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Setting

k algebraically closed field (usually assume char(k) = p)

X smooth projective curve over k

G finite group acting on X

ΩX sheaf of relative differentials of X over k

For integer m ≥ 1, Ω⊗mX = ΩX ⊗OX
· · · ⊗OX

ΩX︸ ︷︷ ︸
m times



General Problem

Definition

Define the space of holomorphic m-polydifferentials of X over k to
be the global sections of the sheaf Ω⊗mX .

Remarks:

I Zeroth cohomology gives global sections, denote by
H0(X ,Ω⊗mX )

I Ω⊗mX is G -equivariant =⇒ H0(X ,Ω⊗mX ) is a representation of
G

I dimkH
0(X ,Ω⊗mX ) =

{
g(X ) if m = 1

(2m − 1)(g(X )− 1) otherwise

I Ω⊗mX
∼= OX (mKX ), where KX is a canonical divisor on X

I If m = 1, refer to H0(X ,ΩX ) as the space of holomorphic
differentials



General Problem

Question (Hecke, 1928): How does H0(X ,Ω⊗mX ) decompose into a
direct sum of indecomposable representations of G?

Solved if char(k) = 0 (Chevalley and Weil, 1934)

Assume that char(k) = p

Can vary:

I Value of m

I Ramification of the cover X → X/G

I Type of group G



Previous Work

Tamagawa (1951), unramified cover X → X/G , G cyclic

Nakajima (1976), tamely ramified cover X → X/G

Bleher, Chinburg, and Kontogeorgis (preprint, 2017), m = 1, G
has cyclic Sylow p-subgroups

Karanikolopoulos (2012), m > 1, G cyclic p-group



Result

Theorem

Let k be a perfect field of prime characteristic p and let G be finite
group acting on a curve X over k . Assume that G has cyclic Sylow
p-subgroups. For m > 1, the module structure of H0(X ,Ω⊗mX ) is
determined by the inertia groups of closed points x ∈ X and their
fundamental characters.

Assume k is algebraically closed

Conlon induction theorem =⇒ assume that G = P o C , P cyclic
p-group, C cyclic group with p - |C |



Representation Theory

G = P o C , k field of characteristic p

|P| = pn, |C | = c

Representation theory of G over k is well known

Simple kG -modules are the simple kC -modules

There are c · pn isomorphism classes of indecomposable
representations of G , all uniserial

Determined by socle and dimension



Technique

Galois cover of curves X → X/G

X Y X/GWild Tame

Y = X/Q, Q = 〈σ〉, subgroup of P generated by Sylow
p-subgroups of inertia groups

Define M(j) = Kernel of action of (σ − 1)j on M

Understand

(H0(X ,Ω⊗mX ))(j+1)/(H0(X ,Ω⊗mX ))(j)

as k[G/Q]-modules



Wild Cover

π : X → Y

Get effective divisor Dj on Y so that

π∗Ω
⊗m,(j+1)
X /π∗Ω

⊗m,(j)
X

∼= OY (Dj)⊗OY
Ω⊗mY

Recall Riemann-Hurwitz formula

π∗ΩX = π∗D−1
X/Y ⊗OY

ΩY

Compare
(H0(X ,Ω⊗mX ))(j+1)/(H0(X ,Ω⊗mX ))(j)

and
H0(Y , π∗Ω

⊗m,(j+1)
X /π∗Ω

⊗m,(j)
X )



Quotients

Get injective map

(H0(X ,Ω⊗mX ))(j+1)/(H0(X ,Ω⊗mX ))(j) ↪→ H0(Y , π∗Ω
⊗m,(j+1)
X /π∗Ω

⊗m,(j)
X )

Riemann-Roch Theorem =⇒ dimensions agree

(H0(X ,Ω⊗mX ))(j+1)/(H0(X ,Ω⊗mX ))(j) ∼= H0(Y , π∗Ω
⊗m,(j+1)
X /π∗Ω

⊗m,(j)
X )

Understand
H0(Y ,OY (Dj)⊗OY

Ω⊗mY )

as a k[G/Q]-module



Tame Cover

Y → X/G tamely ramified cover with Galois group G/Q

OY (Dj)⊗OY
Ω⊗mY

∼= OY (Dj + mKY )

Riemann-Roch Theorem =⇒ H1(Y ,OY (Dj)⊗OY
Ω⊗mY ) = 0

Nakajima (1986) =⇒ H0(Y ,OY (Dj)⊗OY
Ω⊗mY ) projective

k[G/Q]-module, gives formula for Brauer character



Building H0(X ,Ω⊗mX )

Know k[G/Q]-module structure of

(H0(X ,Ω⊗mX ))(j+1)/(H0(X ,Ω⊗mX ))(j)

All indecomposable kG -module are uniserial =⇒ get kG -module
decomposition of H0(X ,Ω⊗mX )



Modular Curves

` 6= p prime, X (`) modular curve of level `, k algebraically closed,
char(k) = p

Get smooth projective model X of X (`) over k

G = PSL(2,F`) acts on X

H0(X ,Ω⊗mX ) gives space of weight 2m holomorphic cusp forms

For p = 3, proof of theorem gives method for determining the
decomposition of H0(X ,Ω⊗mX ) as a direct sum of indecomposable
kG -modules

Uses Green correspondence, known structure of G , and known
ramification of X → X/G



Modular Curves, p = 3

The decomposition of H0(X ,Ω⊗mX ) depends on m mod 6

If m ≡ 2 mod 3, then H0(X ,Ω⊗mX ) is projective

Verifies result of Köck (2004) for weakly ramified covers



Modular Curves, p = 3, m ≡ 0 mod 3
Write ` + 1 = 3n · 2 · m′′
Simple kG -modules are T0, T̃t (0 ≤ t ≤ (m′′ − 1)/2), γ1, γ2, ηG

H0(X ,Ω⊗m
X ) =

(
m − a

6
+ cm

)
P(T0)⊕

(m′′−1)/2⊕
t=0

(2m − 1)` + 5− 14m

12
P(T̃t )⊕ 〈γ1, β〉P(γ1)⊕ 〈γ2, β〉P(γ2)

⊕
⊕
η

〈ηG , β〉P(ηG )⊕ imStr(n)⊕ (1− im)U
0,3n−1 ⊕

(m′′−1)/2⊕
t=1

U
t,2·3n−1

where

m ≡ a mod 6, δm =

{
1 if m ≡ 0 mod 6

−1 if m ≡ 3 mod 6
,

cm =

{
−1 if m ≡ 0 mod 6

0 if m ≡ 3 mod 6
, im =

{
1 if m ≡ 0 mod 6

0 if m ≡ 3 mod 6
,

〈γ1, β〉 =

{
(2m−1)`−19+δm12−10m

24
if ` ≡ 1 mod 8

(2m−1)`−19−10m
24

if ` ≡ 5 mod 8

〈γ2, β〉 =

{
(2m−1)`+17−10m

24
if ` ≡ 1 mod 8

(2m−1)`+17−δm12−10m
24

if ` ≡ 5 mod 8

〈ηG , β〉 =

{
(2m−1)`−1−δm6−10m

12
if η(s) = −1

(2m−1)`−1+δm6−10m
12

if η(s) = 1
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