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Heterogeneous Inputs to Central Pattern Generators Can Shape Insect Gaits∗

Zahra Aminzare† and Philip Holmes‡

Abstract. In our previous work [SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 626–671], we studied an intercon-
nected bursting neuron model for insect locomotion, and its corresponding phase oscillator model,
which at high speed can generate stable tripod gaits with three legs off the ground simultaneously
in swing and at low speed can generate stable tetrapod gaits with two legs off the ground simultane-
ously in swing. However, at low speed several other stable locomotion patterns that are not typically
observed as insect gaits may coexist. In the present paper, by adding heterogeneous external input
to each oscillator, we modify the bursting neuron model so that its corresponding phase oscillator
system produces only one stable gait at each speed, specifically a unique stable tetrapod gait at
low speed, a unique stable tripod gait at high speed, and a unique branch of stable transition gaits
connecting them. This suggests that control signals originating in the brain and central nervous
system can modify gait patterns.
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1. Introduction. This paper is based on our previous work [1], in which we studied the
effect of stepping frequency on transitions from multiple tetrapod insect gaits with two legs off
the ground simultaneously in swing to tripod gaits with three legs off the ground simultane-
ously in swing. In that paper, we used an ion-channel bursting neuron model to describe each
of six mutually inhibitory units that form the central pattern generator (CPG) located in the
insect’s thorax. Each unit of the CPG contains a system of four ordinary differential equations
(ODEs), ẋ = f(x), where x = (v,m,w, s)> describes transmembrane cell voltages, slow and
fast ionic gates, and the dynamics of neurotransmitter release at synapses, respectively. The
parameters are chosen such that the model possesses an attracting hyperbolic bursting limit
cycle. See Table 2 and Figure 10 (left) in the appendix to this paper. Each unit receives an
external current, denoted by Iext, which represents input from the central nervous system and
brain. We observe that Iext affects the frequency of the limit cycle and thus acts as a speed
parameter (Figure 10 (right)). See [1] or the appendix for more details of the bursting neuron
model, its parameter values, and its behavior.

In [1] we assumed that each oscillatory unit drives one leg of the insect and that the units
are connected to their nearest neighbors in an homogeneous (identical) network as shown in
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Figure 1. The network of heterogeneous CPGs with different external inputs, Ii = Iext + Iiext(t).

Figure 1, but where input currents are also identical, Ii = Iext. Inhibitory coupling between the
oscillators is achieved via synapses that produce negative postsynaptic currents. The synapse
variable s enters the postsynaptic cell as an additional term: see (23) in the appendix.

Employing phase reduction, we collapsed the network of six homogeneous bursting neurons
represented by 24 ODEs to six coupled nonlinear phase oscillators, each corresponding to a
sub-network of neurons controlling one leg. Assuming that the left and right legs maintain
constant phase differences (contralateral symmetry), we then reduced from six equations to
three, allowing analysis of a dynamical system with two phase differences defined on a two-
dimensional torus.

With certain balance conditions on the coupling strengths among the homogeneous oscil-
lators, described in section 3 below, we showed that at low speeds, the phase differences model
on the torus can generate multiple fixed points, including stable tetrapod and unstable tripod
gaits. In contrast, at high speeds, it generates a unique stable tripod gait. Moreover, as speed
increases, the gait transition occurs through degenerate bifurcations, at which a subset of the
multiple fixed points merge to produce a unique stable fixed point: see [1, Figure 23].

In the current paper, we study this degenerate bifurcation in the phase difference model by
unfolding the original system. To this end we relax the condition of homogeneous ion-channel
bursting neuron models in the network of CPGs and allow heterogeneous (nonidentical) models
by adding different external inputs to each oscillator. We assume that in addition to the
external current Iext, each unit receives a different external input denoted by Iiext(t), where i is
the leg number, as shown in Figure 1. We also assume that Iiext(t) is a time-dependent function
with magnitude of order O(ḡsyn), where ḡsyn is the synaptic strength. We subsequently show
that this heterogeneity is equivalent to perturbing the coupling functions or the contralateral
coupling strengths in a phase reduced oscillator model, i.e., different types of heterogeneity
can have similar effects on dynamics (see section 5 below).

Recent studies of different three-cell ion-channel bursting CPG networks [2, 3, 4] share
some common features with the current paper. Without explicitly addressing insect locomo-
tion, or using phase reduction theory, the authors numerically extract Poincaré maps defined
on two-dimensional tori which have multiple stable fixed points corresponding to orbits with
specific phase differences. In particular, [4] introduces transient control inputs—brief pulses
simultaneously applied to all three cells—that can move solutions from one stable state toD
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GAITS IN HETEROGENEOUS NETWORK OF CPGs 1039

another. A more abstract study of coupled cell systems with an emphasis on heteroclinic
cycles that lie in “synchronous subspaces” appears in [5].

This paper is organized as follows. In section 2, we review the derivation of phase equa-
tions for heterogeneous networks and apply these techniques to the interconnected bursting
neuron model. In section 3, we define approximate tetrapod, tripod, and transition gaits
for heterogeneous networks and then, by assuming constant phase differences between left-
and right-hand oscillators, as in the homogeneous case, we reduce the six phase equations
to two phase difference equations. In section 4, we describe the main results of this paper.
By choosing appropriate heterogeneous external inputs, we show that the phase differences
model possesses only one stable fixed point, which at low speed corresponds to a tetrapod
gait and at high speed corresponds to a tripod gait. Interpreting the heterogeneities as small
bifurcation parameters, we find cases in which two or three saddle-node bifurcations occur
as heterogeneity increases and a unique tetrapod gait emerges from multiple tetrapod gaits
and other, ill-defined gaits. This shows that specific fixed points (gaits) can be preserved, or
removed, by small external input currents. In section 5, we show that our heterogeneities are
equivalent to perturbing the coupling functions or the contralateral coupling strengths in a
phase reduced oscillator model. In section 6, we conclude. The appendix reviews the bursting
neuron model studied in [1], displaying burst dynamics and the influence of its parameters on
speed.

2. A phase oscillator model. To analyze the gait transition mathematically, in [1, section
3], we applied the theory of weakly coupled oscillators to the coupled bursting neuron models
to reduce the 24 ODEs to 6 phase oscillator equations. In this section, we derive the phase
equations of weakly coupled oscillators with heterogeneous dynamics, i.e., coupled oscillators
with different frequencies. We develop the theory in greater generality than our specific
applications will demand, allowing time-dependent input currents Iiext(t).

