
Finding Needles in Heterogeneous Haystacks

Bijaya Adhikari1, Liangyue Li2, Nikhil Rao2, Karthik Subbian2

1Department of Computer Science, University of Iowa.
2Amazon.

Email: bijaya-adhikari@uiowa.edu, [liliangy, nikhilsr, ksubbian]@amazon.com

Abstract
Due to intense competition and lack of real estate on the
front page of large e-commerce platforms, sellers are some-
times motivated to garner non-genuine signals (clicks, add-
to-carts, purchases) on their products, to make them appear
more appealing to customers. This hurts customers’ trust on
the platform, and also hurts genuine sellers who sell their
items without looking to game the system. While it is im-
portant to find the sellers and the buyers who are colluding
to garner these non-genuine signals, doing so is highly non-
trivial. Firstly, the set of bad actors in the system is a very
small fraction of all the buyers/sellers on the platform. Sec-
ondly, bad actors “hide” with the good ones, making them
hard to detect. In this paper, we develop CONGCN, a context
aware heterogeneous graph convolutional network to detect
bad actors on a large heterogeneous graph. While our method
is motivated by abuse detection in e-commerce, the method is
applicable to other areas such as computational biology and
finance, where large heterogeneous graphs are pervasive, and
the amount of labeled data is very limited. We train CON-
GCN via novel sampling methods, and context aware mes-
sage passing in a semi-supervised fashion to predict dishon-
est buyers and sellers in e-commerce. Extensive experiments
show that our method is effective, beating several baselines;
generalizable to an inductive setting and highly scalable.

Introduction
Large online e-commerce stores such as Alibaba and Ama-
zon allow merchants (sellers) to sell their products to a large
numbers of customers (buyers). Buyers discover items they
want to purchase via a search functionality on these plat-
forms. These stores run large scale machine learning meth-
ods to rank items according to some notion of how rele-
vant an item is for a customer query. A seller can maximize
the sale of a product by ensuring the product ranks high in
search results and garnering good reviews and ratings from
the buyers. Higher search ranking adds product visibility,
while good reviews and ratings help win customer trust, and
eventually helps boost sales.

In rare cases, intense competition for real estate in the
front page of e-commerce platforms motivates sellers to pro-
mote their products using unfair means. Some of these sell-
ers try to promote their products by colluding with dishonest
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Figure 1: An example collusion occurring in e-commerce
stores. Dishonest sellers (in orange) sell their products to a
non-genuine buyer (in red), who in turn leaves fake 5-star
rating for the product and great reviews for the sellers. The
dashed edges represent purchase/sale relationship and the
solid line represents buyers’ feedback on sellers.

buyers to provide fake reviews and/or ratings and by gen-
erating non-genuine behavioral signals such as clicks, add-
to-carts and purchases on their products. These fake signals
get propagated to the search engine, which subsequently up-
ranks items that are of poorer quality. Meanwhile, genuine
products get demoted and honest sellers suffer. Moreover,
this behavior also means that honest buyers are exposed
to poor quality and sometimes irrelevant items in response
to their queries. Products promoted via unfair means could
erode customers’ trust in the search system. Hence, it is crit-
ical to identify dishonest sellers, buyers (who collude with
these sellers), and their activities in a timely manner. Failure
to do so will result in a loss for honest merchants and promo-
tion of irrelevant and low quality products. This ultimately
leads to a bad customer experience for the e-commerce store.
An example collusion between dishonest sellers and buyers
is depicted in Figure 1. The e-commerce store should iden-
tify such accounts with alacrity, and furthermore be robust
to potential actors looking to game the search engine.



There are several challenges that arise in detecting bad
actors. Since dishonest buyers/sellers look to “blend in”
with honest ones, simple features that can be gleaned from
anonymized logs cannot be used to detect them. Specifically,
standard outlier detection methods (Chandola, Banerjee, and
Kumar 2009), be it classification based, nearest neighbor
based or clustering based, might fail to identify such dishon-
est actors. Furthermore, even when labeled data is present,
the fraction of known bad actors is several orders of magni-
tude lower than good actors in these settings, making it hard
to apply classification based methods out of the box.

