These Notes

- review the concepts of sets and relations required for working with Alloy

- focus on the kind of set operation and definitions used in specifications

- give some small examples of how we will use sets in specifications
Set

- Collection of distinct objects
- Each set’s objects are drawn from a larger *domain* of objects all of which have the same type --- sets are homogeneous
- Examples:

 \{2,4,5,6,...\} set of integers
 \{red, yellow, blue\} set of colors
 \{true, false\} set of boolean values
 \{red, true, 2\} for us, *not a set!*
Value of a Set

- Is the collection of its members

- Two sets A and B are equal if
 - every member of A is a member of B
 - every member of B is a member of A

- $x \in S$ denotes “x is a member of S”
Defining Sets

- We can define a set by *enumeration*
 - PrimaryColors == `{red, yellow, blue}`
 - Boolean == `{true, false}`
 - Evens == `{..., -4, -2, 0, 2, 4, ...}`

- This works fine for finite sets, but
 - what do we mean by “...”?
 - remember we want to be precise
Defining Sets

- We can define a set by *comprehension*, that is, by describing a property that its elements must share.

- **Notation:**
 - \{ x : S | P(x) \}
 - Form a new set of elements drawn from set/domain \(S \) including exactly the elements that satisfy predicate (i.e., Boolean function) \(P \).

- **Examples:**
 - \(\{ x : N | x < 10 \} \) *Naturals less than 10*
 - \(\{ x : Z | (\exists y : Z | x = 2y) \} \) *Even integers*
 - \(\{ x : N | \text{false} \} \) *Empty set of natural numbers*
Cardinality

- The *Cardinality* (#) of a finite set is the number of its elements.

- Examples:
 - \# \{red, yellow, blue\} = 3
 - \# \{1, 23\} = 2
 - \# Z = ?

- Cardinalities are defined for infinite sets too, but we’ll be most concerned with the cardinality of finite sets.
Set Operations

- **Union:**
 - \(X \cup Y \equiv \{ e | e \in X \text{ or } e \in Y \} \)
 - \(\{\text{red}\} \cup \{\text{blue}\} = \{\text{red, blue}\} \)

- **Intersection**
 - \(X \cap Y \equiv \{ e | e \in X \text{ and } e \in Y \} \)
 - \(\{\text{red, blue}\} \cap \{\text{blue, yellow}\} = \{\text{blue}\} \)

- **Difference**
 - \(X \setminus Y \equiv \{ e | e \in X \text{ and } e \notin Y \} \)
 - \(\{\text{red, yellow, blue}\} \setminus \{\text{blue, yellow}\} = \{\text{red}\} \)
Subsets

- A *subset* holds elements drawn from another set
 - $X \subseteq Y$ iff $(\forall e \mid e \in X \Rightarrow e \in Y)$
 - $\{1, 7, 17, 24\} \subseteq Z$

- A *proper subset* is a non-equal subset

- Another view of set equality
 - $A = B$ iff $(A \subseteq B \land B \subseteq A)$
Power Sets

- The power set of set S (denoted $\text{Pow}(S)$) is the set of all subsets of S, i.e.,

$$\text{Pow}(S) \equiv \{e \mid e \subseteq S\}$$

- Example:
 - $\text{Pow}\{a,b,c\} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$

Note: for any S, $\emptyset \subseteq S$ and thus $\emptyset \in \text{Pow}(S)$
Exercises

- These slides include questions that you should be able to solve at this point
- They may require you to think some
- You should spend some effort in solving them
 - ... and may in fact appear on exams
Exercises

- Specifying using comprehension notation
 - Odd positive integers
 - The squares of integers, i.e. \{1,4,9,16,...\}

- Express the following logic properties on sets without using the \# operator
 - Set has at least one element
 - Set has no elements
 - Set has exactly one element
 - Set has at least two elements
 - Set has exactly two elements
Set Partitioning

- Sets are *disjoint* if they share no elements.
- Often when modeling, we will take some set S and divide its members into disjoint subsets called *partitions*.
- Each member of S belongs to exactly one partition.

