $Z_i \sim MVN_d(0, I)$. Then $W = AVA^T$ with

$$V = \sum_{i=1}^{n} Z_i Z_i^T$$

- *Bartlett decomposition*: In the Cholesky factorization of V
 - all elements are independent
 - the elements below the diagonal are standard normal
 - the square of the *i*-th diagonal element is χ^2_{n+1-i}
- If $\Delta \neq 0$ let $\Delta = BB^T$ be its Cholesky factorization, let b_i be the columns of *B* and let Z_1, \ldots, Z_n be independent $MVN_d(0, I)$ random vectors. Then for $n \geq d$

$$W = \sum_{i=1}^{d} (b_i + AZ_i)(b_i + AZ_i)^T + \sum_{i=d+1}^{n} AZ_i Z_i^T A^T \sim W(n, \Sigma, \Delta)$$

Rejection Sampling

- Rejection sampling can in principle be used in any dimensions
- A general envelope that is sometimes useful is based on generating X as

$$X = b + AZ/Y$$

where

- Z and Y are independent

$$- Z \sim \text{MVN}_d(0, I)$$

- $Y^2 \sim \text{Gamma}(\alpha, 1/\alpha)$, a scalar
- *b* is a vector of constants
- A is a matrix of constants

This is a kind of multivariate *t* random vector.

- This often works in modest dimensions.
- Specially tailored envelopes can sometimes be used in higher dimensions.
- Without special tailoring, rejection rates tend to be too high to be useful.

Ratio of Uniforms

• The ratio-of-uniforms method also works in \mathbb{R}^d : Suppose

-
$$h(x) \ge 0$$
 for all x

$$-\int h(x)dx < \infty$$

Let

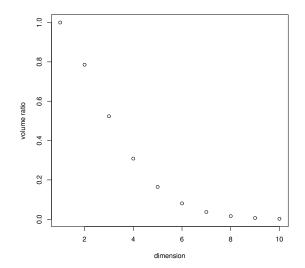
$$\mathscr{C}_h = \{(v, u) : v \in \mathbb{R}^d, 0 < u \le \sqrt[d+1]{h(v/u + \mu)}\}$$

for some μ . If (V,U) is uniform on \mathcal{C}_h , then $X = V/U + \mu$ has density $f(x) = h(x) / \int h(y) dy$.

- If h(x) and $||x||^{d+1}h(x)$ are bounded, then \mathcal{C}_h is bounded.
- If h(x) is log concave then \mathcal{C}_h is convex.
- Rejection sampling from a bounding hyper rectangle works in modest dimensions.
- It will not work for dimensions larger than 8 or so:
 - The shape of \mathscr{C}_h is vaguely spherical.
 - The volume of the unit sphere in *d* dimensions is

$$V_d = \frac{\pi^{d/2}}{\Gamma(d/2+1)}$$

- The ratio of this volume to the volume of the enclosing hyper cube, 2^d tends to zero very fast:



Order Statistics

• The order statistics for a random sample X_1, \ldots, X_n from F are the ordered values

$$X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$$

- We can simulate them by ordering the sample.
- Faster O(n) algorithms are available for individual order statistics, such as the median.
- If U₍₁₎ ≤ ··· ≤ U_(n) are the order statistics of a random sample from the U[0,1] distribution, then

$$X_{(1)} = F^{-}(U_{(1)})$$

:
 $X_{(n)} = F^{-}(U_{(n)})$

are the order statistics of a random sample from F.

• For a sample of size *n* the marginal distribution of $U_{(k)}$ is

$$U_{(k)} \sim \text{Beta}(k, n-k+1).$$

- Suppose $k < \ell$.
 - Then $U_{(k)}/U_{(\ell)}$ is independent of $U_{(\ell)}, \ldots, U_{(n)}$
 - $U_{(k)}/U_{(\ell)}$ has a Beta $(k, \ell k)$ distribution.

We can use this to generate any subset or all order statistics.

• Let V_1, \ldots, V_{n+1} be independent exponential random variables with the same mean and let

$$W_k = \frac{V_1 + \dots + V_k}{V_1 + \dots + V_{n+1}}$$

Then W_1, \ldots, W_n has the same joint distribution as $U_{(1)}, \ldots, U_{(n)}$.

