$\tau\textsc{-}{\mbox{tilting finite algebras}}$

A finite dimensional algebra A is τ -**tilting finite** if there are only finitely many finite dimensional silting A-modules, up to equivalence.

$\tau\textsc{-}{\mbox{tilting finite algebras}}$

If *A* is τ -tilting finite, then

• every torsion class in Mod *A* is of the form Gen *T* for a finite dimensional silting module *T*

$\tau\textsc{-}{\mbox{tilting finite algebras}}$

If *A* is τ -tilting finite, then

- every torsion class in Mod *A* is of the form Gen *T* for a finite dimensional silting module *T*
- the map α induces a bijection

$$\left(\begin{array}{c} \text{fin. dim.} \\ \text{silting } A\text{-modules} \end{array}\right) / \sim \longrightarrow \left\{\begin{array}{c} \text{pseudoflat} \\ \text{ring epis } A \to B \end{array}\right\} / \sim$$

$\tau\text{-}\mathrm{TILTING}$ finite algebras

Theorem (A-Marks-Vitória). The following are equivalent for a finite dimensional algebra *A*.

- (i) A is τ -tilting finite.
- (ii) All silting *A*-modules are finite dimensional, up to equivalence.

$\tau\text{-}\mathrm{TILTING}$ finite algebras

Theorem (A-Marks-Vitória). The following are equivalent for a finite dimensional algebra *A*.

- (i) A is τ -tilting finite.
- (ii) All silting *A*-modules are finite dimensional, up to equivalence.
- (iii) There are only finitely many pseudoflat ring epimorphisms with domain *A*, up to equivalence.

HEREDITARY ALGEBRAS

Theorem (A-Marks-Vitória).

If *A* is a finite dimensional hereditary algebra, there is a bijection

$$\left\{\begin{array}{c} \text{minimal} \\ \text{silting } A\text{-modules} \end{array}\right\} / \sim \longrightarrow \left\{\begin{array}{c} \text{homological} \\ \text{ring epis } A \to B \end{array}\right\} / \sim$$

HEREDITARY ALGEBRAS

Theorem (A-Marks-Vitória).

If *A* is a finite dimensional hereditary algebra, there is a bijection

$$\left\{\begin{array}{c} \text{minimal} \\ \text{silting } A\text{-modules} \end{array}\right\} / \sim \longrightarrow \left\{\begin{array}{c} \text{homological} \\ \text{ring epis } A \to B \end{array}\right\} / \sim$$

The inverse map:

$$T = B \oplus \operatorname{Coker} \lambda \qquad \nleftrightarrow \qquad \lambda : A \to B$$

t-STRUCTURES

A pair of classes $(\mathcal{U}, \mathcal{V})$ in D(A) is a *torsion pair* if

- $\bullet \ \mathcal{U}$ and \mathcal{V} are closed under direct summands,
- Hom_{D(A)}(\mathcal{U}, \mathcal{V}) = 0, and
- for any object $X \in D(A)$ there is a triangle

$$U \to X \to V \to U[1]$$

in D(A) with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.

t-STRUCTURES

- A torsion pair $(\mathcal{U},\mathcal{V})$ is
 - a *t*-structure if $\mathcal{U}[1] \subseteq \mathcal{U}$
 - *compactly generated* if there is a set $S \subseteq K^b(\text{proj} A)$ such that

$$\mathcal{V} = \operatorname{Ker} \operatorname{Hom}_{D(A)}(\mathcal{S}, -).$$

t-STRUCTURES

- A torsion pair $(\mathcal{U}, \mathcal{V})$ is
 - a *t*-structure if $\mathcal{U}[1] \subseteq \mathcal{U}$
 - *compactly generated* if there is a set $S \subseteq K^b(\text{proj} A)$ such that

$$\mathcal{V} = \operatorname{Ker} \operatorname{Hom}_{D(A)}(\mathcal{S}, -).$$

Every silting complex σ in K^{*b*}(Proj*A*) gives rise to a compactly generated t-structure ($\sigma^{\perp>0}, \sigma^{\perp\leq 0}$) in D(A).

Let A be a finite dimensional hereditary algebra, and let

 $\cdots \leq \lambda_{n-1} \leq \lambda_n \leq \lambda_{n+1} \leq \cdots$

be a chain of homological ring epimorphisms $\lambda_n : A \to B_n$,

Let *A* be a finite dimensional hereditary algebra, and let

$$\cdots \leq \lambda_{n-1} \leq \lambda_n \leq \lambda_{n+1} \leq \cdots$$

be a chain of homological ring epimorphisms $\lambda_n : A \to B_n$, \mathcal{X}_n the corresponding bireflective subcategories,

Let *A* be a finite dimensional hereditary algebra, and let

$$\cdots \leq \lambda_{n-1} \leq \lambda_n \leq \lambda_{n+1} \leq \cdots$$

be a chain of homological ring epimorphisms $\lambda_n : A \to B_n$, \mathcal{X}_n the corresponding bireflective subcategories, \mathcal{D}_n the corresponding minimal silting classes.