In most cases for fraud detection, one not only has fea-
tures from buyer/seller logs but also additional structural in-
formation. In the context of detecting dishonest buyers and
sellers in e-commerce stores, buyer/seller interactions form
a large, heterogeneous graph. The nodes of the graph are the
buyers, sellers and items. Edges correspond to various inter-
actions between these entities, e.g., purchase, sales, review,
etc. However, there typically is a lack of homophily in the
graph: dishonest accounts associate more with honest buy-
ers/sellers than the dishonest ones. This should not be too
surprising, since as mentioned above, a dishonest seller is
not only motivated to collude with buyers to get fake sig-
nals, but has to do this so as to escape detection from sim-
ple anomaly detection methods. In other words, a dishonest
seller has to ensure that their actions go undetected so they
can continue being dishonest without facing repercussions.
The lack of homophily mentioned above also renders graph
based methods such as belief propagation (Eswaran et al.
2017; Yedidia, Freeman, and Weiss 2001), label propaga-
tion (Zhu and Ghahramani 2002), and personalized pager-
ank (Lofgren et al. 2014) ineffective.

In this paper, we present a novel context-aware hetero-
geneous graph convolutional network, CONGCN, to ad-
dress the above challenges for detecting dishonest actors
in e-commerce. We make use of a large-scale attributed
heterogeneous graph of buyers, products, and sellers from
anonymized users’ purchase, review, and feedback activi-
ties.

Our CONGCN bears a few distinct characteristics. First,
in a context-aware manner, we learn separate representations
for nodes in the graph from different contexts, and fuse them
to have a final representation. Second, we design a hetero-
geneous graph convolutional network to perform convolu-
tional operations respecting the heterogeneity of different
edge types within each context. Third, we propose to sam-
ple the neighborhood of a node in a label-aware manner,
employing a biased sampling model. This strategy allows
us to always include labeled nodes that not only scales up
the computation, but also amplifies the limited signal present
due to the lack of labeled data. Extensive experiments on a
large, real world dataset show that CONGCN outperforms
several baseline methods that consider only features, only
the heterogeneous graph, or even standard graph neural net-
works that take both into account.

Problem Setup
In this section, we formally set up the problem we want to
solve. We will introduce notations that we will use for the

rest of the paper, and also setup some preliminaries that will
be useful in the sequel.

We assume we are given an attributed heterogeneous
graph: G = (V, E , T ,R,F), where V and E are the vertex
and edge sets respectively. T and R refer to the set of node
types and edge types in the graph respectively. Each node
v ∈ V has a mapping φ : V → T to its node type and each
edge e ∈ E has a mapping τ : E → R to its relation type.
The attribute set F = {Ft|t ∈ T } consists of attribute ma-
trix for nodes of type t ∈ T . Ft is constructed by stacking
attributes of all nodes v, such that its type, φ(v) is t. Note
that the size of attributes (dimension of vector) could be of
different size for different node types.

A small fraction of the nodes in the graph are labeled. Fur-
thermore, any labeled nodes only belong to one class. In our
setup, we know that a small set of sellers collude with buy-
ers to obtain inappropriate signals to game the search plat-
form. Our aim is to use this data to identify if there are other
sellers/buyers in the graph that are also dishonest. Note that
there are two challenges: a) a very small fraction of nodes
will be dishonest, and a further smaller fraction of this is ac-
tually labeled, and b) we do not have any labels for known
honest sellers/buyers. This makes it a Positive-Unlabeled
(PU) learning problem (Li et al. 2014) with a very small la-
beled dataset. We let L ⊂ V be the set of labeled nodes, and
|L| � |V|. Throughout this paper, we let y(v) = 1 be the
label corresponding to dishonest sellers/buyers in the graph.
Our setup indicates that y(v) = 1 ∀v ∈ L. Our problem can
be stated formally below:

Problem 1 Fraud detection in heterogeneous networks
Given: the attributed heterogeneous graph G =
(V, E , T ,R,F); the labeled node sets L = {y(v) =
1|v ∈ V}, |L| � |V|

