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My interests lie in applied dynamical systems and ordinary and partial differential equations (ODEs
and PDEs). In particular, I am interested in employing techniques in dynamical systems and PDEs
to model and analyze biological and physical phenomena. In recent years, an increase in the amount
and variety of biological data has combined with efforts to increase our quantitative understanding
of biological systems to cement mathematical biology as an essential interdisciplinary effort.

What is Mathematical Biology?

Mathematical Biology is an interdisciplinary field of research which connects mathematics with bi-
ology, neuroscience, and medicine. The aims are to describe a biological process by a mathematical
model, analyze that model by either analytical or numerical means, compare the results to experimen-
tal data, and predict more biological phenomena based on the outcome of the model. Mathematicians
typically employ probability theory, graph theory, combinatorics, algebraic geometry, topology, dy-
namical systems, and partial differential equations to model biological systems. I am particularly
interested in employing ordinary and partial differential equations to describe biological processes.
Studying the behavior of the solutions of the equations, describes how the biological system behaves
either over time or at equilibrium.

In what follows, I will elaborate on my main research programs and discuss some of my future plans.

Research Programs

The analysis of synchrony in networks of coupled systems is a long-standing problem in different
fields of science and engineering as well as in mathematics. In biology, the synchronization phe-
nomenon can be observed at both individual physiological level and the overall population level. For
example synchronization phenomenon is exhibited in neuronal interactions, in generation of circadian
rhythms, in the emergence of organized bursting in pancreatic beta-cells, and in the simultaneous
flashing of fireflies. In engineering, one finds applications of synchronization ideas in areas as varied
as robotics or autonomous vehicles. In the human brain, synchronization at the neuronal or regional
level can be beneficial, allowing for production of a vast range of behaviors, or detrimental, causing
disorders such as Parkinson’s disease and epilepsy. In particular, I am interested in networks of diffu-
sively coupled neuronal oscillators which can be described either by nonlinear systems of ODEs or by
reaction-diffusion PDEs. In biology, reaction-diffusion PDEs describe the change in space and time of
abundances of different types of individuals (particles, chemical species, etc.) that can react instan-
taneously and can diffuse due to random motion. In Section 1, I study synchronization phenomena
in networks of diffusively coupled systems, modeled by ODEs and reaction-diffusion PDEs, using the
methods of contraction theory and algebraic graph theory.

As a real application of synchronization in biological settings, in particular in neuroscience, I study
synchronous behavior in central pattern generators (CPGs). CPGs are networks of neurons that
produce rhythmic motor patterns such as walking, swimming, flying, without any rhythmic inputs
from peripheral nervous system. CPGs are sophisticated circuits that can generate complex locomotor
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behaviors and even switch between very different gaits while receiving only simple input signals. The
theory of dynamical systems can help in designing CPGs. For instance, the theory can help in
identifying when synchronization occurs in a system of coupled oscillators depending on parameters
such as coupling weights and intrinsic frequencies. In Section 2, using some techniques from dynamical
systems, I study the mechanism of gait transition in an oscillator model of CPGs in insects.

1. Synchronization in Networks of Diffusively Coupled Systems

Problem Statement and Previous Work. The objective is to understand the synchronization
behavior in networks where individual nodes may have identical or different intrinsic nonlinear dynam-
ics. Many different theoretical methods, based on Lyapunov exponents, master stability functions,
graph theory, and Lyapunov functions, have been employed to approach the problem of synchro-
nization. Another useful method to show synchronization, which I have employed in my research, is
contraction theory. Contraction theory is a powerful tool for understanding synchronization phenom-
ena in networked systems. The proper tool for characterizing contractivity for nonlinear systems is
provided by the matrix measures of the Jacobian of the vector field, evaluated at all possible states.

Let Q be a positive definite matrix and for any 1 ≤ p ≤ ∞, let ‖x‖p,Q be a Q−weighted Lp norm
on Rn, defined by ‖x‖p,Q = ‖Qx‖p. The matrix measure µp,Q(·) induced by ‖ · ‖p,Q is defined as the
directional derivative of the matrix norm, that is,

µp,Q[A] = lim
h→0+

sup
‖x‖p,Q=1

(‖(I + hA)(x)‖p,Q − 1) /h,

where I is the identity operator on X.

For homogenous systems, synchronization results based on techniques from contraction theory,
typically employing measures derived from L2 or weighted L2 norms, have been already well studied,
see for example [1, 2, 3, 4, 5, 6]. In contrast, for heterogeneous systems, even measures derived
from L2 or weighted L2 norms are not well studied.