Homogeneous Poisson Process

- For a homogeneous Poisson process with rate λ
 - The number of points N(A) in a set A is Poisson with mean $\lambda |A|$.
 - If A and B are disjoint then N(A) and N(B) are independent.
- Conditional on N(A) = n, the *n* points are uniformly distributed on *A*.
- We can generate a Poisson process on [0,t] by generating exponential variables T_1, T_2, \ldots with rate λ and computing

$$S_k = T_1 + \dots + T_k$$

until $S_k > t$. The values S_1, \ldots, S_{k-1} are the points in the Poisson process realization.

Inhomogeneous Poisson Processes

- For an inhomogeneous Poisson process with rate $\lambda(x)$
 - The number of points N(A) in a set A is Poisson with mean $\int_A \lambda(x) dx$.
 - If A and B are disjoint then N(A) and N(B) are independent.
- Conditional on N(A) = n, the *n* points in *A* are a random sample from a distribution with density $\lambda(x) / \int_A \lambda(y) dy$.
- To generate an inhomogeneous Poisson process on [0, t] we can

- let
$$\Lambda(s) = \int_0^s \lambda(x) dx$$

- generate arrival times S_1, \ldots, S_N for a homogeneous Poisson process with rate one on $[0, \Lambda(t)]$
- Compute arrival times of the inhomogeneous process as

$$\Lambda^{-1}(S_1),\ldots,\Lambda^{-1}(S_N).$$

- If λ(x) ≤ M for all x, then we can generate an inhomogeneous Poisson process with rate λ(x) by *thinning*:
 - generate a homogeneous Poisson process with rate M to obtain points X_1, \ldots, X_N .
 - independently delete each point X_i with probability $1 \lambda(X_i)/M$.

The remaining points form a realization of an inhomogeneous Poisson process with rate $\lambda(x)$.

• If N_1 and N_2 are independent inhomogeneous Poisson processes with rates $\lambda_1(x)$ and $\lambda_2(x)$, then their superposition $N_1 + N_2$ is an inhomogeneous Poisson process with rate $\lambda_1(x) + \lambda_2(x)$.

Other Processes

- Many other processes can be simulated from their definitions
 - Cox processes (doubly stochastic Poisson process)
 - Poisson cluster processes
 - ARMA, ARIMA processes
 - GARCH processes
- Continuous time processes, such as Brownian motion and diffusions, require discretization of time.
- Other processes may require Markov chain methods
 - Ising models
 - Strauss process
 - interacting particle systems

Variance Reduction

Most simulations involve estimating integrals or expectations:

$$\theta = \int h(x)f(x)dx \qquad \text{mean}$$

$$\theta = \int 1_{\{X \in A\}}f(x)dx \qquad \text{probability}$$

$$\theta = \int (h(x) - E[h(X)])^2 f(x)dx \qquad \text{variance}$$

:

- The *crude simulation*, or *crude Monte Carlo*, or *naïve Monte Carlo*, approach:
 - Sample X_1, \ldots, X_N independently from f
 - Estimate θ by $\hat{\theta}_N = \frac{1}{N} \sum h(X_i)$.

If
$$\sigma^2 = \operatorname{Var}(h(X))$$
, then $\operatorname{Var}(\widehat{\theta}_N) = \frac{\sigma^2}{N}$.

- To reduce the error we can
 - increase N: requires CPU time and clock time; diminishing returns.
 - try to reduce σ^2 : requires thinking time, programming effort.
- Methods that reduce σ^2 are called
 - tricks
 - swindles
 - Monte Carlo methods

Control Variates

Suppose we have a random variable *Y* with mean θ and a correlated random variable *W* with known mean E[W]. Then for any constant *b*

$$\widetilde{Y} = Y - b(W - E[W])$$

has mean θ .

- W is called a *control variate*.
- Choosing b = 1 often works well if the correlation is positive and θ and E[W] are close.
- The value of *b* that minimizes the variance of \widetilde{Y} is Cov(Y, W)/Var(W).
- We can use a guess or a pilot study to estimate *b*.
- We can also estimate *b* from the same data used to compute *Y* and *W*.
- This is related to the regression estimator in sampling.

Example

Suppose we want to estimate the expected value of the sample median T for a sample of size 10 from a Gamma(3,1) population.