Let ẋ = f(x), x ∈ Rn, describe the dynamics of a single oscillator and assume that
it possesses an attracting hyperbolic limit cycle Γ = Γ(t), with period T and frequency
ω = 2π/T . The phase of an oscillator, denoted by φ, is the time that has elapsed as its state
moves around Γ, starting from an arbitrary reference point in the cycle, called the relative
phase.

2.1. Phase equations for weakly coupled heterogeneous oscillators. Consider a pair of
weakly coupled heterogeneous oscillators

(1)
ẋ1 = f1(x1) + εg(x1, x2),

ẋ2 = f2(x2) + εg(x2, x1),

where fi describes the intrinsic dynamics of each oscillator, 0 < ε� 1 is the coupling strength,
and g is the coupling function. For each oscillator, the phase equation can be written as follows.
For more details see [1, section 3].

(2)
dφi
dt

(t) = ωi + εHi(φj(t)− φi(t)) +O(ε2),

where

Hi = Hi(θ) =
1

Ti

∫ Ti

0
Zi(Γi(t̃)) · g(Γi(t̃),Γi(t̃+ θ)) dt̃,
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1040 ZAHRA AMINZARE AND PHILIP HOLMES

is the coupling function: the convolution of the coupling g and the oscillator’s infinitesimal
phase response curve (iPRC), Zi, and ωi and Ti are respectively the frequency and period
of each oscillator described by ẋi = fi(xi). Under the weak coupling assumption, the iPRC
captures the local dynamics of each oscillator in a neighborhood of its limit cycle Γi; see [6].

Equation (2) is a general phase equation for a pair of weakly coupled heterogeneous oscil-
lators where the heterogeneity is of arbitrary size. This means that the oscillators’ frequencies
can be very different. But if the frequencies are close to each other, i.e., the heterogeneities are
small and in particular are of order of the coupling strength ε, then one can approximate (2)
as follows [7, Chapter 5].

Assume that fi = f + f̃i, where the heterogeneity f̃i is of order ε,O(ε). This is equivalent
to having identical oscillators with dynamics f , frequency ω, and period T , and nonidentical
coupling functions gi = g + f̃i/ε. Then (2) can be approximated by the following phase
equations:

(3)
dφi
dt

(t) = ω + ω̃i + εH(φj(t)− φi(t)) +O(ε2),

where

H = H(θ) =
1

T

∫ T

0
Z(Γ(t̃)) · g(Γ(t̃),Γ(t̃+ θ)) dt̃,

is the coupling function, specifically the convolution of the synaptic coupling g with the
oscillator’s iPRC, Z. Here Z is computed for the limit cycle of ẋ = f(x), and the frequency
differences are constant shifts of O(ε):

(4) ω̃i =
1

T

∫ T

0
Z(Γ(t̃)) · f̃i(Γ(t̃)) dt̃.

The advantage of this decomposition is that only one iPRC and so only one coupling function
must be computed.

Now consider a network of N heterogeneous oscillators with intrinsic dynamics ẋi = fi(xi)
and corresponding frequencies ωi. For i = 1, . . . , N , let

(5) ẋi = fi(xi) +
∑
j∈Ni

εjg(xi, xj)

describe the dynamics of each xi in the weakly coupled network. HereNi denotes the neighbors
of oscillator i, and εj denotes the coupling strengths, which are all of O(ε) for some 0 < ε� 1.
As in the case of a pair of coupled oscillators, one can derive phase equations from (5) as
follows:

(6) φ̇i = ω + ω̃i +
∑
j∈Ni

εjH(φj − φi) +O(ε2),

where the frequency differences ω̃i are as defined in (4).
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2.2. Phase equations for six weakly coupled heterogeneous bursting neuron model. We
now apply the techniques from section 2.1 to six heterogeneous units in the coupled bursting
neuron model and derive the six-coupled phase oscillator model via phase reduction.

In the homogeneous interconnected bursting neuron model, the intrinsic dynamics of each
hemisegmental unit, described by ẋ = f(x), is identical. We now assume that each hemi-
segmental unit receives a small heterogeneous external input, i.e., each unit can be described
by

ẋi = fi(xi) = f(xi) + Iiext(t) · e1,

where ẋi = fi(xi) has an attracting hyperbolic limit cycle with frequency close to the attracting
hyperbolic limit cycle of ẋ = f(x). For i = 1, . . . , 6, Iiext(t) is the additional small external
input to each unit and represents the weak heterogeneity of the corresponding unit such that
Iiext(t) = O(ḡsyn) and e1 = (1, 0, 0, 0)>, i.e., only the voltage equations are heterogeneous.

Recalling (6), we can derive approximate phase equations for the coupled bursting neuron
model of Figure 1 as follows:

φ̇1 = ω + ω̃1 + c1H(φ4 − φ1) + c5H(φ2 − φ1),

φ̇2 = ω + ω̃2 + c2H(φ5 − φ2) + c4H(φ1 − φ2) + c7H(φ3 − φ2),

φ̇3 = ω + ω̃3 + c3H(φ6 − φ3) + c6H(φ2 − φ3),

φ̇4 = ω + ω̃4 + c1H(φ1 − φ4) + c5H(φ5 − φ4),

φ̇5 = ω + ω̃5 + c2H(φ2 − φ5) + c4H(φ4 − φ5) + c7H(φ6 − φ5),

φ̇6 = ω + ω̃6 + c3H(φ3 − φ6) + c6H(φ5 − φ6),

(7)

where

(8) ω̃i =
1

T

∫ T

0
Zv(Γ(t))Iiext(t)dt,

and Zv is the iPRC of the limit cycle of ẋ = f(x) in the direction of voltage. In Figure 2
(left), we show Zv for Iext = 35.9, in which the rapid oscillations are due to the burst in the
corresponding limit cycle. Note that the averaging theorem and convolution integral used
in phase reduction eliminates time dependence in Iiext. The positive constant ci’s represent
the coupling strengths between the oscillators. Following [8], we assume contralateral sym-
metry and include only nearest neighbor coupling, as shown in Figure 1, so that there are
three contralateral coupling strengths c1, c2, c3 and four ipsilateral coupling strengths c4, c5, c6,
and c7.

