Mutation of type D friezes

Ana Garcia Elsener and Khrystyna Serhiyenko University of Kentucky

November 24, 2019

Spring 2016, Banff

Problem: Define and study mutation of friezes that is compatible with cluster mutation, [Baur-Faber-Graz-S-Todorov] for type A.

Friezes

Let B be a cluster-tilted algebra of finite type. A frieze is an assignment of positive integers $F(M)$ for every element M of ind B and ind $B[1]$, subject to mesh relations.

$$
F(A) F(C)-\prod F\left(B_{i}\right)=1
$$

Frieze of type A

$$
B=k(1 \rightarrow 2 \rightarrow 3)
$$

Frieze of type A

2		2		2		1
\cdots	3		3		1	\cdots
1		4		1		2

Frieze of type D

B \quad| $1<2$ |
| :--- |
| |
| $\psi \neq \downarrow$ |
| |
| |
| $4<4<5$ |

4		2		3		2		1		4
\ldots	7		5		5		1		3	\ldots
5		17		8		2		2		5
\cdots	6		3		3		1		3	\ldots
\ldots	2		9		1		3		1	\ldots

Bijections

Theorem. [Conway-Coxeter, Baur-Marsh, Caldero-Chapoton, BMRRT, Schiffler, ...]

frieze of type A

frieze of type D

Bijections

Theorem. [Conway-Coxeter, Baur-Marsh, Caldero-Chapoton, BMRRT, Schiffler, ...]
$\left\{\begin{array}{c}\text { triangulations of } \\ \text { polygons and once- } \\ \text { punctured disks }\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\text { cluster-tilted alg. } \\ \text { of type } A \text { and } D\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\text { (unitary) friezes } \\ \text { of type } A \text { and } D\end{array}\right\}$
Given a cluster-tilted algebra B and $M \in \bmod B$

$$
F(M)=\sum_{N \subseteq M} \chi\left(\operatorname{Gr}_{\underline{\operatorname{dim}} N} M\right) \text { and } F\left(P_{i}[1]\right)=1
$$

In type A we have $F(M)=\sum_{N \subseteq M} 1$

Bijections

Theorem. [Conway-Coxeter, Baur-Marsh, Caldero-Chapoton, BMRRT, Schiffler, ...]
$\left\{\begin{array}{c}\text { triangulations of } \\ \text { polygons and once- } \\ \text { punctured disks }\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\text { cluster-tilted alg. } \\ \text { of type } A \text { and } D\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\text { (unitary) friezes } \\ \text { of type } A \text { and } D\end{array}\right\}$
Given a cluster-tilted algebra B and $M \in \bmod B$

$$
F(M)=\sum_{N \subseteq M} \chi\left(\operatorname{Gr}_{\underline{\operatorname{dim}} N} M\right) \text { and } F\left(P_{i}[1]\right)=1
$$

In type A we have $F(M)=\sum_{N \subseteq M} 1$
Problem: Define and study mutation of friezes that is compatible with cluster mutation.

Mutation of

 type A friezes

Theorem. [Baur-Faber-Graz-S-Todorov] Let m be an entry in a frieze of type A and m^{\prime} the entry at the same place after mutation at arc a. Then $\delta_{a}(m)=m-m^{\prime}$ is given by:

If $m \in \mathcal{X}$ then $\delta_{a}(m)=\left[\pi_{1}^{+}(m)-\pi_{2}^{+}(m)\right]\left[\pi_{1}^{-}(m)-\pi_{2}^{-}(m)\right]$
If $m \in \mathcal{Y}$ then $\delta_{a}(m)=-\left[\pi_{2}^{+}(m)-2 \pi_{1}^{+}(m)\right]\left[\pi_{2}^{-}(m)-2 \pi_{1}^{-}(m)\right]$
If $m \in \overline{\mathcal{Z}}$ then $\delta_{a}(m)=\pi_{s}^{\downarrow}(m) \pi_{p}^{\downarrow}(m)+\pi_{s}^{\uparrow}(m) \pi_{p}^{\uparrow}(m)-3 \pi_{p}^{\downarrow}(m) \pi_{p}^{\uparrow}(m)$
If $m \in \mathcal{F}$ then $\delta_{a}(m)=0$.
$\pi_{*}(m)$ are certain projections of m onto the boundary of \mathcal{Z}. [Result relies heavily on the representation theory of modules of type A.]