Predict: the fraudulence score of remaining nodes in V\L

Data
Next, we briefly describe the dataset we use for our prob-
lem. We use anonymized buyer and seller logs from a
popular e-commerce store over a random but continuous
period of 6 months. We construct a heterogeneous graph
G = (V, E , T ,R,F) between sellers, buyers and items from
three contexts, namely, purchase, review and feedback. Table
2 details the various node and edge types in each of the con-
texts. In purchase context, buyers purchase a product from
a seller that lists this particular product to be sold. In re-
view context, buyers leave a review for a product, and in
feedback context, buyers leave feedback directly for a seller.
Note that the product reviews and seller feedbacks can be
positive as well as negative, while the purchase and listing
relationships are unsigned. Different edges/relations occur
at different contexts and the edges between the same type
of nodes in different context has entirely different seman-
tics. For example, an edge between buyer and seller in the
context of purchase and an edge between the same nodes
in the context of feedback are different. In addition to the
graph relationships, we also obtain buyer, seller, and prod-
uct attributes from the logs based on order history. Buyers,
sellers, and products each have attributes of different size.



Sampling
To ensure that we have a manageable and at the same time a
representative dataset to train models on, we need to sample
the data from the logs we collect. Note that a random sam-
pling will not work here since that will not preserve neigh-
borhood of known dishonest nodes. On the other hand, an
extremely localized sampling strategy will not account for
the global graph structure that we might want to capture.
The structural information of the network encodes various
higher level information. Hence, preserving it is critical.

To overcome the challenges mentioned above, we em-
ployed a variant of snowball sampling (Goodman 1961) to
obtain a meaningful sampled network. Pseudocode for the
sampling strategy we employed is detailed in Algorithm 1.
We first perform a Breadth First Search (BFS) using the
nodes v ∈ L as the seed nodes. Then, we uniformly sam-
ple a set of nodes v ∈ V\L, and perform BFS on these as
seed nodes. The union of the two sets are thus obtained, and
the induced subgraph acts as the dataset we use.

Algorithm 1: Sampling algorithms for creating
training data

Result: G(V, E , T ,R,F)
G = ∅, F = fraudulent seed nodes,
H = honest seed nodes;

for each of Purchase, Review, and Feedback logs do
G′ ← ∅ ;
for each v ∈ F do

G′ ← G′ ∪ BFS from v ;
end
for each v ∈ H do

G′ ← G′ ∪ BFS from v ;
end
G← G ∪ G′;
Filter out nodes without attributes from G ;

end

The final dataset we have post-sampling has about 16MM
nodes, of which almost 13MM are buyers, 2.7MM products
and the rest are sellers. There are over 40MM edges in the
network. We have summarized our dataset in Table 1.

Next, we tried to quantify the collusion evidence seen in
the cases above. One way to measure this is by quantifying
the rate at which dishonest buyers and sellers tend to con-
nect with each other. To this end, we computed the fraction
of dishonest and honest neighbors adjacent to each dishon-
est buyer in the network. Then, we computed the average of
these fractions over all dishonest buyers. We then repeated
the same process for the honest buyers, dishonest sellers, and
honest sellers. Table 3 summarizes our result. We see from
Table 3 that dishonest sellers connect with both dishonest
and honest buyers. Dishonest buyers on the other hand do
tend to connect with dishonest sellers, indicating collusion.

Proposed Method: CONGCN
We propose to solve our node labeling problem (Problem 1)
by designing a deep neural network, and train the network

Table 1: Summary of our dataset used.

Data property Value
Node types {buyer, seller, product}
Edge types See table 2

Total no. of nodes (post sampling) 16 M
Total no. of edges (post sampling) 40 M

No. of buyers 13 M
No. of products 2.7 M
No. of sellers 124 K

Buyer attribute length 54
Seller attribute length 154

Product attribute length 108

Table 2: The contexts and types of edges present in our
dataset. Note that there are seven distinct types of relations.