Figure 2. The iPRC (in the direction of v) (left) and the coupling function H(θ) (right) for Iext = 35.9.
Phase θ = 0 is defined to be the onset of the burst. From [1, Figure 8].
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Also, the coupling function H takes the following form:

(9) H(θ) = − ḡsyn
T

∫ T

0
Zv(Γ(t))

(
vi(Γ(t))− Eposts

)
sj (Γ(t+ θ)) dt,

where Eposts , the reversal potential, is a constant. In Figure 2 (right), we show the coupling
function H derived in (9) for Iext = 35.9. Note that for Iext = 35.9, H(θ) < 0, and for an
arbitrary Iext, H(θ) < 0 over most of its range, and in particular over the interval [1/3, 2/3],
which we will show contains the tetrapod, tripod, and transition gaits.

To simplify notation, for the remainder of the paper, T = 1 and all the phases and the
coupling functions are considered in the domain [0, 1] instead of [0, 2π].

Figure 2 shows a typical iPRC and the corresponding coupling function for bursting neu-
rons with inhibitory synapses like those used throughout the current paper and in [1]. Other
forms are also found (e.g., see [9, Figure 8]), and sinusoidal coupling functions were fitted to
experimental cockroach data in [8, Figure 2]. However, in [1, section 6, Proposition 11] we
prove that a general class of functions exists that satisfy Assumption 1 and (10) below, and
which therefore produce tetrapod to tripod gait transitions. We henceforth assume that our
coupling functions H(θ; ξ) satisfy these conditions.

3. Reduced phase equations. In this section, the goal is to reduce the six equations (7)
to two equations on a 2-torus. Although we are interested in gaits generated by the bursting
neuron model and its phase reduction equations (7), we prove our results for a more general
case. To this end, we assume that the following conditions hold for the coupling function H
and the external inputs Iiext(t). We let H and the frequency ω depend on the speed parameter
ξ and write H = H(θ; ξ) and ω = ω(ξ).

Assumption 1. Let H = H(θ; ξ) be a differentiable function, defined on R× [ξ1, ξ2] which
is 1-periodic on its first argument and has the following property. For any fixed ξ ∈ [ξ1, ξ2],

(10) H

(
2

3
− η; ξ

)
= H

(
1

3
+ η; ξ

)
has a unique solution η(ξ) such that η = η(ξ) : [ξ1, ξ2]→ [0, 1/6] is an onto and nondecreasing
function. Note that (10) is also trivially satisfied by the constant solution η = 1/6.

Assumption 1 defines a class of coupling functions that exhibit the gait transitions studied
here and in [1]. The coupling functions derived from the bursting neuron model satisfy and
motivate this assumption; see [1, Figure 9]. For the rest of the paper, we assume that the
coupling function H satisfies Assumption 1.

Assumption 2. For i = 1, 2, 3, let Ii+3
ext (t) = Iiext(t). This assumption maintains contralat-

eral symmetry. In addition, we assume that for i = 1, 2, 3, Iiext(t) are not equal; otherwise the
system becomes homogeneous.

Assumption 3. Let the coupling strengths satisfy the following balance condition:

(11) c1 + c5 = c2 + c4 + c7 = c3 + c6.
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Figure 3. Left to right: One cycle of forward right, forward left, backward right, and backward left tetrapod
gaits and a tripod gait are shown. The diagonal lines connect legs that swing together; arrows indicate forward
(resp., backward) waves in tetrapods. The tripod is a standing wave. Adapted from [1, Figure 4].

Equation (11) expresses the fact that the sum of the coupling strengths entering each leg
are equal. The equalities were assumed, without biological support, in [9] and were subse-
quently found to approximately hold for fast running cockroaches in [8, Figure 9c], according
to the best data fits, judged by Akaike and Bayes information criteria, as also noted in [1,
section 1]. In [1, Proposition 3 and Corollary 4] we proved that when the coupling strengths
satisfy the balance condition, in the homogeneous case ω̃i = 0, (7) admits tetrapod gaits at
low speeds and tripod gaits at high speeds.

In what follows we define “approximate gaits.” These definitions are consistent with As-
sumptions 1–3 in the presence of heterogeneity in our model.

3.1. Gait definitions: Generalization to heterogeneous systems. In [1, Definition 1] we
defined four versions of tetrapod gaits and a tripod gait. Figure 3 shows cartoons of an insect
executing one cycle of the tetrapod and tripod gaits, in which each leg completes one swing
and one stance phase. Each gait corresponds to a 1-periodic solution of (7) with ω̃i = 0. In
what follows, we generalize those definitions to heterogeneous models, i.e., (7) with at least
one ω̃i 6= 0.

Definition 1 (approximate tetrapod and tripod gaits). The approximate gaits, denoted by
ApT , are 1-periodic solutions of (7) with at least one ω̃i 6= 0:

ApT :=(ω̂t+ ψ1 + δ1, ω̂t+ ψ2 + δ2, ω̂t+ ψ3 + δ3; ω̂t+ ψ1 + δ1 + ψ,

ω̂t+ ψ2 + δ2 + ψ, ω̂t+ ψ3 + δ3 + ψ)>,

where ω̂ is a coupled stepping frequency that all six oscillators share,

(12)

ω̂ = ω(ξ) + c1H (ψ; ξ) + c5H(ψ2 − ψ1; ξ)

= ω(ξ) + c2H (ψ; ξ) + c4H(ψ1 − ψ2; ξ) + c7H (ψ3 − ψ2; ξ)

= ω(ξ) + c3H (ψ; ξ) + c6H (ψ2 − ψ3; ξ) ,

ψ1, ψ2, ψ3 are corresponding relative phases, and ψ is the corresponding constant contralateral
phase difference in approximate gaits. Note that the equalities in ω̂ hold by Assumptions 1
and 3.D
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The δi’s are perturbations to the legs’ phases due to the heterogeneity and are the solu-
tions of  ω̃1

ω̃2

ω̃3

 = L(ψ1, ψ2, ψ3)

 δ1

δ2

δ3

 ,

where

L(ψ1, ψ2, ψ3)

=

 c5H
′(ψ2 − ψ1; ξ) −c5H

′(ψ2 − ψ1; ξ) 0
−c4H

′(ψ1 − ψ2; ξ) c4H
′(ψ1 − ψ2; ξ) + c7H

′(ψ3 − ψ2; ξ) −c7H
′(ψ3 − ψ2; ξ)

0 −c6H
′(ψ2 − ψ3; ξ) c6H

′(ψ2 − ψ3; ξ)

 ,

and H ′ denotes the derivative of H w.r.t. its first argument. The matrix L is singular, so we
let (δ1, δ2, δ3)> = L+(ω̃1, ω̃2, ω̃3)>, where L+ is the generalized inverse (pseudoinverse) of L;
see [10].