From type D to type A

This approach appears in [Essonana Magnani] to study cluster variables in type D as cluster variables in type A.

Type D							
4	2	3	2	1	4	2	
\cdots		5	5	1	3	7	\cdots
5	17	8	2	2	5	17	
\cdots	6	3	3	1	3	2	\cdots
\cdots	2	9	1	3	1	6	\cdots

Next, complete this glued type D pattern to a frieze of type A such that this completion behaves well with mutations. The precise operation is easily seen on the level of surface triangulations.

From type D to type A

Let \mathbf{T} be a triangulation of a once punctured disk, and let i be an arc of \mathbf{T} attached to the puncture. Then we obtain a new polygon with triangulation by cutting \mathbf{S} at i and gluing two copies of the cut surface at i as follows.

From type D to type A

The frieze of type A coming from cutting \mathbf{S} has lots of symmetry $\mathcal{R}=\mathcal{R}^{\prime}$ correspond to arcs in \mathbf{S} attached to the puncture, $\mathcal{A}=\mathcal{A}^{\prime}$, and contains the glued type D as a sub-pattern $\mathcal{A} \cup \mathcal{B}$.

Theorem. [Garcia Elsener - S] Let arc $a \in \mathbf{T}$ such that $a \neq i$. Then mutation at a of the type D frieze is obtained by ungluing the pattern $\mu_{a} \mu_{a^{\prime}}(\mathcal{A} \cup \mathcal{B})$ in the corresponding type A frieze.
Note: $a \neq i$ is not an obstruction, because we can always choose to cut at a different arc.

Pattern $\mathfrak{G}_{\mathbf{T}}$

Type A frieze coming from cutting \mathbf{S} at i

Pattern $\mathfrak{G}_{\mathbf{T}}$: only has entries of type D frieze

Mutation of type D friezes

Theorem. [Garcia Elsener - S] Let m be an entry in $\mathfrak{G}_{\mathrm{T}}$ and $a \neq i$.
Then $\delta_{a}(m)=m-m^{\prime}$ is given by:
If $m \in \mathcal{X}_{D}$ then $\delta_{a}(m)=\left[\rho_{1}^{+}(m)-\rho_{2}^{+}(m)\right]\left[\rho_{1}^{-}(m)-\rho_{2}^{-}(m)\right]$
If $m \in \mathcal{Y}_{D}$ then $\delta_{a}(m)=-\left[\rho_{2}^{+}(m)-2 \rho_{1}^{+}(m)\right]\left[\rho_{2}^{-}(m)-2 \rho_{1}^{-}(m)\right]$
If $m \in \overline{\mathcal{Z}}_{D}$ then $\delta_{a}(m)=\rho_{s}^{\downarrow}(m) \rho_{p}^{\downarrow}(m)+\rho_{s}^{\uparrow}(m) \rho_{p}^{\uparrow}(m)-3 \rho_{p}^{\downarrow}(m) \rho_{p}^{\uparrow}(m)$
If $m \in \mathcal{F}_{D}$ then $\delta_{a}(m)=0$.
If $m \in \mathcal{I}$ then $m^{\prime}=\rho_{R}^{+}(m)^{\prime} \rho_{A}^{+}(m)^{\prime}+\rho_{R}^{-}(m)^{\prime} \rho_{A}^{-}(m)^{\prime}$.
$\rho_{\star}(m)$ are certain projections of m onto the boundary of \mathcal{Z}_{D} or \mathcal{R} or \mathcal{A}.

Question: Can we realize this operation of going from type D to type A on the level of the corresponding module categories?

Thank you!