Context Edge Types

Purchase buyer
purchase from−−−−−−−→ seller, product

sold by−−−−→ seller, buyer
purchase−−−−→ product

Review buyer like−−→ product, buyer dislike−−−→ product

Feedback buyer like−−→ seller, buyer dislike−−−→ seller

to predict the bad actors in the dataset. As mentioned ear-
lier, we have a set L ⊂ V of nodes which are known to
be dishonest, with |L| � |V|. Following our earlier defini-
tion, we have y(v) = 1 for nodes in L. Following earlier
PU learning works, we assume a sample of nodes in V\L
have y(v) = 0. Our goal is to use these node labels to train
the deep network. Specifically, we develop a novel context-
aware heterogeneous graph convolutional network to lever-
age node features and capture the heterogeneous nature of
our network, differentiate various relations in our dataset,
learn low-dimensional embeddings specific to different con-
text and leverage these embeddings to classify whether a
given node is dishonest or not.

One of challenges we face is (i) modelling different types
of relations. As mentioned earlier, our network has several
relations between three types of nodes (See Table 2). Natu-
rally, the activities that lead to these relations are also very
different: buying an item and leaving a review for a seller are
related, but not the same. A standard GCN that does not take
these differing contexts into account. The next challenge we
face is to (ii) ensure scalability in presence of skewed labels.
Graph convolution approaches often rely on subsampling the
neighborhood to ensure scalability. However, a naive sub-
sampling approach does not yield good solution in our set-
ting. This is because the fraction of labeled nodes in our
dataset is very low, and the fact that those labels are from
a single class. Subsampling uniformly at random will mean
that with high probability, we will miss the labeled nodes,
and only aggregate the embeddings from unlabeled nodes.

Next we describe our novel approach CONGCN, which
overcomes both of these challenges. (short for Context-
aware Graph Convolutional Network). Our main idea in
CONGCN is to define context aware graph convolution ar-
chitecture, which learns context specific node embeddings,
which are then aggregated before being fed into a classifier
(See Figure 2). We detail CONGCN next.



Figure 2: Overall Architecture of CONGCN. First context sample samples the heterogeneous subgraphs as per the predefined
meta-trees, then the convolution operator on these sampled subgraphs generate context-aware embeddings. These embeddings
are aggregated and fed into a classifier.

D B H B
D S 0.23% 99.77%
H S 8.4e− 5% ≈ 100%

D S H S
D B 10.42% 89.58%
H B 3.63% 96.37%

Table 3: Collusion evidence in the network. FB, HB, FS,
and HS stand for dishonest buyers, honest buyers, dishonest
sellers, and honest sellers respectively. Each row shows the
neighborhood distribution for a particular type of node.

(a) Purchase (b) Review

Figure 3: Meta-trees for different contexts. Meta-trees guide
the sampling process as well as define our convolution oper-
ation.

Differentiating Contexts via Meta-Trees
Distinguishing the context from which different relations
stem is critical in designing a deep neural network to capture
heterogeneous networks in their true essence. In CONGCN,
we do so by separating out the different contexts. This is
implemented in two steps. First, we sample context specific
heterogeneous subgraphs from the entire graph G and sec-
ond, we separate convolution layers for each context (See
Figure 2).

We represent contexts by defining meta-trees. A meta-
tree for a heterogeneous graph G = (V, E , T ,R,F) is a
tree where nodes are a subset of the node-types and edges
are subset of the relationship types. Note that the meta-tree
can also be heterogeneous in nature. Formally, we define the
concept of meta-trees as follows:

Definition 1 Given a heterogeneous graph G =
(V, E , T ,R,F), a meta-tree τ is a directed tree
G′ = (V ′, E ′), where V ′ ⊂ T and E ′ ⊂ R. Each
e ∈ E ′ is directed from child to parent node.