<table>
<thead>
<tr>
<th>Soup</th>
<th>Chips & Salsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steak</td>
<td>Pizza</td>
</tr>
<tr>
<td>Cake</td>
<td>Apple pie</td>
</tr>
<tr>
<td></td>
<td>Sweet & Sour Pork</td>
</tr>
</tbody>
</table>
Example

Model residential scenarios

- **Basic domains:** *Person, Residence*

- **Partitions:**
 - Partition *Person* into *Child, Student, Adult*
 - Partition *Residence* into *Home, DormRoom, Apartment*
Exercises

- Express the following properties of pairs of sets
 - Two sets are disjoint
 - Two sets form a partitioning of a third set
Expressing Relationships

- It’s useful to be able to refer to **structured values**
 - a group of values that are bound together
 - e.g., struct, record, object fields
- Alloy is a calculus of **relations**
- All of our Alloy models will be built using relations (sets of tuples).
- ... but first some basic definitions
Product

- Given two sets A and B, the product of A and B, usually denoted $A \times B$, is the set of all possible pairs (a, b) where $a \in A$ and $b \in B$.

$$A \times B \equiv \{(a, b) \mid a \in A \text{ and } b \in B\}$$

- Example: PrimaryColor x Boolean:

$$\{ (\text{red}, \text{true}), (\text{red}, \text{false}), (\text{blue}, \text{true}), (\text{blue}, \text{false}), (\text{yellow}, \text{true}), (\text{yellow}, \text{false}) \}$$
Relation

- A binary relation R between A and B is an element of $\text{Pow}(A \times B)$, i.e., $R \subseteq A \times B$

- Examples:
 - Parent : Person \times Person
 - Parent $== \{(\text{John}, \text{Autumn}), (\text{John}, \text{Sam})\}$
 - Square : $\mathbb{Z} \times \mathbb{N}$
 - Square $== \{(1,1), (-1,1), (-2,4)\}$
 - ClassGrades : Person $\times \{\text{A, B, C, D, F}\}$
 - ClassGrades $== \{(\text{Todd},A), (\text{Jane},B)\}$
Relation

- A **ternary relation** R between A, B and C is an element of $\text{Pow}(A \times B \times C)$

Example:
- $\text{FavoriteBeer} : \text{Person} \times \text{Beer} \times \text{Price}$
 - $\text{FavoriteBeer} = \{(\text{John}, \text{Miller}, \$2), (\text{Ted}, \text{Heineken}, \$4), (\text{Steve}, \text{Miller}, \$2)\}$

- **N-ary relations** with $n > 3$ are defined analogously (n is the **arity** of the relation)
Binary Relations

- The set of first elements
 - is the *definition domain* of the relation
 - \(\text{domain}(\text{Parent}) = \{\text{John}\} \) NOT Person!

- The set of last elements
 - is the *image* of the relation
 - \(\text{image}(\text{Square}) = \{1,4\} \) NOT \(\mathbb{N} \)

- How about \{((1,\text{blue}), (2,\text{blue}), (1,\text{red}))\}
 - domain? image?
Common Relation Structures

One-to-Many

One-to-One

Many-to-One

Many-to-Many
Functions

- A *function* is a relation F of arity $n+1$ containing no two distinct tuples with the same first n elements, i.e., for $n = 1$,

$$\forall (a_1, b_1) \in F, \forall (a_2, b_2) \in F, (a_1 = a_2 \Rightarrow b_1 = b_2)$$

- Examples:
 - $\{(2, \text{red}), (3, \text{blue}), (5, \text{red})\}$
 - $\{(4, 2), (6,3), (8, 4)\}$

- Instead of $F: A_1 \times A_2 \times \ldots \times A_n \times B$, we write $F: A_1 \times A_2 \times \ldots \times A_n \rightarrow B$
Exercises