The following choices of the relative phases ψ1, ψ2, ψ3 and the contralateral phase difference
ψ give four different versions of approximate tetrapod gaits and an approximate tripod gait:

1. The approximate forward right tetrapod gait, denoted by ApFR, corresponds to ApT with
ψ1 = 2/3, ψ2 = 0, ψ3 = 1/3, and ψ = 2/3.

2. The approximate forward left tetrapod gait, denoted by ApFL, corresponds to ApT with
ψ1 = 2/3, ψ2 = 0, ψ3 = 1/3, and ψ = 1/3.

3. The approximate backward right tetrapod gait, denoted by ApBR, corresponds to ApT with
ψ1 = 1/3, ψ2 = 0, ψ3 = 2/3, and ψ = 1/3.

4. The approximate backward left tetrapod gait, denoted by ApBL, corresponds to ApT with
ψ1 = 1/3, ψ2 = 0, ψ3 = 2/3, and ψ = 2/3.

5. The approximate tripod gait, denoted by ApTri, corresponds to ApT with ψ1 = 1/2, ψ2 = 0,
ψ3 = 1/2, and ψ = 1/2.

In forward tetrapod gaits a wave of swing phases runs from hind to front legs and in
backward tetrapod gaits the swing phases run from front to hind legs, as shown by arrows in
Figure 3.

The matrix L in Definition 1 can be derived by substituting ApT into (7) and approximating
H by the first two terms of its Taylor expansion. For instance, substituting ApT into the first
equation of (7), we get

ω̂ = φ̇1 = ω + ω̃1 + c1H(ψ; ξ) + c5H(ψ2 + δ2 − ψ1 − δ1; ξ)

= ω + ω̃1 + c1H(ψ; ξ) + c5H(ψ2 − ψ1; ξ) + c5H
′(ψ2 − ψ1; ξ)(δ2 − δ1) +O(δ2 − δ1)2.

By substituting ω̂ = ω(ξ) + c1H (ψ; ξ) + c5H(ψ2 − ψ1; ξ) into the above equation, ω̃1 can be
approximated by −c5H

′(ψ2 − ψ1; ξ)(δ2 − δ1), which gives the first row of L. The other rows
are found in the same way.

Note that when δi = 0, i.e., in the homogeneous system, two (resp., three) legs swing
simultaneously in tetrapod (resp., tripod) gaits, but when δi 6= 0, the corresponding legs do
not swing exactly together due to the small perturbations δi, so we call them approximate
tetrapod (resp., tripod) gaits.
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In [1] we showed that (7) admits a solution at a tetrapod gait when the speed parameter
ξ is small and a solution at a tripod gait when ξ is large. To connect tetrapod gaits to
tripod gaits, we defined transition gaits [1, Definition 2]. In what follows we generalize those
definitions for heterogeneous models to connect approximate tetrapod gaits to approximate
tripod gaits.

Definition 2 (approximate transition gaits). For any fixed number η ∈ [0, 1/6],
1. the approximate forward right transition gait, denoted by ApFR(η), corresponds to ApT

with ψ1 = 2/3− η, ψ2 = 0, ψ3 = 1/3 + η, and ψ = 2/3− η;
2. the approximate forward left transition gait, denoted by ApFL(η), corresponds to ApT with
ψ1 = 2/3− η, ψ2 = 0, ψ3 = 1/3 + η, and ψ = 1/3 + η;

3. the approximate backward right transition gait, denoted by ApBR(η), corresponds to ApT
with ψ1 = 1/3 + η, ψ2 = 0, ψ3 = 2/3− η, and ψ = 1/3 + η;

4. the approximate backward left transition gait, denoted by ApBL(η), corresponds to ApT
with ψ1 = 1/3 + η, ψ2 = 0, ψ3 = 2/3− η, and ψ = 2/3− η.

As ξ increases, η = η(ξ), the solution of (10), varies from 0 to 1/6. Therefore, at low speeds,
when η = 0, ApFR(η) (resp., ApFL(η), ApBR(η), and ApBL(η)) corresponds to the approximate
forward right (resp., forward left, backward right, and backward left) transition gait, and as ξ
increases and η approaches 1/6, all the approximate transition gaits tend to an approximate
tripod gait.

In what follows, we will see how certain properties of H allow us to reduce six phase
equations to three ipsilateral equations.

In both approximate tetrapod and tripod gaits, the phase difference between the left and
right legs, denoted by ψ, is constant and is equal to either ψ = 1/3 or ψ = 2/3 (in tetrapod
gaits) or ψ = 1/2 (in the tripod gait). In addition, we observe that the phase differences
between the left and right legs in approximate transition gaits are constant and equal to
2/3− η or 1/3 + η. For steady states, this assumption is supported by experiments for tripod
gaits [8] and by simulations for tripod and tetrapod gaits in the bursting neuron model [1,
Figures 4 and 5].

We make a further simplifying assumption that the steady state contralateral phase dif-
ferences remain constant for all t.

Assumption 4. The phase differences between the left and right legs are constant. For
i = 1, 2, 3,

φi+3 − φi = 2/3− η or φi+3 − φi = 1/3 + η.

As discussed earlier, the coupling function computed from the bursting neuron model
satisfies Assumption 1 and (10) and thus allows reduction to three ipsilateral equations, as we
now describe.

3.2. Phase differences model. In this section, the goal is to reduce the six equations (7)
to two equations on a 2-torus.