A meta-tree is designed to capture a specific context. We
show three different types of meta-trees for classifying buy-

ers in Figure 3. Consider a meta-tree for Purchase context
rooted on buyer nodes in Figure 3 (a). The Purchase con-
text has three node-types, namely, Buyer, Seller, and Prod-
ucts. The root node indicates that the convolution defined
by the meta-tree learns features for buyers. In the top layer,
the Buyer node in the meta-tree has two children, Seller
and Product. Seller to Buyer edge has a sold-to relation and
Product to Buyer edge has a purchased-by relation. Simi-
larly, in the second layer, Seller and Product nodes have two
children each as per the purchase relationship. In Figure 3
(b), we show meta-tree for buyers in the Review context.
Here, the root node Buyer has two children, each of type
Product. However, the relation type to the children differ.
The left child has positive relation with the Buyer node,
whereas the right child has negative relation, correspond-
ing to the type of review left by the buyer to the product (see
Table 2). In turn, at the second layer, each Product node has
two Buyer children each.

Due to lack of space we do not show other meta-trees in-
cluding the ones rooted on Seller nodes. However, they can
be constructed in a similar fashion to those for buyers.

Heterogeneous Convolution on Meta-Trees
Note that a meta-tree also defines computational subgraph
for a heterogeneous convolutional layer. The subgraphs in-
stantiated by a context specific meta-tree in the original het-
erogeneous network G define how features are computed
and aggregated at different convolution layers. To describe
the convolution operations due to a meta tree, we introduce
some additional notations.

A neighborhood N (v) of a node v, with respect to a
meta tree τ at layer l exists only if the node-type of v,
φ(v) is present in τ at layer l. In such a case, the neigh-
borhood of node b with respect to tree τ , the original graph
G = (V, E , T ,R,F), layer l and branch e′ ∈ E′ is given by
the following:

N (v|τ,G, l, e′) = {u | (v, u) ∈ E and e′ = (φ(u), φ(v))}
(1)

The equation above states that the neighborhood of node v
with respect to layer l and branch e′ consists of nodes which
are its neighbors in the original network G and whose type
matches the type indicated by the child node in the branch



e′ of the meta tree τ . For example, the neighbors of a buyer
node vb in the second layer of meta-tree for Purchase context
as per the sold-to branch (See Figure 3 (a) ) consists only
of sellers which are connected to vb in the original network
with the sold-to relation. Next, we define our convolution
layer as follows:

H(l+1)
τ [v] = Agg

e∈branch

f
W l

e

∑
u∈N (v |τ,G,l,e)

Hl
τ [u]

 (2)

whereH l
τ [v] is the node v’s feature in the layer l of convolu-

tion, W l
e is the learnable weight parameter corresponding to

layer l and branch e, f(·) is the non-linear activation func-
tion rectified linear unit (Nair and Hinton 2010), and Agg(·)
is the aggregation function, which could be mean, sum, max
and concatenation. The weight matrices W l

e make sure the
representations from different branches have the same length
for mean, sum and max aggregations.

To illustrate the convolution operation, let’s take an ex-
ample to see how to update a particular buyer node’s repre-
sentation due to the meta-trees in the Purchase context . Let
FB , FS , FP be matrix of buyer, seller, and product features
respectively, where ath row of FB is the feature of the buyer
a. Now, the feature for node a at second layer with respect
to Purchase meta-tree with sum aggregation operator is as
follows:

H(2)
τ [a] = f

W 2
1

∑
b∈N1(a)

H1
τ [b]

+ f

W 2
2

∑
c∈N2(a)

H1
τ [c]


(3)

where N1(a) and N2(a) are the sets of neighbors of node a
who are sellers connected via ‘sold to’ relations and neigh-
bors who are products connected via ‘purchased by’ rela-
tions respectively. H1

τ [b] for nodes in N1(a) is computed in
a similar fashion by aggregating features (FB and FP ) of
neighbors of node a.

Note that we maintain different weight matrices for each
edge in the meta-tree. It enables us to have different feature
length for different node types at each layer and also allows
us to easily handle the issue of each node type having differ-
ent feature length.

Scalability via Biased Sampling
The runtime of convolutions depend linearly on the size of
the neighborhood of each node. For real-world graphs with
power law degree distribution, the hub nodes will have high
degree, making the operation cumbersome. To alleviate this,
GCNs subsample the neighborhoods for nodes that are heav-
ily connected. We set a threshold k such that if a node has
more than k neighbors, we randomly sample k nodes to per-
form the aggregation in Eq. (2).