• Crude estimate:

$$Y = \frac{1}{N} \sum T_i$$

• Using the sample mean as a control variate with b = 1:

$$\widehat{Y} = \frac{1}{N} \sum (T_i - \overline{X}_i) + E[\overline{X}_i] = \frac{1}{N} \sum (T_i - \overline{X}_i) + \alpha$$

```
> x <- matrix(rgamma(10000, 3), ncol = 10)
> md <- apply(x, 1, median)
> mn <- apply(x, 1, mean)
> mean(md)
[1] 2.711137
> mean(md - mn) + 3
[1] 2.694401
> sd(md)
[1] 0.6284996
> sd(md-mn)
[1] 0.3562479
```

The standard deviation is cut roughly in half. The optimal *b* seems close to 1.

Control Variates and Probability Estimates

- Suppose *T* is a test statistic and we want to estimate $\theta = P(T \le t)$.
- Crude Monte Carlo:

$$\widehat{\theta} = \frac{\#\{T_i \le t\}}{N}$$

• Suppose *S* is "similar" to *T* and $P(S \le t)$ is known. Use

$$\widehat{\theta} = \frac{\#\{T_i \le t\} - \#\{S_i \le t\}}{N} + P(S \le t) = \frac{1}{N} \sum Y_i + P(S \le t)$$

with $Y_i = 1_{\{T_i \le t\}} - 1_{\{S_i \le t\}}$.

- If S mimics T, then Y_i is usually zero.
- Could use this to calibrate

$$T = \frac{\text{median}}{\text{interquartile range}}$$

for normal data using the *t* statistic.

Importance Sampling

• Suppose we want to estimate

$$\theta = \int h(x)f(x)dx$$

for some density f and some function h.

• Crude Mote Carlo samples X_1, \ldots, X_N from f and uses

$$\widehat{\theta} = \frac{1}{N} \sum h(X_i)$$

If the region where h is large has small probability under f then this can be inefficient.

• Alternative: Sample X_1, \ldots, X_n from g that puts more probability near the "important" values of x and compute

$$\widetilde{\theta} = \frac{1}{N} \sum h(X_i) \frac{f(X_i)}{g(X_i)}$$

Then, if g(x) > 0 when $h(x)f(x) \neq 0$,

$$E[\widetilde{\theta}] = \int h(x) \frac{f(x)}{g(x)} g(x) dx = \int h(x) f(x) dx = \theta$$

and

$$\operatorname{Var}(\widetilde{\theta}) = \frac{1}{N} \int \left(h(x) \frac{f(x)}{g(x)} - \theta \right)^2 g(x) dx = \frac{1}{N} \left(\int \left(h(x) \frac{f(x)}{g(x)} \right)^2 g(x) dx - \theta^2 \right)$$

The variance is minimized by $g(x) \propto |h(x)f(x)|$

Importance Weights

- Importance sampling is related to stratified and weighted sampling in sampling theory.
- The function w(x) = f(x)/g(x) is called the *weight function*.
- Alternative estimator:

$$\theta^* = \frac{\sum h(X_i)w(X_i)}{\sum w(X_i)}$$

This is useful if f or g or both are unnormalized densities.

- Importance sampling can be useful for computing expectations with respect to posterior distributions in Bayesian analyses.
- Importance sampling can work very well if the weight function is bounded.
- Importance sampling can work very poorly if the weight function is unbounded—it is easy to end up with infinite variances.

Computing Tail Probabilities

- Suppose $\theta = P(X \in R)$ for some region *R*.
- Suppose we can find g such that f(x)/g(x) < 1 on R. Then

$$\widetilde{\theta} = \frac{1}{N} \sum \mathbb{1}_R(X_i) \frac{f(X_i)}{g(X_i)}$$

and

$$\operatorname{Var}(\widetilde{\theta}) = \frac{1}{N} \left(\int_{R} \left(\frac{f(x)}{g(x)} \right)^{2} g(x) dx - \theta^{2} \right)$$
$$= \frac{1}{N} \left(\int_{R} \frac{f(x)}{g(x)} f(x) dx - \theta^{2} \right)$$
$$< \frac{1}{N} \left(\int_{R} f(x) dx - \theta^{2} \right)$$
$$= \frac{1}{N} (\theta - \theta^{2}) = \operatorname{Var}(\widehat{\theta})$$

• For computing P(X > 2) where X has a standard Cauchy distribution we can use a shifted distribution:

```
> y <- rcauchy(10000,3)
> tt <- ifelse(y > 2, 1, 0) * dcauchy(y) / dcauchy(y,3)
> mean(tt)
[1] 0.1490745
> sd(tt)
[1] 0.1622395
```

• The asymptotic standard deviation for crude Monte Carlo is approximately

```
> sqrt(mean(tt) * (1 - mean(tt)))
[1] 0.3561619
```

• A *tilted* density $g(x) \propto f(x)e^{\beta x}$ can also be useful.