New Results. My main contribution on contraction theory and its application to synchronization
problem is threefold:

1. In homogeneous systems, I extended contraction theory specifically for (weighted) Lp norms, 1 ≤
p ≤ ∞. The reason that I was interested in Lp norms rather than just L2 norms is that I was
motivated by a desire to understand an important biological system, for which contractivity holds
for (weighted) L1 norms, but not with respect to (weighted) Lp norms, for any 1 < p ≤ ∞.

2. I also extended contraction theory to a setting where systems may have heterogeneous intrinsic
dynamics and the network satisfies a cluster-input-equivalence condition. Using this extension, I
proved new sufficient conditions for cluster synchronization in a network of heterogeneous systems.

3. Moreover, motivated by important biological systems, I extended contraction theory for Lp norms
in reaction-diffusion PDEs and studied spatially uniform behavior of their solutions.

Synchronization of homogeneous coupled systems

In [6, 7, 8], we study the global convergence of the solution of a network of N compartments (nodes)
x1, . . . , xN , xi ∈ Rn, with identical dynamics ẋi = fi(xi, t) = f(xi, t), which are diffusively connected
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through an undirected, connected graph with (graph) Laplacian L. The following system of ODEs
describe the evolution of the xi’s in the network:

ẋ = F (x, t)− L⊗Dx, (1)

where x is the column of xi’s and F (x, t) is the column of f(xi, t), ⊗ denotes the Kronecker product
of two matrices, and D is the diffusion matrix.

The goal is to find conditions on f and D such that xi(t) − xj(t) → 0, as t → ∞, ∀i, j, namely the
system synchronizes. See Fig. 1 for a graphical illustration.

Figure 1: (Left) The behavior of 6 individual compartments that are isolated. (Right) The behavior of the 6
compartments that are now connected through a complete graph.

We say that the system (1) is contractive if any two solutions of the network converge to each other
exponentially and with no overshoot. In [7], we provided conditions on (only) f that guarantee
contractivity of the system (1):

Theorem 1. Consider the system (1) and let c = sup(x,t) µp,Q[Jf (x, t)], where µp,Q is the logarithmic
norm induced by the Q-weighted Lp norm, ‖ · ‖p,Q, on Rn defined by ‖x‖p,Q := ‖Qx‖p, and Q is a
positive diagonal matrix. Then for any two solutions u, v of (1), we have

‖u(t)− v(t)‖p,Q ≤ e
ct ‖u(0)− v(0)‖p,Q .

In particular, when c < 0, the system (1) is contractive.

Although the “contractivity” condition provided in Theorem 1, c < 0, guarantees synchrony of Equa-
tion (1), we are interested in a weaker condition. In [9, 10, 11], we showed that for special graphs
(e.g., complete, star, linear) if, sup(x,t) µp,Q[Jf (x, t) − λD] < 0, where λ > 0 is the smallest nonzero
eigenvalue of the (graph) Laplacian, then the system synchronizes. An abstract synchronization the-
orem, [11, Theorem 1], is proved for an arbitrary graph. Although the theorem is very interesting
mathematically and the results for arbitrary graphs are direct applications of the abstract theorem,
the condition is not easy to check for arbitrary graphs. A direction for future research would be to
generalize the synchronization condition sup(x,t) µp,Q[Jf (x, t)− λD] < 0 to arbitrary graphs.

Cluster synchronization of heterogenous coupled systems

In realistic networks with heterogeneous nodes and nonuniform coupling structure, complex patterns
of synchronization emerge. Under certain conditions, it is possible to partition the network into
clusters of nodes that are synchronized within clusters but not across clusters. This is called cluster
synchronization.

In [12, Theorem 1], we studied the synchronous behavior of Equation (1), where fi’s are non-identical,
i.e., a network of heterogenous systems. We assumed that there exists K ≤ N groups of nodes that
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have identical intrinsic dynamics, and for any system in each group, we assumed “cluster-input-
equivalence condition” which means the sum of the edge weights from the systems in group j to
system k in group i is equal to the sum of the edge weights from the systems in group j to system l
in group i. Let G denotes the network graph, Gi denotes the subgraph for the nodes in group i and
Ḡ = G− ∪Gi be the graph describing connections among the clusters, and assume that

µ := max
i=1,...,K

sup
(x,t)

µ2,Q

[
Jfci (x, t)− (λci + λ̄)D

]
< 0,

where λci > 0 and λ̄ are the smallest nonzero eigenvalue of the Laplacian of graph Gi and Ḡ,
respectively. Then the systems in each group synchronize exponentially with rate µ. See Fig. 2 for a
graphical illustration.

Figure 2: Cluster synchronization in a network of 17 heterogeneous Fitzugh-Nagumo oscillators.