By Assumptions 1, 2, and 4, (7) can be reduced to the following three equations describing
the right legs’ motions:

φ̇1 = ω(ξ) + ω̃1 + c1H

(
2

3
− η; ξ

)
+ c5H(φ2 − φ1; ξ),(13a)
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1046 ZAHRA AMINZARE AND PHILIP HOLMES

φ̇2 = ω(ξ) + ω̃2 + c2H

(
2

3
− η; ξ

)
+ c4H(φ1 − φ2; ξ) + c7H(φ3 − φ2; ξ),(13b)

φ̇3 = ω(ξ) + ω̃3 + c3H

(
2

3
− η; ξ

)
+ c6H(φ2 − φ3; ξ).(13c)

Because only phase differences appear in the vector field, we may define

θ1 := φ1 − φ2 and θ2 := φ3 − φ2,

so that, from (13), the following equations describe the dynamics of θ1 and θ2:

θ̇1 = ω̃1 − ω̃2 + (c1 − c2)H

(
2

3
− η; ξ

)
+ c5H(−θ1; ξ)− c4H(θ1; ξ)− c7H(θ2; ξ),(14a)

θ̇2 = ω̃3 − ω̃2 + (c3 − c2)H

(
2

3
− η; ξ

)
+ c6H(−θ2; ξ)− c4H(θ1; ξ)− c7H(θ2; ξ),(14b)

where the ω̃i’s and H are defined in (8) and (9), respectively. Note that (14) are 1-periodic in
both variables, i.e., (θ1, θ2) ∈ T2, where T2 is a 2-torus. The flows that they generate should
not be confused with the Poincaré maps on T2 derived in [2, 3, 4].

In (14), the approximate tripod gait ApTri corresponds approximately to the fixed point
(1/2, 1/2), the approximate forward tetrapod gaits, ApFR and ApFL, correspond approximately
to the fixed point (2/3, 1/3), the approximate backward tetrapod gaits, ApBR and ApBL, cor-
respond approximately to the fixed point (1/3, 2/3), and the approximate transition gaits,
ApFR(η) and ApFL(η) (resp., ApBR(η) and ApBL(η)), correspond approximately to (2/3 − η,
1/3 +η) (resp., (1/3 +η, 2/3−η)). See [11] for similar definitions of tetrapod and tripod gaits
on a torus.

In [1] we observed that when ξ is small, the forward tetrapod gaits are not the only
solutions and there exist some other stable and unstable solutions (e.g., stable or unstable
backward tetrapod and unstable tripod gaits). We showed that as ξ increases, one stable
tripod gait emerges, through a degenerate bifurcation. In the present work, we show how het-
erogeneity, Iiext(t), can break the degenerate bifurcation into separate saddle-node bifurcations
such that at low speed, only one stable (either forward or backward tetrapod) gait exists. We
are primarily interested in the existence of approximate forward tetrapod gaits, since they
have been observed widely in insects (section 4.1 below). However, backward tetrapod gaits
have also been seen in backward-walking fruit flies [12, Supplementary Materials, Figure S1],
and so in section 4.2 we show that Iiext(t) can be chosen such that an approximate stable
backward tetrapod gait exists at low speed.

4. Main results. In this section, we fix a low speed parameter (e.g., Iext = 35.65) for which
the homogeneous bursting neuron model (23) generates tetrapod gaits. We assume that the
balance condition holds, so several fixed points including the forward (2/3, 1/3) and backward
(1/3, 2/3) tetrapod gaits exist. The main goal is to show how adding small heterogeneous
external currents Iiext(t) can successively remove fixed points on the torus while respectively
preserving the stable forward (see section 4.1 below) or stable backward (see section 4.2 below)
tetrapod gaits.
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GAITS IN HETEROGENEOUS NETWORK OF CPGs 1047

For example, consider the following randomly generated coupling strengths ci that satisfy
the balance condition:

c1 = 0.8147, c2 = 0.9058, c3 = 0.1270, c4 = 0.9134, c5 = 1.6368, c6 = 2.3245, c7 = 0.6323.
(15)

Let I1
ext(t) = I2

ext(t) = δI, where δI is a nonnegative constant, and let I3
ext(t) = 0. Note that

for δI = 0, the system becomes homogeneous. Therefore, we consider δI as a heterogeneity
parameter and vary it from 0. Figure 4 (left to right) shows the nullclines of (14) with
δI ≈ 0, 0.02, 0.032, 0.038, respectively. In this example, for the homogeneous model with
δI = 0, there exist three stable sinks, two unstable sources, and five saddle points. As the
heterogeneity parameter δI increases to δI ≈ 0.02, the isolated θ̇2 = 0 nullcline loop combines
with the θ̇2 = 0 nullcline that encircles the torus and thereafter the number of fixed points
reduces to 8 from 10, through a saddle-node bifurcation. As δI increases further, two saddle-
node bifurcations occur at approximately δI ≈ 0.032, 0.038 and one stable fixed point located
at ≈ (0.71, 0.25) remains, which corresponds to a stable approximate forward tetrapod gait.
The other three remaining fixed points are a source and two saddle points.

Note that the balance condition is sufficient for the existence of forward and backward
tetrapod gaits but does not guarantee their stability. Assuming that the balance condition
holds, in [1, Proposition 6](resp., [1, Proposition 7]) we proved that the forward (resp., back-
ward) tetrapod gait is always stable if c1 = c2 = c3, and α := c4

c4+c7
< αmax (resp., α > αmin),

where αmax (resp., αmin) can be computed from the derivatives of H:

(16) αmax(ξ) :=
H ′
(

1
3 ; ξ
)

H ′
(

1
3 ; ξ
)
−H ′

(
2
3 ; ξ
) , αmin(ξ) :=

H ′
(

2
3 ; ξ
)

H ′
(

2
3 ; ξ
)
−H ′

(
1
3 ; ξ
) .

 

α=1/2 α=1/5 α=1/8 α=1/17

δIf ~0.011 δIf ~0.025 δIf ~0.037

δIf ~0.032δIf ~0.03δIf ~0.029

δIf =0

δIf =0

α=1/2 α=1/1.3 α=1/1.1 α=1/1.06

δI = 0 δI ~ 0.02 δI ~ 0.032 δI ~ 0.038

Figure 4. (Left to right) Nullclines of (14) when ci’s satisfy (15), Iext = 35.65, and δI ≈ 0, 0.02, 0.032, 0.038,
respectively. θ̇1 = 0 nullcline shown in blue; θ̇2 = 0 nullcline shown in red. Green dots indicate sinks, red dots
are sources, and orange dots are saddle points. At δI ≈ 0.02, the first saddle-node bifurcation (shown by SN1)
occurs and the unstable tripod gait (shown by N1) disappears together with a saddle point (shown by S1). At
δI ≈ 0.032, the second saddle-node bifurcation (shown by SN2) occurs and a stable fixed point (shown by N2)
disappears together with a saddle point (shown by S2). Finally, at δI ≈ 0.038, the third saddle-node bifurcation
(shown by SN3) occurs and the stable backward tetrapod gait (shown by N3) disappears together with a saddle
point (shown by S3). A single stable approximate forward tetrapod gait remains together with a source and two
saddle points.
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1048 ZAHRA AMINZARE AND PHILIP HOLMES

We further showed that through a transcritical bifurcation at α = αmax (resp., α = αmin), the
stable forward (resp., backward) tetrapod gait loses its stability and becomes a saddle point
[1, section 5].