Antithetic Variates

• Suppose *S* and *T* are two unbiased estimators of θ with the same variance σ^2 and correlation ρ , and compute

$$V = \frac{1}{2}(S+T)$$

Then

$$\operatorname{Var}(V) = \frac{\sigma^2}{4}(2+2\rho) = \frac{\sigma^2}{2}(1+\rho)$$

- Choosing $\rho < 0$ reduces variance.
- Such negatively correlated pairs are called *antithetic variates*.
- Suppose we can choose between generating independent T_1, \ldots, T_N

$$\widehat{\theta} = \frac{1}{N} \sum_{i=1}^{N} T_i$$

or independent pairs $(S_1, T_1), \ldots, (S_{N/2}, T_{N/2})$ and computing

$$\widetilde{\theta} = \frac{1}{N} \sum_{i=1}^{N/2} (S_i + T_i)$$

If $\rho < 0$, then $\operatorname{Var}(\widetilde{\theta}) < \operatorname{Var}(\widehat{\theta})$.

- If T = f(U), $U \sim U[0,1]$, and f is monotone, then S = f(1-U) is negatively correlated with T and has the same marginal distribution.
- If inversion is used to generate variates, computing T from U_1, \ldots and S from $1 U_1, \ldots$ often works.
- Some uniform generators provide an option in the seed to switch between returning U_i and $1 U_i$.

Example

For estimating the expected value of the median for samples of size 10 from the Gamma(3,1) distribution:

```
> u <- matrix(runif(5000), ncol = 10)
> x1 <- qgamma(u, 3)
> x2 <- qgamma(1 - u, 3)
> md1 <- apply(x1, 1, median)
> md2 <- apply(x2, 1, median)
> sqrt(2) * sd((md1 + md2) / 2)
[1] 0.09809588
```

Control variates helps further a bit but need b = 0.2 or so.

> mn1 <- apply(x1, 1, mean)
> mn2 <- apply(x2, 1, mean)
> sqrt(2) * sd((md1 + md2 - 0.2 * (mn1 + mn2)) / 2)
[1] 0.09216334

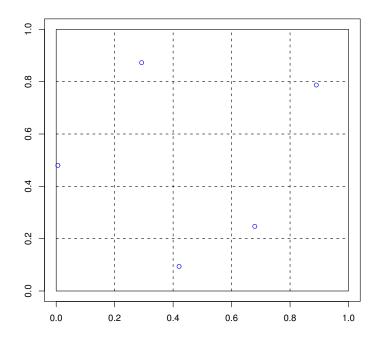
Latin Hypercube Sampling

• Suppose we want to compute

$$\boldsymbol{\theta} = E[f(U_1,\ldots,U_d)]$$

with (U_1, \ldots, U_d) uniform on $[0, 1]^d$.

- For each *i*
 - independently choose permutation π_i of $\{1, \ldots, N\}$
 - generate $U_i^{(j)}$ uniformly on $[\pi_i(j)/N, (\pi_i(j)+1)/N]$.
- For d = 2 and N = 5:



This is a random Latin square design.

• In many cases this reduces variance compared to unrestricted random sampling (Stein, 1987; Avramidis and Wilson, 1995; Owen, 1992, 1998)

Common Variates and Blocking

- Suppose we want to estimate $\theta = E[S] E[T]$
- One approach is to chose independent samples T_1, \ldots, T_N and S_1, \ldots, S_M and compute

$$\widehat{\theta} = \frac{1}{M} \sum_{i=1}^{M} S_i - \frac{1}{N} \sum_{i=1}^{N} T_i$$

- Suppose S = S(X) and T = T(X) for some X. Instead of generating independent X values for S and T we may be able to
 - use the common X values to generate pairs $(S_1, T_1), \ldots, (S_N, T_N)$
 - compute

$$\widetilde{\theta} = \frac{1}{N} \sum_{i=1}^{N} (S_i - T_i)$$

- This use of *paired comparisons* is a form of *blocking*.
- This idea extends to comparisons among more than two statistics.
- In simulations, we can often do this by using the same random variates to generate S_i and T_i . This is called using *common variates*.
- This is easiest to do if we are using inversion; this, and the ability to use antithetic variates, are two strong arguments in favor of inversion.
- Using common variates may be harder when rejection-based methods are involved.
- In importance sampling, using

$$\theta^* = \frac{\sum h(X_i)w(X_i)}{\sum w(X_i)}$$

can be viewed as a paired comparison; for some forms of h is can have lower variance than the estimator that does not normalize by the sum of the weights.

