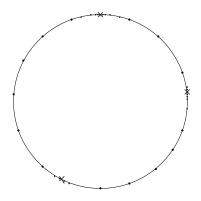
Completion of Discrete Cluster Categories of type \mathbb{A} .

Emine Yıldırım, joint with Ba Nguyen and Charles Paquette

Queen's University

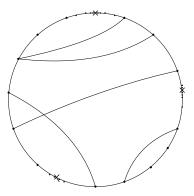
November 27, 2019

Setting



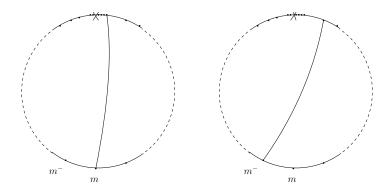
- M = a discrete set of infinitely many marked points with finitely many accumulation points
- $\operatorname{acc}(M) = a$ set of accumulation points which are two-sided.

Igusa-Todorov discrete cluster category of type A

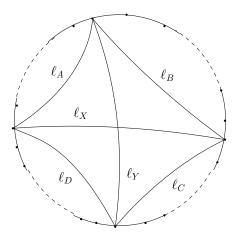


 $\mathcal{C}_{(S,M)}$

Indecomposable objects ↔ arcs between marked points in M
 Ext¹(X, Y) ≠ 0 ⇔ ℓ_X and ℓ_Y cross.

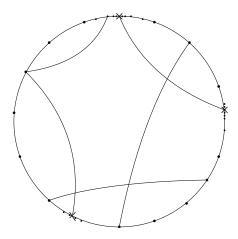


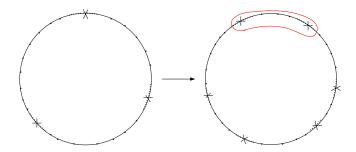
- C_(S,M) is a Hom-finite 2-Calabi-Yau triangulated category.
 m → m⁻ is a bijection in M.
- Let $\ell_X : m m'$, then $\ell_X[1] : m^- m'^-$.



 $X \to A \oplus C \to Y \to X[1]$ $Y \to B \oplus D \to X \to Y[1]$

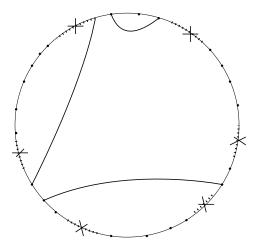
A completion of $\mathcal{C}_{(S,M)}$





- ▶ Replace each accumulation point z_i by a closed interval $[z_i^-, z_i^+]$ with marked points $\{z_{ij} \mid j \in \mathbb{Z}\}$ where $\lim_{j\to-\infty} z_{ij} = z_i^-$, $\lim_{j\to+\infty} z_{ij} = z_i^+$
- We obtain a new discrete cluster category C(S', M').

A subcategory ${\mathcal D}$



- We let D be the full additive subcategory generated by the objects where both endpoints belong to an added interval.
- Then \mathcal{D} is a triangulated subcategory.

Verdier quotient of C(S', M')

$$\blacktriangleright \Sigma = \{f : M \to N \mid \operatorname{cone}(f) \in \mathcal{D}\}.$$

 Σ is a multiplicative system compatible with triangulated structure.

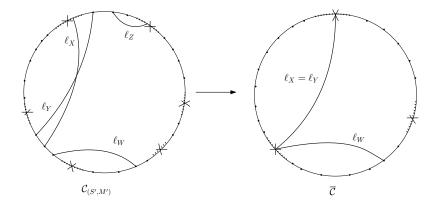
We have a quotient category

$$\overline{\mathcal{C}}$$
 := $\mathcal{C}(S', M')/\mathcal{D}$ = $\mathcal{C}(S', M')(\Sigma^{-1})$

 \blacktriangleright \overline{C} is a triangulated category.

Geometric description of $\overline{\mathcal{C}}(S, M)$

- Objects in \overline{C} are the same as objects in $\mathcal{C}(S', M')$.
- \$\ell_X \sim \ell_Y\$ in \$(S', M')\$ if \$\ell_X\$, \$\ell_Y\$ become the same when we collapse all the added intervals.
- Morphisms are some equivalence classes of left fractions X → Z ← Y.

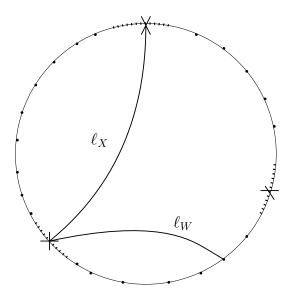


- Therefore, indecomposable objects correspond to arcs of (S, M).
- If a is an accumulation point, then $a^+ = a$.
- What is Hom(X, Y) in \overline{C} ?

Let X, Y be indecomposable objects in $\overline{\mathcal{C}}$. Then

$$\operatorname{Hom}(X, Y[1]) = \begin{cases} \mathbb{k}, & \text{if } \ell_X, \ell_Y \text{ cross;} \\ \mathbb{k}, & \text{if } \ell_X, \ell_Y \text{ share an acc. pt. and } \ell_X \rightarrow \ell_Y; \\ 0, & \text{otherwise.} \end{cases}$$

Example



 $\overline{\mathcal{C}}$

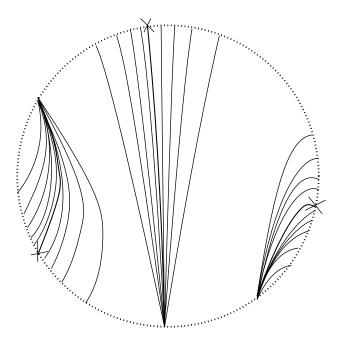
Cluster-tilting subcategories

A full additive subcategory \mathcal{T} of $\overline{\mathcal{C}}$ is cluster tilting if (i) For $X \in \overline{\mathcal{C}}$, we have

 $X \in \mathcal{T} \Leftrightarrow \operatorname{Hom}(X, \mathcal{T}[1]) = 0 \Leftrightarrow \operatorname{Hom}(\mathcal{T}, X[1]) = 0$

(ii) The subcategory \mathcal{T} is functorially finite in $\overline{\mathcal{C}}$.

• We have a description of cluster-tilting subcategories for $\overline{\mathcal{C}}$.



Link with representation theory

▶ If \mathcal{T} is cluster-tilting, then we have an equivalence $\overline{\mathcal{C}}/\mathcal{T}[1] \cong \mathrm{mod}^{\mathrm{fp}}\mathcal{T}.$