While the sampling strategy described above makes
GCNs scalable, it does not address a second concern: a very
small fraction of the nodes in the graph is actually labeled. In
the course of sampling the neighborhood uniformly at ran-
dom, we could end up not sampling labeled nodes and lose

valuable information in the process. To alleviate this, we per-
form a weighted random sampling, where the probability of
sampling a positively labeled y(v) = 1 node is up-weighted
by a constant α > 1. This allows us to not end up with a
sampled neighborhood of only unlabeled y(v) = 0 nodes.

Overall Architecture and Training Algorithm
The overall architecture of CONGCN is shown in Figure 2.
For each node to be classified, a context sampler samples a
subgraph from G for each context as per the meta-tree for
the context. Then, we apply context aware convolution lay-
ers for each context which results in context-aware embed-
dings for each node. Specifically, for each node v, we obtain
Fpur[v], Frev[v], Ffed[v], which are embeddings of node v
for purchase, review, and feedback respectively.

To obtain the final probability of a node being dishonest,
we aggregate the embedding and pass it to a feed forward
classification network. We experiment with various aggrega-
tion methods: sum, mean, element-wise max and concatena-
tion We use Adam to train the model, and tune the learning
rate, embedding size, neighborhood sample size, and exper-
iment with different aggregation operators on a validation
dataset. We train the model to minimize the binary cross-
entropy loss.

Experiments
We design several experiments to evaluate the performance
of CONGCN against several state-of-the art methods.We
performed all of our experiments in an AWS p3.8x instance.
We implemented CONGCN using the open-source DGL li-
brary (Wang et al. 2019a)1.
Training and Test Data: From our data (Table 1), we sam-
ple 30000 unlabeled and 3000 labeled dishonest buyers uni-
formly at random to create a test set. Here we are assuming
that a random sample of unlabeled nodes are honest, which
is a fair assumption. Similarly, we select 30000 unlabeled
and 3000 labeled dishonest sellers uniformly at random as a
test set. The rest of the nodes were used for training.
Baselines: We compare CONGCN against several base-
lines include Personalized PageRank (Lofgren et al.
2014), state-of-the-art graph based fraud detection approach
ZooBP (Eswaran et al. 2017), and neural approaches includ-
ing Feed-Forward Network, Graph Convolutional Network
(GCN) (Kipf and Welling 2017), and GraphSage (Hamilton,
Ying, and Leskovec 2017). For GCN and Graphsage we use
the model implemented in the DGL library, and tune the rel-
evant hyperparameters to obtain the best performance on our
validation dataset.

Performance
First, we measure performance of CONGCN and compare it
against all the baselines for classifying both buyer and sell-
ers. In this experiment, all the methods were trained lever-
aging the training data and the entire graph. We compute
the F1-score for each method at the threshold where the it is
maximized. We display the results in Figure 5.

1https://www.dgl.ai/

https://www.dgl.ai/


(a) Buyers (b) Sellers (c) Buyers (d) Sellers

Figure 4: Visualization of 2-d projection of buyers and sellers representations. The original features are on the left ((a), (b))
and the final representations learned by our approach are on the right ((c), (d)). In the original feature space, there is some
separation between honest and dishonest buyers but there is no separation between honest and dishonest sellers. Our approach
has improved the separation for both buyers and sellers.

(a) Buyer (b) Seller

Figure 5: Performance in classifying fraudulent buyers and
sellers. CONGCN outperforms nearest baseline by 4% for
buyers and by an impressive 19.3% for sellers.

We see from Figure 5 that CONGCN outperforms all the
baselines for both buyers and sellers. The absolute gain of
CONGCN over nearest competitor GraphSage is 4% for
buyers and an impressive 19.3% for sellers. Several key ob-
servations can be made from the figure. The first is that all
the methods consistently perform better in classifying buy-
ers than in classifying sellers, implying that identifying dis-
honest sellers is a more challenging problem than identify-
ing fraudulent buyers. This is explained by the observation
that the collusion evidence for dishonest buyers are stronger
than that for the dishonest sellers (Table 3).