Conditioning or Rao-Blackwellization

- Suppose we want to estimate $\theta = E[X]$
- If X, W are jointly distributed, then

$$\theta = E[X] = E[E[X|W]]$$

and

$$\operatorname{Var}(X) = E[\operatorname{Var}(X|W)] + \operatorname{Var}(E[X|W]) \ge \operatorname{Var}(E[X|W])$$

- Suppose we can compute E[X|W]. Then we can
 - generate W_1, \ldots, W_N
 - compute

$$\widetilde{\theta} = \frac{1}{N} \sum E[X|W_i]$$

- This is often useful in Gibbs sampling.
- Variance reduction is not guaranteed if W_1, \ldots, W_N are not independent.
- Conditioning is particularly useful for density estimation: If we can compute $f_{X|W}(x|w)$ and generate W_1, \ldots, W_N , then

$$\widehat{f}_X(x) = \frac{1}{N} \sum f_{X|W}(x|W_i)$$

is much more accurate than, say, a kernel density estimate based on a sample X_1, \ldots, X_N .

Example

Suppose we want to estimate $\theta = P(X > t)$ where X = Z/W with Z, W independent, $Z \sim N(0, 1)$ and W > 0. Then

$$P(X > t | W = w) = P(Z > tw) = 1 - \Phi(tw)$$

So we can estimate θ by generating W_1, \ldots, W_N and computing

$$\widetilde{\theta} = \frac{1}{N} \sum (1 - \Phi(tW_i))$$

Independence Decomposition

• Suppose X_1, \ldots, X_n is a random sample from a N(0, 1) distribution and

$$\widetilde{X} = \operatorname{median}(X_1, \ldots, X_n)$$

We want to estimate $\theta = \operatorname{Var}(\widetilde{X}) = E[\widetilde{X}^2]$.

• Crude Monte Carlo estimate: generate independent medians $\widetilde{X}_1, \ldots, \widehat{X}_N$ and compute

$$\widehat{\theta} = \frac{1}{N} \sum \widetilde{X}_i^2$$

• Alternative: Write

$$\widetilde{X} = (\widetilde{X} - \overline{X}) + \overline{X}$$

 $(\widetilde{X} - \overline{X})$ and \overline{X} are independent, for example by Basu's theorem. So

$$E[\widetilde{X}^2|\overline{X}] = \overline{X}^2 + E[(\widetilde{X} - \overline{X})^2]$$

and

$$\boldsymbol{\theta} = \frac{1}{n} + E[(\widetilde{X} - \overline{X})^2]$$

• So we can estimate θ by generating pairs $(\widetilde{X}_i, \overline{X}_i)$ and computing

$$\widetilde{\theta} = \frac{1}{n} + \frac{1}{N} \sum (\widetilde{X}_i - \overline{X}_i)^2$$

• Generating these pairs may be more costly than generating medians alone.

Example

```
> x <- matrix(rnorm(10000), ncol = 10)
> mn <- apply(x, 1, mean)
> md <- apply(x, 1, median)
> # estimates:
> mean(md^2)
[1] 0.1446236
> 1 / 10 + mean((md - mn)^2)
[1] 0.1363207
> # asymptotic standard errors:
> sd(md^2)
[1] 0.2097043
> sd((md - mn)^2)
[1] 0.0533576
```

Princeton Robustness Study

D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey, *Robustness of Location Estimates*, Princeton University Press, 1972.

• Suppose X_1, \ldots, X_n are a random sample from a symmetric density

$$f(x-m)$$
.

- We want an estimator $T(X_1, \ldots, X_n)$ of *m* that is
 - accurate
 - robust (works well for a wide range of f's)
- Study considers many estimators, various different distributions.
- All estimators are unbiased and *affine equivariant*, i.e.

$$E[T] = m$$
$$T(aX_1 + b, \dots, aX_n + b) = aT(X_1, \dots, X_n) + b$$

for any constants a, b. We can thus take m = 0 without loss of generality.