We have detailed an approach to find sufficient conditions for synchronization independent of oscillator
model and network structure. However, the cluster-input-equivalence condition limit the amount of
heterogeneity in the oscillator dynamics and asymmetry in the network. Future generalizations of
this work will include relaxations of the complete synchronization requirement which would allow for
more complex and realistic network configurations to be studied.

Spatially uniform behavior in systems of reaction-diffusion PDEs

In the twentieth century, the Hodgkin-Huxley equations and Turing’s paper on morphogenesis inspired
research in reaction-diffusion equations and pattern formation. In biology, reaction-diffusion PDEs of
the form ∂ui/∂t(ω, t)=Fi(u(ω, t), t) + di∆ui(ω, t), for i=1, . . . , n, describe individuals of n different
types, with respective abundances ui(ω, t) at time t and location ω. The elements of the system can
react instantaneously, guided by interaction rules encoded into the vector fields Fi, and can diffuse
due to random motion, described by di∆. As in the discrete case, I am interested in finding conditions
that guarantee synchronous behavior of the solutions of reaction-diffusion PDEs.

Consider the following reaction-diffusion PDEs defined on Ω× [0,∞) for a smooth domain Ω ⊂ Rm,
and subject to Neumann boundary conditions:

∂ui
∂t

(ω, t) = Fi(u(ω, t), t) + di∆ui(ω, t), i = 1, . . . , n,

∂ui
∂n

(ξ, t) = 0 ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞).

(2)

In this case, we want to obtain conditions on F = (F1, . . . , Fn)T and D = diag (d1, . . . , dn) such that
u(ω, t)− u(ν, t)→ 0 as t→∞ for all ω, ν ∈ Ω (understood in an appropriate topology), namely the
system synchronizes. See Fig. 3 for a graphical illustration.
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Figure 3: (Left) The oscillatory behavior of a solution of a PDE when there is no diffusion, D = 0. (Right)
The spatially uniformity of the solution of the same PDE when diffusion occurs, D 6= 0.

An analogous result to Theorem 1 for the system (2) is the following theorem proved in [7]:

Theorem 2. Consider the PDE (2) and let c = sup(x,t) µp,Q[JF (x, t)], for some 1 ≤ p ≤ ∞, and
some positive, diagonal matrix Q. Then for every two solutions u, v of the PDE (2) and all t ∈ [0, T ):

‖u(t)− v(t)‖p,Q ≤ e
ct ‖u(0)− v(0)‖p,Q .

Similar to Theorem 1, Theorem 2 guarantees synchrony of reaction diffusion PDE system (2), namely
when sup(x,t) µp,Q[JF (x, t)] < 0, any solution u, converges to a uniform solution ū(ω, t) = ū(t).
In a compelling extension of this work, we are looking for a weaker condition which depends on
the structure of the space Ω and the diffusion matrix D. In [13], we found such a condition for
1-dimensional space and for L1 norms: If sup(x,t)∈V×[0,T ) µ1,Q

[
JF (x, t)− π2/L2D

]
< 0, then (2)

synchronizes. The problem is still open for higher dimensions and arbitrary norms.

Future Research. I hope to complete the project by generalizing the synchronization problem
in homogeneous systems to arbitrary graphs in discrete case, and to arbitrary spaces and norms in
continuous case. Generalizing contraction theory for non-L2 norms in heterogenous systems is also
an interesting research topic.

Analogue to the cluster synchronization in ODE systems, studying cluster synchronization or pattern
formation in reaction diffusion PDEs, specifically using the methods of contraction theory, is one of
my future research programs.

In addition, I am interested to investigate generalization of the results to the stochastic systems which
represent more realistic models of biological and physical phenomena.

In modeling networks, a direct communication between nodes is often assumed. In our studies, we
considered such communications. However, there are many natural examples that nodes rather to
communicate through the environment than direct communication. Quorum sensing is an example
of this kind of communication. I am interested in extending our techniques to such networks.

2. Central Pattern Generators and Patterns of Locomotion

Problem Statement and Previous Works. Legged locomotion involves various gaits. It has
been observed that fast running insects (cockroaches) employ a tripod gait with three legs lifted off
the ground simultaneously in swing, while slow walking insects (stick insects) use a tetrapod gait with
two legs lifted off the ground simultaneously. Fruit flies use both gaits and exhibit a transition from
tetrapod to tripod at intermediate speeds. In [14], we studied the effect of stepping frequency on
gait transition from tetrapod to tripod in an ion-channel bursting neuron model, developed in [15], in
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Figure 4: Network of CPGs

which each leg represents a hemi-segmental thoracic circuit of the central
pattern generator (CPG). CPGs are networks of neurons in invertebrate
thoracic ganglia that are responsible for generating locomotive activities
(Figure 4). CPGs for rhythmic movements are reviewed in e.g. [16, 17].
A periodic orbit which contains a sequence of spikes (burst) followed by
a quiescent phase describes the swing and stance durations of each step,
respectively. In the bursting neuron model, represented by 24 ordinary
differential equations, a couple of parameters stand for the speed of
insects; i.e., when the parameters increase, the period of the periodic
orbit decreases, and therefore the speed of the insect increases.