For the fixed speed parameter ξ = Iext = 35.65, αmax ≈ 0.86 and αmin ≈ 0.14.
Without loss of generality, we can assume that one of the coupling strengths is equal

to 1. For the rest of the paper we assume that c4 = 1, the balance condition (11) holds,
and c1 = c2 = c3. Therefore, by making a change of time variable that eliminates c5 = c6 =
1 + c7 = 1/α, (14) can be written as

θ̇1 = α(ω̃1 − ω̃2) +H(−θ1; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ),(17a)

θ̇2 = α(ω̃3 − ω̃2) +H(−θ2; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ),(17b)

which possess both forward and backward tetrapod gaits with stabilities dependent on the
value of α.

In section 4.1, we assume α < αmax and let I1
ext(t) = I2

ext(t) = δIf , where δIf ≥ 0 is a
constant, and I3

ext(t) = 0. We show that for some small value of the heterogeneity parameter
δIf , (17) possess only one stable forward tetrapod gait (together with a source and two saddle
points).

In section 4.2, we assume α > αmin and let I2
ext(t) = I3

ext(t) = δIb, where δIb ≥ 0 is a
constant, and I1

ext(t) = 0. We show that for some small value of the heterogeneity parameter
δIb, (17) possess only one stable backward tetrapod gait (together with a source and two
saddle points).

4.1. Emergence of a unique stable forward tetrapod gait at low speed. We assume
α < αmax so that the forward tetrapod gait, (2/3, 1/3), is stable while the backward tetrapod
gait can be either stable or a saddle, as described above. For any t, let

(18) I1
ext(t) = I2

ext(t) = δIf ≥ 0, I3
ext(t) = 0,

where δIf is a nonnegative constant and represents the heterogeneity. We regard δIf as a
bifurcation parameter.

Choosing Iiext(t) as in (18) implies ω̃1 − ω̃2 = 0, and ω̃3 − ω̃2 = −δIf Z̄ ≤ 0, where

Z̄ = 1
T

∫ T
0 Zv(Γ(t)) dt > 0 is the average of the phase response curve. Therefore, (17) become

θ̇1 = H(−θ1; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ),(19a)

θ̇2 = −αδIf Z̄ +H(−θ2; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ).(19b)

Equations (19) can also be obtained if I1
ext(t) = I2

ext(t) = 0, I3
ext(t) = δIf < 0.

Figure 5 shows that as α decreases and approaches αmin, one of the saddle points moves
toward the position of the backward tetrapod gait, which is shown by an arrow in Figure 5
(left), and through a transcritical bifurcation at α = αmin, the backward tetrapod gait (shown
by N) becomes a saddle point and the saddle point becomes a stable node, as expected [1,
Proposition 7]. As α decreases further, through a saddle-node bifurcation the stable node and
another saddle (shown by S) disappear. We call the bifurcation point ᾱmin, which is smaller
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α=1/2 α=1/5 α=1/8 α=1/17

Figure 5. (Left to right) Nullclines of (19) with α = 1/2, 1/5, 1/8, 1/17, Iext = 35.65, and δIf = 0,
respectively. At α = 1/2, there exist 10 fixed points including one stable backward tetrapod gait shown by N. As
α decreases and reaches αmin, a saddle point moves (shown by an arrow) toward the backward tetrapod gait N,
which loses its stability in a transcritical bifurcation, becoming a saddle point. The stable node N continues to
move leftward and as α reaches ᾱmin, N and the left most saddle point S disappear in a saddle-node bifurcation
SN. The stable forward tetrapod and a stable fixed point at ≈ (2/3, 2/3) remain throughout. Nullclines and fixed
points are colored as indicated in Figure 4.

than αmin. Note that as α decreases and reaches ᾱmin, the isolated θ̇1 = 0 nullcline loop
combines with the θ̇1 = 0 nullcline that encircles the torus and thereafter the number of fixed
points decreases from 10 to eight. Thus, for 0 < α < ᾱmin, there are only eight fixed points.

Therefore, we consider two topologically different cases:
ᾱmin < α < αmax. At δIf = 0, (19) admits ten fixed points (five saddle points, three sinks,
and two sources). As δIf increases, three saddle-node bifurcations occur and one sink (cor-
responding to the approximate forward tetrapod gait), one source, and two saddle points
remain. Note that at α = αmin, a transcritical bifurcation occurs. However, the number of
fixed points or the number of stability types does not change.
0 < α < ᾱmin. At δIf = 0, (19) admits eight fixed points (four saddle points, two sinks, and
two sources). As δIf increases, two saddle-node bifurcations occur and one sink (corresponding
to the approximate forward tetrapod gait), one source, and two saddle points remain.

Three saddle-node bifurcations: ᾱmin < α < αmax. Consider (19) with ᾱmin <
α < αmax. Since the qualitative behavior of the solutions of (19) with ᾱmin < α < αmax
are all similar, we show the results in an example with α = 1/2. As is clear from (19) and
illustrated in Figure 6 (first row), choosing the heterogeneity of (18) maintains the θ̇1 = 0
nullclines and only perturbs the θ̇2 = 0 nullclines. This perturbation causes the topology of
the θ̇2 = 0 nullclines to change, combining the isolated closed curve of the θ̇2 = 0 nullcline
with a nullcline that encircles the torus and thereafter reduces the number of fixed points. In
this case, where α = 1/2, at δIf = 0, there exist three stable sinks, two unstable sources, and
five saddle points. As δIf increases and reaches δIf ≈ 0.011, a saddle-node bifurcation (shown
by SN1) occurs and the unstable tripod gait (shown by N1) disappears together with a saddle
point (shown by S1); as δIf increases further to 0.025 another saddle-node bifurcation (shown
by SN2) occurs and a stable fixed point (shown by N2) disappears together with a saddle
point (shown by S2). Finally, at δIf ≈ 0.037, the third saddle-node bifurcation (shown by
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α=1/2 α=1/5 α=1/8 α=1/17

δIf ~0.011 δIf ~0.025 δIf ~0.037

δIf ~0.032δIf ~0.03δIf ~0.029

δIf =0

δIf =0

Figure 6. Nullclines of (17) with Iext = 35.65 are shown for α = 1/2 (first row) and α ≈ 0.03 (second
row) as the heterogeneity parameter δIf varies. As discussed in section 4.1, (17) with δIf = 0 possess either 10
(first row, left) or eight (second row, left) fixed points including a stable forward tetrapod gait. As δIf increases,
through three (first row) or two (second row) saddle-node bifurcations (shown by SN), six (first row) or four
(second row) fixed points disappear and a single stable approximate forward tetrapod gait remains together with
a source and two saddle points. Note that in the second row the second to left figure is topologically equivalent
to the left figure and is included to show how the nullclines move. Nullclines and fixed points are colored as
indicated in Figure 4.