The second observation we make is that the methods
which rely only on graph structure perform worse than the
methods which rely only on features, and the methods which
use both graph structure and features (GCN, Graphsage and
CONGCN) tend to perform the best generally. The rea-
son behind relatively poor performance of only graph-based
methods on our data are (1) class imbalance and (2) lack of
clear homophily in the data. Due to heavy class imbalance,
most of the graph is dominated by neighborhoods of honest
nodes. Furthermore, we find that both dishonest buyers and
sellers have more honest neighbors than the dishonest neigh-
bors, showing a lack of homophily (See Table 3). Hence,
graph based methods which assume that the nodes of the
same class tend to connect more with each other fail. More-

(a) Buyer (b) Seller

Figure 6: CONGCN performs well in inductive settings. The
green solid line and red dashed line are the performance in
transductive and the inductive settings respectively.

over, we also observe that differences between the features
of dishonest and honest buyers is more pronounced than that
for the sellers (See Figure 4). We hypothesize this is because
dishonest buyers show behavior that is vastly different from
normal buyers, in that they display abnormal activity in the
user logs. Dishonest sellers tend to blend in with other hon-
est sellers.

Performance in an Inductive Setting
In the previous experiment, we measured the performance of
CONGCN in a transductive setting, where we assume that
the entire graph is known beforehand. However, in deployed
systems, new buyer and seller accounts are constantly cre-
ated. Hence, we would like CONGCN to be able to accu-
rately classify new nodes in this inductive setting.

We simulate an inductive setting, where we do not observe
the nodes in the test set as well as the edges incident upon
them during training. We do so by removing various percent-
age of test nodes from the graph for the training. Note that
removing 100% of test nodes and their edges from the graph
is a complete inductive scenario. The results are shown in
Figure 6. The green solid line represents the performance
in the transductive setting. The y-axis represents F1-score
and x-axis represents the percentage of test nodes removed
from the graph. As seen, CONGCN maintains F1-score well



for both buyers and sellers. Even in the complete inductive
setting (where 100% of the test nodes and their edges are re-
moved from the graph) only a slight drop of 4.8% and 2.7%
is observed for buyers and sellers respectively.

Ablation Study
Here we measure the effect of removing/altering different
components of CONGCN. The first component we look at
is the classifier module. Here, we remove feed-forward net-
work and replace it with a single layer classifier. The second
component we look at is our weighted sampling approach,
were we replace our weighted sampling with the uniform
sampling approach (See Section 4 in the main paper). The
result is summarized in Table 4.

Table 4: Effect of altering components of CONGCN.

Component Buyers Sellers
Methods P R F1 P R F1
Classifier 0.79 0.80 0.80 0.80 0.66 0.72
Sampling 0.83 0.83 0.83 0.76 0.73 0.74
CONGCN 0.85 0.83 0.84 0.77 0.73 0.75

As shown in Table 4, the reduction in classifier signifi-
cantly effects the performance of CONGCN for both buyer
and seller. Similarly, the change in weighted to uniform
neighbor sampling also has derogatory effect on the perfor-
mance, implying that both the components are critical for
the performance of CONGCN.

Effect of Aggregation Function
As mentioned earlier, various approaches can be leveraged
to aggregate features generated by different contexts. Here,
we quantify the effect of various aggregation strategies,
namely mean, max, concatenation, and sum. Table 5 sum-
marizes the results.

Table 5: Effect of different functions in aggregating the fea-
tures generated by convolution on different contexts.

Component Buyers Sellers
Methods P R F1 P R F1

Mean 0.84 0.84 0.84 0.77 0.73 0.75
Max 0.80 0.79 0.79 0.80 0.70 0.75

Concatenation 0.87 0.78 0.82 0.74 0.71 0.72
Sum 0.85 0.83 0.84 0.78 0.71 0.74

We observe that the mean and sum perform consistently
well for both buyers and sellers. The similarity between the
two is due to the fact that mean is just a scaled version of the
sum in this context as the number of features to aggregate
are constant. On the other hand, we observe that max per-
forms well for sellers whereas it performs slightly worse for
buyers. Similarly, we see that concatenation degrades per-
formance of CONGCN slightly for both buyers and sellers.
Overall, we observe that CONGCN is robust to the choice
of the aggregation function.

