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Motivation and Objectives

Synchronization of coupled dynamical systems is a widespread phenomenon

in both biological and engineered networks, and understanding this behavior is

crucial for controlling such systems. Our objective is to establish conditions that

ensure the existence of complete synchronization solutions and determine their

global stability in non diffusive coupled systems.

Synchronization in nature

Flashing fireflies Brain to brain sync
(Hasson Lab, Princeton)

Animal locomotion

Network Model

Consider a connected network with N systems described by:

Ẋi = F (Xi) + σ

N∑
j=1

αijH(Xi, Xj) (?)

Xi : [0, ∞) → Rn: State of node i

F : Rn → Rn: Intrinsic dynamics of each node

σ ∈ R≥0 : Coupling strength

H : Rn × Rn → Rn: Coupling function

[αij]: Connectivity matrix, αij > 0 if j is connected to i, zero otherwise

Diffusive and Non-Diffusive Coupling

Diffusively Coupled

H(Xj, Xi) = 0 when Xj = Xi

Electrical gap junction: Vj − Vi

Non-Diffusively Coupled

H(Xj, Xi) 6= 0 when Xj = Xi

Chemical synaptic coupling:

S(Vj)(Vs − Vi)

Diffusive coupling is well studied in the literature (e.g [1] )

We are interested in non-diffusive coupling in this work.

Existence of a Synchronous Solution

A necessary condition for the existence of a synchronous solution is

input balance condition, that is, ∃ k s.t. ∀i,
∑

j αij = k

Algebraic Connectivity

The algebraic connectivity of a graph reflects how well connected the graph is.

Let L = diag{d1, . . . , dN} − [aij] where di =
∑

j aij be the Laplacian matrix with

eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λN

For a connected undirected graph, the algebraic connectivity equals to λ2 6= 0
For a digraph, the algebraic connectivity a(L) is defined as [4]:

a(L) = min
X⊥1N ,X>X=1

X>LX.

Contraction Theory and Logarithmic Norm

ẋ = F (x) is contractive, if any two trajectories x & y converge to each other

exponentially:
‖x(t) − y(t)‖ ≤ eµt‖x(0) − y(0)‖, µ < 0

We leverage Logarithmic norms to identify contractive systems.

Logarithmic norm µX [·] induced by ‖ · ‖X is defined as:

µX [A] = lim
h→0+

1
h

(‖I + hA‖X →X − 1)

‖x‖2 = (
∑n

i=1 |xi|2)
1
2 and µ2[A] = λmax

(1
2(A + A>)

)
µ2,P [A] = µ2[PAP −1] is log norm induced by a P− weighted L2 norm

Main Result: Sufficient condition for Synchronization

Theorem: Consider (?) and assume

Excitatory coupling: D2H = ∂H
∂Y (X, Y ) is non-negative and diagonal

∃P s.t. PD2H(X, X) + D2H(X, X)P � 0
c = supX µ2,

√
P [DF (X) + σk(D1H + D2H)(X, X) − σa(L)D2H(X, X)]

Then for any solution X, there exists a solution Xs such that

‖X(t) − X̄(t)‖2,
√

P ≤ ect‖X(0) − X̄(0)‖2,
√

P

where X̄ = (Xs, . . . , Xs)> is a synchronization solution.

Condition for global stability of X̄: c < 0

Application 1: Networks of Hindmarsh-Rose (HR) Models

Consider a network of non-diffusively coupled HR oscillators [3]

v̇i = αv2
i − v3

i − wi − ni+σ

N∑
j=1

αij(vs − vi)Γ(vj)

ẇi = βv2
i − wi

ṅi = ε(γvi + δ − ni)

Corollary 1. Any HR networks completely synchronize if σ >
M̄
k

, where

M̄ = sup
v

2αv − 3v2 + (βpv − 1
2p)

2

Γ(v) − (vs − v)Γ′(v)
& Γ(v) = 1

1 + exp(−2
3(v − Θs))

Numerical Simulations

Figure 1. A digraph of five

nodes with k = 2 and
a1(L) = 1.382

Figure 2. (Top) Isolated HR (Bottom) Five synchronized HRs with

σ > 0.704 that are coupled via the digraph on the left. Parameters:

α = 2.8, β = 4.4, δ = 8, γ = 9, ε = 1.6, vs = 1,Θs = −2.

Application 2: Networks of FitzHugh-Nagumo (FN) Models

Consider a network of non-diffusively coupled FN oscillators

v̇i = vi − v3
i /3 − a − wi + I+σ

N∑
j=1

αij(vs − vi)Γ(vj)

ẇi = ε(vi − bwi)

Corollary 2. Any FN networks completely synchronize if σ >
M̄
k

, where

M̄ = sup
v

1 − v2

Γ(v) − (Vs − v)Γ′(v)
& Γ(v) = 1

1 + β(1 + exp(−0.1(v − Θs)))

Numerical Simulations

Figure 3. A digraph of five

nodes with k = 2 and and

a1(L) = 1.3465

Figure 4. (Top) Single FN (Bottom) Seven synchronized FNs with

σ > 0.53 that are coupled via the digraph on the left. Parametere:

a = 0.5, b = 0.1, ε = 0.08, I = −2, vs = 35, Θs = −20, β = 0.5

Conclusions

We have expanded the application of contraction theory to determine the global

stability of synchronization patterns arising from non-diffusively coupled net-

works, with a specific focus on neuronal networks. Our analysis provides both

a necessary condition for the existence of synchronization solutions and a suf-

ficient condition for their global stability. We applied our theory to two different

neuronal models, a network of bursting Hindmarsh-Rose and a network of spik-

ing FitzHugh-Nagumo models. In both cases, the networks are formed by a

synaptic (sigmoidal) coupling. We have shown that the bound for the coupling

strength is inversely proportional to the digraphs’ in-degree, which is consistent

with results obtained in [2], proved for graphs with normal Laplacian matrices.
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