Distributions Used in the Study

• Distributions considered were all of the form

$$X = Z/V$$

with $Z \sim N(0, 1)$, V > 0, and Z, V independent.

- Some examples:
 - $V \equiv 1$ gives $X \sim N(0, 1)$.
 - Contaminated normal:

$$V = \begin{cases} c & \text{with probability } \alpha \\ 1 & \text{with probability } 1 - \alpha \end{cases}$$

- Double exponential: $V \sim f_V(v) = v^{-3}e^{-v^{-2}/2}$
- Cauchy: V = |Y| with $Y \sim N(0, 1)$.

$$-t_{\mathrm{v}}: V \sim \sqrt{\chi_{\mathrm{v}}^2/\mathrm{v}}.$$

- The conditional distribution X|V = v is $N(0, 1/v^2)$.
- Study generates X_i as Z_i/V_i .
- Write $X_i = \widehat{X} + \widehat{S}C_i$ with

$$\widehat{X} = \frac{\sum X_i V_i^2}{\sum V_i^2} \qquad \qquad \widehat{S}^2 = \frac{1}{n-1} \sum (X_i - \widehat{X})^2 V_i^2$$

Then

$$T(X) = \widehat{X} + \widehat{S}T(C)$$

• Can show that $\widehat{X}, \widehat{S}, C$ are conditionally independent given V.

Estimating Variances

• Suppose we want to estimate $\theta = \operatorname{Var}(T) = E[T^2]$. Then

$$\theta = E[(\widehat{X} + \widehat{S}T(C))^2]$$

= $E[\widehat{X}^2 + 2\widehat{S}\widehat{X}T(C) + \widehat{S}^2T(C)^2]$
= $E[E[\widehat{X}^2 + 2\widehat{S}\widehat{X}T(C) + \widehat{S}^2T(C)^2|V]]$

and

$$E[\widehat{X}^2|V] = \frac{1}{\sum V_i^2}$$
$$E[\widehat{X}|V] = 0$$
$$E[\widehat{S}^2|V] = 1$$

So

$$\theta = E\left[\frac{1}{\Sigma V_i^2}\right] + E[T(C)^2]$$

- Strategy:
 - Compute $E[T(C)^2]$ by crude Monte Carlo
 - Compute $E\left[\frac{1}{\Sigma V_i^2}\right]$ the same way or analytically.

Exact calculations:

If
$$V_i \sim \sqrt{\chi_v^2/v}$$
, then
 $E\left[\frac{1}{\Sigma V_i^2}\right] = E\left[\frac{v}{\chi_{nv}^2}\right] = \frac{v}{nv-2}$

- Contaminated normal:

$$E\left[\frac{1}{\Sigma V_i^2}\right] = \sum_{r=0}^n \binom{n}{r} \alpha^r (1-\alpha)^{n-r} \frac{1}{n-r+rc}$$

Comparing Variances

If T_1 and T_2 are two estimators, then

$$\operatorname{Var}(T_1) - \operatorname{Var}(T_2) = E[T_1(C)^2] - E[T_2(C)^2]$$

We can reduce variances further by using common variates.

Tierney

Estimating Tail Probabilities

• Suppose we want to estimate

$$\begin{aligned} \theta &= P(T(X) > t) \\ &= P(\widehat{X} + \widehat{S}T(C) > t) \\ &= E\left[P\left(\sqrt{\sum V_i^2} \frac{t - \widehat{X}}{\widehat{S}} < \sqrt{\sum V_i^2}T(C) \middle| V, C\right)\right] \\ &= E\left[F_{t,n-1}\left(\sqrt{\sum V_i^2}T(C)\right)\right] \end{aligned}$$

where $F_{t,n-1}$ is the CDF of a non-central *t* distribution (*t* is not the usual non-centrality parameter).

• This CDF can be evaluated numerically, so we can estimate θ by

$$\widehat{\theta}_N = \frac{1}{N} \sum_{k=1}^N F_{t,n-1} \left(T(C^{(k)}) \sqrt{\sum V_i^{(k)^2}} \right)$$

• An alternative is to condition on V, C, \widehat{S} and use the conditional normal distribution of \widehat{X} .