Let A be a finite dimensional hereditary algebra, and let

$$\cdots \leq \lambda_{n-1} \leq \lambda_n \leq \lambda_{n+1} \leq \cdots$$

be a chain of homological ring epimorphisms $\lambda_n : A \to B_n$, \mathcal{X}_n the corresponding bireflective subcategories, \mathcal{D}_n the corresponding minimal silting classes.

Then

there is a compactly generated t-structure $(\mathcal{U}, \mathcal{V})$ in D(A) with

 $\mathcal{U} = \{ X \in D(A) \mid H^{-n}(X) \in \mathcal{D}_n \cap \mathcal{X}_{n+1} \text{ for all } n \in \mathbb{Z} \}.$

Finite chains

$$0_A \leq \lambda_1 \leq \cdots \leq \lambda_m \leq \mathrm{id}_A$$

give rise to t-structures of the form

$$(\sigma^{\perp_{>0}},\sigma^{\perp_{\leq 0}})$$

for a silting complex σ in $K^b(\operatorname{Proj} A)$.

The silting complex is

$$\sigma = \bigoplus \operatorname{Cone}(\mu_n)[n]$$

where

HEREDITARY ALGEBRAS: COMPACT SILTING

Theorem (A-Hrbek). Let A be a finite dimensional hereditary algebra. The compact silting complexes in $K^b(\text{proj}A)$ correspond bijectively to finite chains

$$0_A \le \lambda_1 \le \dots \le \lambda_m \le \mathrm{id}_A$$

of finite-dimensional homological ring epimorphisms.

THE KRONECKER ALGEBRA

$$A = kQ$$

path algebra of the quiver

$$Q: \bullet \xrightarrow{\alpha}_{\beta} \bullet$$

over a field $k = \overline{k}$.

THE KRONECKER ALGEBRA: Auslander-Reiten quiver

THE KRONECKER ALGEBRA: homological ring epimorphisms

THE KRONECKER ALGEBRA: t-structures

Theorem (A-Hrbek). Every compactly generated t-structure $(\mathcal{U}, \mathcal{V})$ in D(A)

corresponds to a chain of homological ring epimorphisms

$$\ldots \leq \lambda_n \leq \lambda_{n+1} \leq \ldots$$

or

Happel-Reiten-Smalø-tilt of the torsion pair (Add q, KerHom_A(q, -)), up to shift.

THE KRONECKER ALGEBRA: silting complexes

Theorem (A-Hrbek). Every silting complex belongs to the following list, up to shift and equivalence:

THE KRONECKER ALGEBRA: silting complexes

Theorem (A-Hrbek). Every silting complex belongs to the following list, up to shift and equivalence:

- $B \oplus \operatorname{Coker} \lambda[m]$,
 - $\lambda : A \rightarrow B$ universal localization at *M* in **p** or **q**, $m \ge 0$;

Theorem (A-Hrbek). Every silting complex belongs to the following list, up to shift and equivalence:

• $B \oplus \operatorname{Coker} \lambda[m]$, $\lambda : A \to B$ universal localization at M in **p** or **q**, $m \ge 0$;

•
$$B_0 \oplus \bigoplus_{n=0}^m (\bigoplus_{U_n \smallsetminus U_{n+1}} S_\infty[n]),$$

where $\mathbb{P}^1(k) \supseteq U_0 \supseteq U_1 \supseteq \cdots \supseteq U_m \supseteq 0,$
 $\lambda_n : A \to B_n =$ universal localization at modules in U_n ;

Theorem (A-Hrbek). Every silting complex belongs to the following list, up to shift and equivalence:

• $B \oplus \operatorname{Coker} \lambda[m]$, $\lambda : A \to B$ universal localization at M in **p** or **q**, $m \ge 0$;

•
$$B_0 \oplus \bigoplus_{n=0}^m (\bigoplus_{U_n \setminus U_{n+1}} S_\infty[n]),$$

where $\mathbb{P}^1(k) \supseteq U_0 \supseteq U_1 \supseteq \cdots \supseteq U_m \supseteq 0,$
 $\lambda_n : A \to B_n =$ universal localization at modules in U_n ;

• the tilting module *L* with tilting class $\mathcal{D} = \text{KerHom}_A(-, \mathbf{p})$.