Tracking the Variety of Interleavings

David Meyer

Smith College Joint work with O. Acharya, S. Li and J. Noory

November 24, 2019

David Meyer

Tracking the Variety of Interleavings

Persistence Modules

A **persistence module** is a representation of a partially ordered set P with values in a category \mathcal{D} .

That is, if D is a category and P is a poset, a persistence module M for P with values in D assigns

- an object M(x) of \mathcal{D} for each $x \in P$, and
- a morphism $M(x \le y)$ in $Mor_{\mathcal{D}}(M(x), M(y))$ for each $x, y \in P$ with $x \le y$,

satisfying

$$M(x \leq z) = M(y \leq z) \circ M(x \leq y)$$
 when $x, y, z \in P$ with $x \leq y \leq z$.

Persistence Modules and TDA

Persistent homology uses persistence modules to attempt to discern the genuine topological properties of a finite data set.

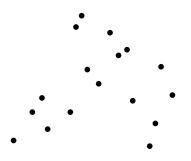
When P is a finite poset and D is K-mod, persistence modules for P are modules for the poset algebra of P.

Introduction/Applications

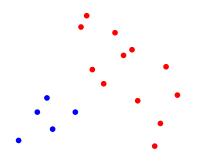
Persistent homology has been recently used:

- to study atomic configurations (Hiraoka, Nakamura, Hirata)
- to study viral evolution (Chan, Carlsson, Rabadan)
- to analyze neural activity (Giusti, Pastalkova, Curto)
- to filter noise in sensor networks (Baryshnikov, Ghrist) etc.

Example (Ambiguous H_0)

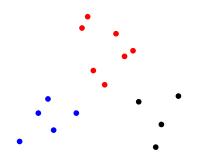


Example (Ambiguous H_0)

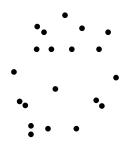


David Meyer Tracking the Variety of Interleavings

Example (Ambiguous H_0)

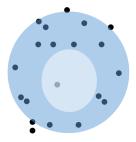


Another Example (Ambiguous H_1)



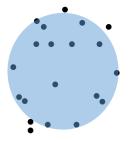
David Meyer Tracking the Variety of Interleavings

Another Example (Ambiguous H_1)



David Meyer Tracking the Variety of Interleavings

Another Example (Ambiguous H_1)



David Meyer Tracking the Variety of Interleavings

Persistence Modules	Two Metrics	Algebraic Stability	Variety of Interleavings

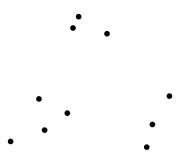
So what do we do?

- Suppose X is a finite data set contained in a metric space with undetermined topological features.
- The data set is associated to its Vietoris-Rips complex $(C_{\epsilon})_{\epsilon \geq 0}$
- When $\delta < \epsilon$, $C_{\delta} \hookrightarrow C_{\epsilon}$, thus $\epsilon \to C_{\epsilon}$ is a persistence module.
- We take an appropriate homology, depending on which topological features we wish to distinguish between.

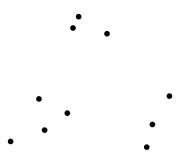
Summary of Persistent Homology

- As *e* increases generators for homology are born and die, as cycles appear and become boundaries.
- One takes the viewpoint that true topological features of the data set can be distinguished from noise by looking for intervals which "persist" for a long period of time.
- Informally, we "keep" an indecomposable summand when it corresponds to a wide interval. Conversely, cycles which disappear quickly after their appearance are interpreted as noise and disregarded.
- By passing to the jump discontinuities of the Vietoris-Rips complex, one obtains a representation of equioriented A_n.

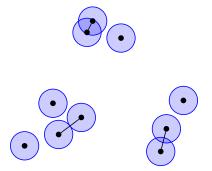
Persistence Modules	Two Metrics	Algebraic Stability	Variety of Interleavings
Example			



Persistence Modules	Two Metrics	Algebraic Stability	Variety of Interleavings
Example			



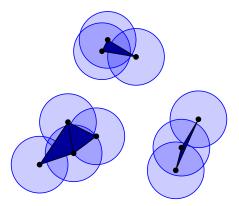
Example



David Meyer

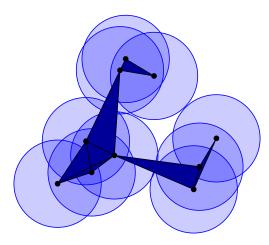
Smith College

Example



David Meyer Tracking the Variety of Interleavings

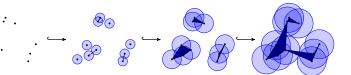
Example



David Meyer

Smith College

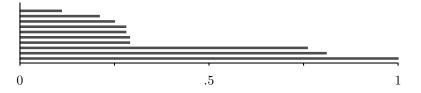
As ϵ increases, we obtain an inclusion of simplicial complexes



David Meyer

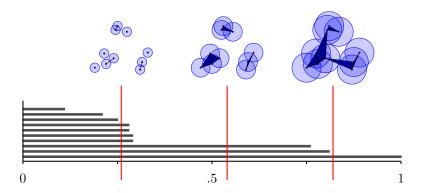
Persistence Modules	Two Metrics	Algebraic Stability	Variety of Interleavings
Example			

We take homology



David Meyer

H_0 Example



Bottleneck Metric

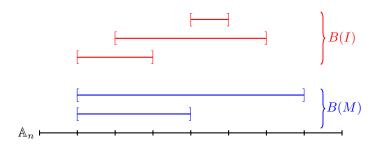
A **bottleneck metric** is a way of defining a metric on the collection of finite multisubsets of a fixed set Σ .