Scalability
Finally, we measure the
scalability of CONGCN.
We randomly sample sub-
graphs of our data of vary-
ing size and train CON-
GCN on these sampled
subgraphs. We measure the
time to train 100 epochs
of CONGCN on each sub-
graph. We keep other factors like batch size and hyper pa-
rameters constant. The result is presented in the figure on
right. As we can see, the training time of CONGCN is lin-
ear w.r.t. the number of target nodes in the training set. For
the complete network, it roughly takes 10.5 hours to train
CONGCN for 100 epochs.

Related Work
Graph Convolution Networks There has been a surge in
research in the area of graph convolution networks (Henaff,
Bruna, and LeCun 2015; Kipf and Welling 2017). These
methods build upon the idea of aggregating information
from neighbors of a graph (Rao et al. 2015) to higher
order neighborhoods (Shah, Rao, and Ding 2017; Wu
et al. 2019) in a nonlinear fashion. Some popular recent
graph convolutional models include Graph Attention Net-
works (Veličković et al. 2017), GraphSage (Hamilton, Ying,
and Leskovec 2017), Graph LSTM (Tai, Socher, and Man-
ning 2015), Patchy-SAN (Niepert, Ahmed, and Kutzkov
2016), Geniepath (Liu et al. 2019) which modify the way
in which information is aggregated from (multi-hop) neigh-
bors of a node.

For heterogenous graphs, Zhang et al. proposed GraphIn-
ception, which defines convolution on a set of homogeneous
subgraphs sampled from a heterogeneous graph. Wang et al.
proposed Heterogeneous Graph Attention networks (Wang
et al. 2019b), which defined semantic level attention. How-
ever, the approach is not scalable to graphs with mil-
lions of nodes. Similarly, Schlichtkrul et al. proposed r-
GCN (Schlichtkrull et al. 2018) for knowledge graphs with
multi-relational data. Recently, Liu et al. proposed GEM for
malicious account detection (Liu et al. 2018).
Graph Mining for E-commerce: A closely related field is
graph mining for E-commerce. Graphs have been used for
various tasks in E-commerce such as mining query rela-
tions (Adhikari et al. 2018; Beeferman and Berger 2000),
item recommendation (Huang, Chung, and Chen 2004),
intrusion detection (Foo et al. 2005) and data visualiza-
tion (Hao et al. 2001).
Fraud Detection: Several approaches have been proposed
for fraud detection. Recently, Eswaran et al. proposed be-
lief prgopagation based approach for fraud detection in E-
commerce (Eswaran et al. 2017). There have been works
on fraudulent payments (Quah and Sriganesh 2008; Raj
and Portia 2011) as well as fraudulent accounts (Liu et al.
2018). There also has been interest in detecting spam in E-
commerce platforms (Lin et al. 2014; Lu et al. 2013; Hey-
dari, Tavakoli, and Salim 2016).



Conclusions and Discussions
In this paper we present CONGCN, a scalable context-aware
heterogeneous graph convolutional network. CONGCN can
label nodes in a graph even when the number of known la-
beled nodes is very small, and all from a single class. To
make our method account for multiple node types and re-
lation types in the graph, our approach samples subgraphs
instantiated from meta-trees on the graph. Experiments on a
large dataset collected from an e-commerce store show that
CONGCN outperforms multiple baselines that rely on only
features, graph information and even neural network meth-
ods that combine both.

Deploying this model involves setting up the engineer-
ing pipelines to create the input data graph, and the sub-
sampling routines. The resulting graph can then be fed into
the ConGCN framework. Since the method is inductive, we
can use this trained model to predict the probability of the
nodes being bad. These predictions can be used directly or
vended to other downstream models.
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