SN3) occurs and the stable backward tetrapod gait (shown by N3) disappears together with
a saddle point (shown by S3). A single stable approximate forward tetrapod gait remains
together with a source and two saddle points.

Two saddle-node bifurcations: 0 < α < ᾱmin. We now consider (19) with α < ᾱmin.
Since the qualitative behavior of the solutions of (19) with 0 < α < ᾱmin are all similar, we
only show the results for α ≈ 0.03. As illustrated in Figure 6 (second row), choosing the
heterogeneity of (18) maintains the θ̇1 = 0 nullclines and, by combining two nullclines that
encircle the torus, changes the topology of the θ̇2 = 0 nullclines and thereafter, through two
saddle-node bifurcations, reduces the number of fixed points. As δIf increases from 0 to 0.03,
one saddle-node bifurcation occurs (shown by SN1) in which the unstable tripod gait (shown
by N1) and the backward tetrapod gait (shown by S1) disappear; as δIf increases further to
0.032, another saddle-node bifurcation occurs (shown by SN2) and the stable fixed point on
θ1 = θ2 (shown by N2) disappears and a unique stable approximate forward tetrapod gait
remains at (0.69, 0.31). The nullclines at δIf ≈ 0.029 are shown to illustrate how the nullclines
move toward each other and cause the saddle-node bifurcations.
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So far, we assumed that the forward tetrapod gait is always stable and chose the control
parameters Iiext(t) to get a unique stable approximate forward tetrapod gait. In the following
section, we assume that the backward tetrapod gait is always stable and show how to choose
Iiext(t) to get a unique stable approximate backward tetrapod gait. As discussed earlier, when
αmin < α, the backward tetrapod gait is always stable.

4.2. Emergence of a unique backward tetrapod gait at low speed. We assume αmin < α
so that the backward tetrapod gait, (1/3, 2/3), is stable while the forward tetrapod gait can
be either stable or a saddle.

For any t, let

(20) I2
ext(t) = I3

ext(t) = δIb ≥ 0, I1
ext(t) = 0,

where δIb is a nonnegative constant and represents the heterogeneity. We consider δIb as a
bifurcation parameter.

Choosing Iiext(t) as in (20) implies ω̃3 − ω̃2 = 0, and ω̃1 − ω̃2 = −δIbZ̄ ≤ 0. Therefore,
(17) become

θ̇1 = −αδIbZ̄ +H(−θ1; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ),(21a)

θ̇2 = H(−θ2; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ).(21b)

Figure 7 shows that as α increases and approaches αmax, one of the saddle points moves
toward the position of the forward tetrapod gait, which is shown by an arrow in Figure 7
(left), and through a transcritical bifurcation at α = αmax, the forward tetrapod gait (shown
by N) becomes a saddle point and the saddle point becomes a stable node, as expected [1,
Proposition 6]. As α increases further, through a saddle-node bifurcation, the stable node and
another saddle point (shown by S) disappear. We call the bifurcation point ᾱmax which is

α=1/2 α=1/1.3 α=1/1.1 α=1/1.06

Figure 7. (Left to right) Nullclines of (21) with α = 1/2, 1/1.3, 1/1.1, 1/1.06, Iext = 35.65, and δIb = 0,
respectively. At α = 1/2, there exist 10 fixed points including one stable forward tetrapod gait shown by N. As
α increases and reaches αmax, a saddle point moves (shown by an arrow) toward N, which loses its stability in
a transcritical bifurcation, becoming a saddle point. The stable node N continues to move downward and, as α
reaches ᾱmax, N and the lowest saddle point S disappear in a saddle-node bifurcation SN. The stable backward
tetrapod and a stable fixed point at ≈ (2/3, 2/3) remain throughout. Nullclines and fixed points are colored as
indicated in Figure 4.
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bigger than αmax. Note that as α increases, the isolated θ̇2 = 0 nullcline loop combines with
the θ̇2 = 0 nullcline that encircles the torus and thereafter, at α = ᾱmax, the number of fixed
points reduces to eight from 10. Thus, when α > ᾱmax, there are only eight fixed points.

Therefore, we consider two topologically different cases:
αmin < α < ᾱmax. At δIb = 0, (21) admits ten fixed points (five saddle points, three sinks,
and two sources). As δIb increases, three saddle-node bifurcations occur and one sink (cor-
responding to the approximate backward tetrapod gait), one source, and two saddle points
remain. Note that at α = αmax, a transcritical bifurcation occurs. However, the number of
fixed points or the number of stability types does not change.
α > ᾱmax. At δIb = 0, (21) admits eight fixed points (four saddle points, two sinks, and two
sources). As δIb increases, two saddle-node bifurcations occur and one sink (corresponding to
the approximate backward tetrapod gait), one source, and two saddle points remain.

Three saddle-node bifurcations: αmin < α < ᾱmax. Consider (21) with αmin <
α < ᾱmax. Since the qualitative behavior of the solutions of (21) with αmin < α < αmax are
all similar, we show the results in an example with α = 1/3.

As is clear from (21) and illustrated in Figure 8 (first row), choosing the heterogeneity of
(20) maintains the θ̇2 = 0 nullclines and only perturbs the θ̇1 = 0 nullclines. This perturbation
causes the topology of the θ̇1 = 0 nullclines to change, combining the isolated loop with a
nullcline that encircles the torus and thereafter reducing the number of fixed points.