- Which of the following are functions?
 - Parent == {(John,Autumn), (John,Sam)}
 - Square == {(1,1), (-1,1), (-2,4)}
 - ClassGrades == {(Todd,A), (Virg,B)}
Relations vs. Functions

In other words, a function is a relation that is X-to-one.
Special Kinds of Functions

- Consider a function f from S to T
- f is *total* if defined for all values of S
- f is *partial* if defined for some values of S

Examples

- $\text{Squares} : \mathbb{Z} \rightarrow \mathbb{N}$, $\text{Squares} = \{(-1,1), (2,4)\}$
- $\text{Abs} = \{(x,y) : \mathbb{Z} \times \mathbb{N} \mid (x < 0 \text{ and } y = -x) \text{ or } (x \geq 0 \text{ and } y = x)\}$
Function Structures

Total Function

Undefined for this input

Partial Function

Undefined for this input

Note: the empty relation is a partial function
Special Kinds of Functions

A function $f: S \rightarrow T$ is

- **one-to-one (injective)** if no image element is associated with multiple domain elements
- **onto (surjective)** if its image is T
- **Bijective** if it is both injective and surjective

We’ll see that these come up frequently
- can be used to define properties concisely
Function Structures

Injective Function

Surjective Function
Exercises

- What kind of function/relation is Abs?
 - $\text{Abs} = \{(x,y) : \mathbb{Z} \times \mathbb{N} \mid (x < 0 \text{ and } y = -x) \text{ or } (x \geq 0 \text{ and } y = x)\}$

- How about Squares?
 - $\text{Squares} : \mathbb{Z} \times \mathbb{N}, \text{ Squares} = \{(-1,1),(2,4)\}$
Special Cases

Relations

- Partial Functions
 - Onto
 - Bijective
 - One-to-one

- Total Functions
Functions as Sets

- Functions are relations and hence sets

- We can apply all of the usual operators
 - ClassGrades == {(Todd,A), (Jane,B)}
 - #(ClassGrades u {(Matt,C)}) = 3
Exercises

- In the following if an operator fails to preserve a property give an example.
- What operators preserve function-ness?
 - \cap ?
 - \cup ?
 - \setminus ?
- What operators preserve onto-ness?
- What operators preserve 1-1-ness?
Relation Composition

- Use two relations to produce a new one
 - map domain of first to image of second
 - Given \(s: A \times B \) and \(r: B \times C \) then \(s;r : A \times C \)

\[
s;r \equiv \{(a,c) \mid (a,b) \in s \text{ and } (b,c) \in r\}
\]

- For example
 - \(s == \{(\text{red},1), (\text{blue},2)\}\)
 - \(r == \{(1,2), (2,4), (3,6)\}\)
 - \(s;r = \{(\text{red},2), (\text{blue},4)\}\)
Relation Closure

- Intuitively, the **closure** of a relation $r: S \times S$ (written r^+) is what you get when you keep navigating through r until you can’t go any farther.

$$r^+ \equiv r \cup (r;r) \cup (r;r;r) \cup \ldots$$

- For example
 - GrandParent $==$ Parent;Parent
 - Ancestor $==$ Parent$^+$
Relation Transpose

- Intuitively, the transpose of a relation r: $S \times T$ (written $\sim r$) is what you get when you reverse all the pairs in r.

 $$\sim r \equiv \{(b,a) \mid (a,b) \in r\}$$

- For example
 - $\text{ChildOf} == \sim\text{Parent}$
 - $\text{DescendantOf} == (\sim\text{Parent})^+$
Exercises

- In the following if an operator fails to preserve a property give an example

- What properties, i.e., function-ness, onto-ness, 1-1-ness, by the relation operators?
 - composition (;)
 - closure (+)
 - transpose (∼)
Acknowledgements

• Some of these slides are adapted from

 • David Garlan’s slides from Lecture 3 of his course of Software Models entitled “Sets, Relations, and Functions”
 (http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/)