New Results. A simulation of 24 ODEs shows gait transition from tetrapod to tripod as speed
increases (Figure 5); in tetrapod, 2 legs swing together; in tripod, 3 legs swing together. Colored bars
indicate right and left leg swing phases.

Figure 5: Interconnected bursting neuron model: gait transitions from tetrapod to tripod as speed increases.
Width of horizontal bars indicate swing durations. R1, R2, R3 (resp. L1, L2, L3) denote right (resp. left)
front, middle, and hind legs.

Assuming weak coupling and employing phase reduction, we collapsed the network of bursting neu-
rons represented by 24 ordinary differential equations to 6 coupled nonlinear phase oscillators, each
corresponding to a sub-network of neurons controlling one leg. Assuming that the left and right
legs maintain constant phase differences (contralateral symmetry), we reduced from 6 equations to
3, allowing analysis of a dynamical system with 2 phase differences between front-to-middle legs (θ1)
and between hind-to-middle legs (θ2). We analyzed the gait transitions on the reduced toroidal phase
space (Figure 6, left and right). We also computed bifurcation diagrams showing branches of gaits vs.
speed (Figure 6, middle). Bifurcations occur from multiple stable tetrapod gaits to a unique stable
tripod gait as speed increases. Finally, we considered gait transitions in two sets of data fitted to
freely walking fruit flies. We showed that coupling data from fruit flies supports our theory.

Figure 6: (Left & Right) Gait transition from multiple stable tetrapod to stable tripod (green dots) through a
degenerate bifurcation (combination of pitchforks) and a saddle node bifurcation (middle), as speed increases.
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Future Research. This work can be improved mathematically in many different ways. To analyze
the model rigorously, and motivated by some experimental data, we simplified the model by reducing
the number of parameters and showed gait transition through a very degenerate bifurcation. Then,
using singular perturbation theory, we analyzed the degeneracy and showed the existence of a saddle
node bifurcation and a less degenerate bifurcation, as Figure 6 (middle) depicts. One can unfold the
system further and analyze the degenerate bifurcation shown in Figure 6 (middle). Gait transition in
insects occurs in a noisy environment. So far, we studied a deterministic model of CPG. Currently, I
am working on investigating gait transition from tetrapod to tripod in the presence of noise.

A “half center oscillator” consists of two neurons that do not fire individually, but produce rhythmic
outputs when they are coupled. Parallel to our work, A. Yeldesbay, T. Tóth, and S. Daun have been
working on a “half center oscillators” model of CPGs in stick insects and have been using this model
to study their gait transitions. An interesting project would be to compare these two models (the
bursting neuron and half centre oscillator models) and study different features of each model.

Other Interesting Projects

I addition, I have also explored other projects with applications to a diverse range of systems. Specif-
ically, I worked on the following two projects, which are engaged with human diseases and therapies.

1. PDEs for Chemotaxis

Chemotaxis is important in biological processes as well as in ecology. For example, when a bacterial
infection invades the body it may be attacked by movements of cells towards the source as a result of
chemotaxis. Convincing evidence suggests that leukocyte (white blood) cells, which are responsible
for protecting the body against infectious disease, move towards a region of bacterial inflammation
by moving up a chemical gradient caused by the infection.

In [18, 19], we studied the chemotaxis behavior of E. coli. In order to respond to an external signal in
the environment, which is usually nutrient, bacteria change their frequency of turning (tumbles) and
move directly toward (or away from) the signal (run). A transport (Fokker-Planck) equation describes
the motion of individuals whose velocity changes are governed by a Poisson process, at a microscopic
level. Since it is difficult to study the solutions of this equation mathematically, it is of great interest
to study the movement of bacteria at macroscopic levels and to derive an equation for the density of
the population of bacteria starting from microscopic equations. We showed that, in a one dimensional
space and in the presence of an exponential gradient, under an appropriate parabolic scaling of space
and time, the asymptotic behavior of solutions of such macroscopic equations can be approximated
by the solution of an advection-diffusion equation obtained via a regular perturbation expansion. The
solution of the advection-diffusion equation matches well with the results from agent-based simulation
and data as shown below, [18].

