Mutation of type D friezes

Ana Garcia Elsener and Khrystyna Serhiyenko University of Kentucky

November 24, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spring 2016, Banff

Problem: Define and study mutation of friezes that is compatible with cluster mutation, [Baur-Faber-Graz-S-Todorov] for type *A*.

Friezes

Let *B* be a cluster-tilted algebra of finite type. A frieze is an assignment of positive integers F(M) for every element *M* of ind *B* and ind *B*[1], subject to mesh relations.

$$F(A)F(C) - \prod F(B_i) = 1$$

Frieze of type A

イロト イポト イヨト イヨト

æ

- * ロ > * 個 > * 注 > * 注 > - 注 - のへの

Bijections

Theorem. [Conway-Coxeter, Baur-Marsh, Caldero-Chapoton, BMRRT, Schiffler, ...]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Bijections

Theorem. [Conway-Coxeter, Baur-Marsh, Caldero-Chapoton, BMRRT, Schiffler, ...]

 $\left\{\begin{array}{c} \text{triangulations of} \\ \text{polygons and once-} \\ \text{punctured disks} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{cluster-tilted alg.} \\ \text{of type } A \text{ and } D \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} (\text{unitary}) \text{ friezes} \\ \text{of type } A \text{ and } D \end{array}\right\}$

Given a cluster-tilted algebra B and $M \in \text{mod } B$

$$F(M) = \sum_{N \subseteq M} \chi(\operatorname{Gr}_{\underline{\dim} N} M) \text{ and } F(P_i[1]) = 1$$

In type A we have $F(M) = \sum_{N \subseteq M} 1$

Bijections

Theorem. [Conway-Coxeter, Baur-Marsh, Caldero-Chapoton, BMRRT, Schiffler, ...]

 $\left\{\begin{array}{c} \text{triangulations of} \\ \text{polygons and once-} \\ \text{punctured disks} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{cluster-tilted alg.} \\ \text{of type } A \text{ and } D \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} (\text{unitary}) \text{ friezes} \\ \text{of type } A \text{ and } D \end{array}\right\}$

Given a cluster-tilted algebra B and $M \in \text{mod } B$

$$F(M) = \sum_{N \subseteq M} \chi(\operatorname{Gr}_{\operatorname{dim} N} M) \text{ and } F(P_i[1]) = 1$$

In type A we have $F(M) = \sum_{N \subseteq M} 1$

Problem: Define and study mutation of friezes that is compatible with cluster mutation.

Mutation of type *A* friezes

Theorem. [Baur-Faber-Graz-S-Todorov] Let *m* be an entry in a frieze of type *A* and *m'* the entry at the same place after mutation at arc *a*. Then $\delta_a(m) = m - m'$ is given by:

If $m \in \mathcal{X}$ then $\delta_a(m) = [\pi_1^+(m) - \pi_2^+(m)] [\pi_1^-(m) - \pi_2^-(m)]$ If $m \in \mathcal{Y}$ then $\delta_a(m) = -[\pi_2^+(m) - 2\pi_1^+(m)] [\pi_2^-(m) - 2\pi_1^-(m)]$ If $m \in \mathbb{Z}$ then $\delta_a(m) = \pi_s^{\downarrow}(m)\pi_p^{\downarrow}(m) + \pi_s^{\uparrow}(m)\pi_p^{\uparrow}(m) - 3\pi_p^{\downarrow}(m)\pi_p^{\uparrow}(m)$ If $m \in \mathcal{F}$ then $\delta_a(m) = 0$.

 $\pi_*(m)$ are certain projections of m onto the boundary of \mathcal{Z} . [Result relies heavily on the representation theory of modules of type \mathcal{A} .]

From type D to type A

This approach appears in [Essonana Magnani] to study cluster variables in type D as cluster variables in type A.

 Type D
 Glued Type D

 4
 2
 3
 2
 1
 4
 2
 3
 2
 1
 4
 2

 ...
 7
 5
 5
 1
 3
 7
 ...
 4
 2
 3
 2
 1
 4
 2

 ...
 7
 5
 5
 1
 3
 7
 ...
 7
 5
 5
 1
 3
 7
 ...

 ...
 6
 3
 3
 1
 3
 2
 ...
 5
 17
 8
 2
 2
 5
 17

 ...
 2
 9
 1
 3
 1
 6
 ...
 12
 27
 3
 3
 12
 ...

Next, complete this glued type D pattern to a frieze of type A such that this completion behaves well with mutations. The precise operation is easily seen on the level of surface triangulations.

From type D to type A

Let **T** be a triangulation of a once punctured disk, and let *i* be an arc of **T** attached to the puncture. Then we obtain a new polygon with triangulation by cutting **S** at *i* and gluing two copies of the cut surface at *i* as follows.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From type D to type A

The frieze of type A coming from cutting **S** has lots of symmetry $\mathcal{R} = \mathcal{R}'$ correspond to arcs in **S** attached to the puncture, $\mathcal{A} = \mathcal{A}'$, and contains the glued type D as a sub-pattern $\mathcal{A} \cup \mathcal{B}$.

Theorem. [Garcia Elsener - S] Let arc $a \in \mathbf{T}$ such that $a \neq i$. Then mutation at a of the type D frieze is obtained by ungluing the pattern $\mu_a \mu_{a'}(\mathcal{A} \cup \mathcal{B})$ in the corresponding type A frieze.

Note: $a \neq i$ is not an obstruction, because we can always choose to cut at a different arc.

(日) (同) (三) (三) (三) (○) (○)

Pattern \mathfrak{G}_{T}

Type A frieze coming from cutting **S** at i

э

Mutation of type D friezes

Theorem. [Garcia Elsener - S] Let *m* be an entry in $\mathfrak{G}_{\mathsf{T}}$ and $a \neq i$. Then $\delta_a(m) = m - m'$ is given by:

If $m \in \mathcal{X}_D$ then $\delta_a(m) = [\rho_1^+(m) - \rho_2^+(m)] [\rho_1^-(m) - \rho_2^-(m)]$ If $m \in \mathcal{Y}_D$ then $\delta_a(m) = -[\rho_2^+(m) - 2\rho_1^+(m)] [\rho_2^-(m) - 2\rho_1^-(m)]$ If $m \in \overline{\mathcal{Z}}_D$ then $\delta_a(m) = \rho_s^\downarrow(m)\rho_p^\downarrow(m) + \rho_s^\uparrow(m)\rho_p^\uparrow(m) - 3\rho_p^\downarrow(m)\rho_p^\uparrow(m)$ If $m \in \mathcal{F}_D$ then $\delta_a(m) = 0$. If $m \in \mathcal{I}$ then $m' = \rho_R^+(m)'\rho_A^+(m)' + \rho_R^-(m)'\rho_A^-(m)'$.

 $\rho_*(m)$ are certain projections of m onto the boundary of \mathcal{Z}_D or \mathcal{R} or \mathcal{A} .

Question: Can we realize this operation of going from type D to type A on the level of the corresponding module categories?

Thank you!