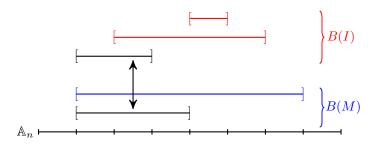
A bottleneck metric comes from

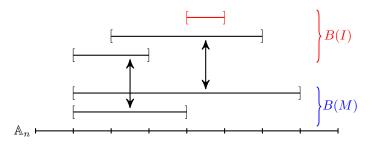
- a metric d on Σ, and
- a function $W:\Sigma
 ightarrow (0,\infty)$, satisfying

 $|W(\sigma) - W(\tau)| \le d(\sigma, \tau)$, for all $\sigma, \tau \in \Sigma$.

Our multisubsets will be the indecomposable summands of a persistence module with their multiplicities.

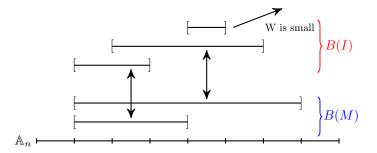






David Meyer

Smith College



Interleaving Metrics

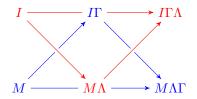
The other metric is an **interleaving metric**. An interleaving metric comes from

- a monoid *T*(*P*) that acts on the category of generalized persistence modules, and
- a metric *d'* on *P*.

The metric allows us to assign a notion of height to the elements of $\mathcal{T}(P)$.

Interleaving Metrics

The interleaving distance between two persistence modules I and *M* is $\inf\{\epsilon : \exists \Lambda, \Gamma \in \mathcal{T}(P), h(\Lambda), h(\Gamma) \le \epsilon\}$, and one obtains the commutative diagram below



Algebraic Stability

Theorem (Isometry Theorem)

Let $P = [0, \infty)($ or $\mathbb{R}), ([0, \infty), +) \subseteq \mathcal{T}(P)$. Then the interleaving metric D equals the bottleneck metric D_B .

This suggests a representation-theoretic analogue of the isometry theorem.

Let P be a finite poset and let K be a field. Choose a full subcategory C of persistence modules, and let

- D be the interleaving metric restricted to C, and
- D_B be a bottleneck metric on C which incorporates some algebraic information.

Prove that $Id : (\mathcal{C}, D) \rightarrow (\mathcal{C}, D_B)$ is an isometry or a contraction.

Some Algebraic Stability Theorems

- Isometry Theorem for a class of finite posets which contains finite totally ordered sets (Meehan, M.)
- Isometry Theorems for equioriented \mathbb{A}_n which makes precise the way in which persistence modules for finite totally ordered sets approximize those in data analysis (Meehan, M.)
- Stability Theorems for arbitrary orientations of A_n which make use of the A-R quiver. (Meehan, M.)

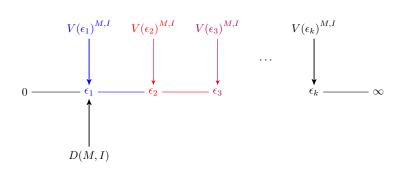
Back to Interleavings

Let
$$P = \mathbb{R}, M = \bigoplus_{i=1}^{m} [a_i, b_i), I = \bigoplus_{j=1}^{n} [c_j, b_j).$$

For any $\epsilon \ge 0$, the collection of ϵ -interleavings between M and I is a variety $V(\epsilon)^{M,I}$.

For example, $\{(A, A^{-1})|A \in Gl_2(K)\}, \{x, y, z, w|xz = 1, w = 0\}$ are two such varieties.

The Progression of Varieties



David Meyer

Smith College

Questions

Question: Can the progression of varieties be interpreted in a meaningful way as a persistence module with values in varieties?

Question: Can more information about M and I be extracted from the full progression of varieties than from the interleaving distance?

David Meyer Tracking the Variety of Interleavings

Persisten	nce Modules	Two Metrics	Algebraic Stab	lity	Variety of Interleav	/ings
Exa	mple					
	Let $M = [a, b), I$ $D(M, I) = min \{$	= [c , d). Then, max{ $ a - c , b - c $	- d }, ma	$ax\{\frac{b-a}{2},\frac{d-c}{2}\}$	}.	
	Theorem (Achary	a, Li, M., Noory)				
l	Let $m_2 = max\{ a $	$ b-c , b-d \}, m_2$	$= \max\{\frac{L}{2}$	$\frac{b-a}{2}, \frac{d-c}{2}\}.$ The second	hen,	
		$\Rightarrow V(\epsilon_1)^{M,l}$ is a l s hyperbola - plane:				
	■ m ₁ > m ₂ ⇐ is point - lin	$\Rightarrow V(\epsilon_1)^{M,I}$ is a μ e - point	point 🗮	> the full pro	gression	

• $m_1 = m_2 \iff V(\epsilon_1)^{M,l}$ is a line \iff the full progression is line - point

David Meyer

THANK YOU!

David Meyer

Smith College