Future Research. Studying macroscopic behavior of bacteria such as E. coli is also a way of
studying group behavior in complex systems that I am interested in. In order to refine and extend
the above results, it would be interesting to generalize this work to higher dimensions (2 and 3), find
a better error estimate, and study the equation that approximates the solution of the Fokker-Planck
equation in the presence of a linear gradient.
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Fig. 1. Microfluidic device and experimental data. The microfluidic device we used to probe aerotaxis in B. subtilis is presented in (A). Three parallel channels, open

at the top and bottom, were obtained in PDMS and sandwiched between two glass slides. Flowing controlled gas mixes in the two external ’oxygen control’ channels we were

able to generate a perfectly linear oxygen gradient cells were exposed to in the central ’test’ channel. In order to quantify the aerotactic response of B. subtilis, we allowed

both the oxygen gradient and the cells distribution to reach their steady states and then acquired cell multiple frames of the center channel that we used to identify cells and

their coordinates. This information was then used to extract B(x), the normalized bacterial density; in (B) a plot of the 0%-20% experiment shows B(x) is linear in a semi-log

scale and therefore exponential in a linear scale. In (C) the 33 individual experimental designs we used to quantify the aerotactic response of B. subtilis; channel width x

on the x axis and the normalized bacterial density B on y. The percentage of oxygen in the gas flown on the left and right of the test channel is reported in the tile. Circles

represent experimental data averaged over the replicates; solid line show the prediction of the model in 2.

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

2. Cancer Modeling

In practice, almost all chemotherapeutic agents lead to drug resistance, but it is a challenge to
clinically determine whether resistance arises prior to, or as a result of, cancer therapy. Many different
mechanisms can be adopted by cancer cells to resist treatment. These mechanisms can broadly
be divided into intrinsic (intracellular) causes and extrinsic (microenvironmental) causes. In [20]
we have developed a hybrid discrete-continuous mathematical model wherein cancer cells described
through a particle-spring approach respond to dynamically changing oxygen and DNA damaging
drug concentrations described through reaction diffusion partial differential equations. We thoroughly
explored the behavior of our self-calibrated model under the following common conditions: a fixed
layout of the vasculature, an identical initial configuration of cancer cells, the same mechanism of drug
action, and one mechanism of cellular response to the drug. We considered one set of simulations in
which drug resistance existed prior to the start of treatment, and another set in which drug resistance
is acquired in response to treatment. This allowed us to compare how both kinds of resistance influence
the spatial and temporal dynamics of the developing tumor, and its clonal diversity. We show that
both pre-existing and acquired resistance can give rise to three biologically distinct parameter regimes:
successful tumor eradication, reduced effectiveness of drug during the course of treatment (resistance),
and complete treatment failure. When a drug resistant tumor population forms from cells that acquire
resistance, we find that the spatial component of our model (the microenvironment) has a significant
impact on the transient and long-term tumor behavior. On the other hand, when a resistant tumor
population forms from pre-existing resistant cells, the microenvironment has only a minimal transient
impact on treatment response. Finally, we present evidence that the microenvironmental niches of
low drug/sufficient oxygen and low drug/low oxygen play an important role in tumor cell survival and
tumor expansion. This may play a role in designing new therapeutic agents or new drug combination
schedules.

Future Research. Our model can also be extended to address other important aspects of tumor
resistance. In the future, we will investigate different drug scheduling schemes including typical
clinical protocols, as well as metronomic and adaptive schedules. Beyond the drug schedule, we can
expand the model from considering DNA damaging drugs to considering other drugs with different
killing mechanisms, including anti-mitotic drugs or drugs activated in specific microenvironmental
conditions (low oxygen or high acidosis). This allows us to further extend our model to study the
effects of combinations of drugs. This is especially important, because, in clinical practice, the

8



treatment is often changed to another therapeutic agent when the tumor cells become resistant to a
given drug. However, it has been observed that resistance to one drug is accompanied by resistance
to other drugs whose structures and mechanisms of action may be completely different (multiple
drug resistance). This poses interesting questions. If the hypothesis of a pre-existing population
of resistant cells is true, what mechanisms enable those cells to resist the drug action of the often
multiple chemotherapeutic treatments that may be given to a patient sequentially or in parallel? If the
hypothesis of gradual emergence of drug resistance is true, what factors contribute to the development
of acquired drug resistance? The mathematical framework developed here has the potential to address
such multiple aspects of drug resistance in solid tumors and test methods for increasing efficacy of
drug combinations.
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