In Figure 8 (first row), we show the nullclines of (21) with α = 1/3 and increase δIb from
0 to 0.015, where the first saddle-node bifurcation (shown by SN1) occurs and the unstable
tripod gait (shown by N1) disappears, colliding with a saddle point (shown by S1). We
further increase δIb to 0.04 where the second saddle-node bifurcation (shown by SN2) occurs
and the stable ≈ (2/3, 2/3) fixed point (shown by N2) disappears, colliding with a saddle point
(shown by S2). Finally, when δIb reaches 0.056, the third saddle-node bifurcation (shown by
SN3) occurs and the stable forward tetrapod gait (shown by N3) disappears, colliding with
a saddle point (shown by S3), and only one stable fixed point remains, which corresponds to
the approximate backward tetrapod gait ≈ (0.25, 0.7), as we desired.

Two saddle-node bifurcations: α > ᾱmax. We now consider (21) with α > ᾱmax.
Since the qualitative behavior of the solutions of (21) with α > ᾱmax are all similar, we only
show the results for α ≈ 0.95. As illustrated in Figure 8 (second row), choosing the het-
erogeneity of (20) maintains the θ̇2 = 0 nullclines and, by combining two θ̇1 = 0 nullclines
that encircle the torus, changes the topology of the θ̇1 = 0 nullclines and thereafter, through
two saddle-node bifurcations, reduces the number of fixed points. As δIb increases from 0
to 0.0121, one saddle-node bifurcation (shown by SN1) occurs in which the unstable tripod
gait (shown by N1) and the backward tetrapod gait (shown by S1) disappear; as δIb increases
further to 0.013, another saddle-node bifurcation (shown by SN2) occurs and the stable fixed
point shown by N2 disappears and a unique stable approximate backward tetrapod gait re-
mains at (0.31, 0.69). The nullclines at δIb ≈ 0.012 are shown to illustrate how the θ̇1 = 0
nullclines move toward each other and cause the saddle-node bifurcations.

Remark 1. In Table 1, we summarize the main results shown in Figures 5–8.

D
ow

nl
oa

de
d 

10
/0

1/
19

 to
 1

28
.2

55
.4

5.
18

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GAITS IN HETEROGENEOUS NETWORK OF CPGs 1053

α=1/2 α=1/1.3 α=1/1.1 α=1/1.06

δIb =0 δIb ~0.015 δIb ~0.04 δIb ~0.056

δIb =0 δIb ~0.012 δIb ~0.0121 δIb ~0.013

Figure 8. Nullclines of (21) with Iext = 35.65 are shown for α = 1/3 (first row) and α ≈ 0.95 (second row)
as the heterogeneity parameter δIb varies. As discussed in section 4.2, (21) with δIb = 0 possess either 10 (first
row, left) or eight (second row, left) fixed points including a stable backward tetrapod gait. As δIb increases,
through three (first row) or two (second row) saddle-node bifurcations (shown by SN), six (first row) or four
(second row) fixed points disappear and a single stable approximate backward tetrapod gait remains together with
a source and two saddle points. Note that in the second row the second to left figure is topologically equivalent
to the left figure and is included to show how the nullclines move. Nullclines and fixed points are colored as
indicated in Figure 4.

Table 1
A summary of Figures 5–8.

Figure α I1ext I2ext I3ext Bifurcation type
5 Varies 0 0 0 1 transcritical & 1 saddle-node

6 (row 1) ᾱmin < α < αmax (= δIf ) varies (= δIf ) varies 0 3 saddle-nodes
6 (row 2) 0 < α < ᾱmin (= δIf ) varies (= δIf ) varies 0 2 saddle-nodes

7 varies 0 0 0 1 transcritical & 1 saddle-node
8 (row 1) αmin < α < ᾱmax 0 (= δIb) varies (= δIb) varies 3 saddle-nodes
8 (row 2) ᾱmax < α 0 (= δIb) varies (= δIb) varies 2 saddle-nodes

4.3. Transition from the approximate tetrapod to the approximate tripod gait. In [1]
we studied gait transitions from multiple tetrapod gaits (e.g., Figure 4 (left)) to a unique stable
tripod gait as speed increases. In the current paper, we introduce approximate transition gaits
(1/3 + η, 2/3 − η) (resp., (2/3 − η, 1/3 + η)) and show that, for suitable heterogeneities, as
η changes from 0 to 1/6, they connect a single stable approximate forward (resp., backward)
tetrapod gait to a single stable approximate tripod gait.

As an illustration, we show the gait transition in (14) when the ci’s satisfy (15), δI ≈ 0.038,
and Iext increases from 35.65 to 37.5. In Figure 9, we observe that as Iext increases, the unique
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1054 ZAHRA AMINZARE AND PHILIP HOLMES

Figure 9. (Left to right) Phase planes and nullclines of Equations (14) when ci’s satisfy Equation (15),
δI ≈ 0.038, and Iext = 35.65 (the nullclines of which are also shown in Figure 4 (right panel)), and Iext = 37.5,
respectively. Nullclines and fixed points are colored as indicated in Figure 4.

stable approximate forward tetrapod gait becomes a stable approximate tripod gait. The
second and fourth figures show the nullclines and hence the positions of the fixed points for
Iext = 35.65, 37.5, respectively, and the first and third figures show the corresponding phase
planes.

Note that the topology of the nullclines in Figure 9 is different. However, no bifurcation
of fixed points occurs and the forward tetrapod gait continuously moves to the tripod gait, as
speed increases.

5. Equivalent perturbations. In this section, we will show that perturbing the intrinsic
dynamics of each unit of the CPG can be equivalent to perturbing the coupling function g or
the coupling strengths ci.

Recalling (29), we show that, under an appropriate condition on the ci’s, derived below,
adding Iiext to each neuron i is equivalent to adding dIj to the coupling function g(xi, xj) that
connects neuron i to its neighbor j, where dIj is the unique solution of

(22)

 I1
ext
...
I6
ext

 = C



dI1

dI2

dI3

dI4

dI5

dI6

 :=



0 c5 0 c1 0 0
c4 0 c7 0 c2 0
0 c6 0 0 0 c3

c1 0 0 0 c5 0
0 c2 0 c4 0 c7

0 0 c3 0 c6 0





dI1

dI2

dI3

dI4

dI5

dI6

 .

For example, if the above equation has a unique solution, then since I1
ext = c5dI2 + c1dI4,

adding I1
ext to unit 1 is equivalent to adding dI2 to g(x1, x2) and dI4 to g(x1, x4), i.e.,

ẋ1 = f(x1) + I1
ext + c1g(x1, x4) + c5g(x1, x2)

= f(x1) + c5dI2 + c1dI4 + c1g(x1, x4) + c5g(x1, x2)

= f(x1) + c1(g(x1, x4) + dI4) + c5(g(x1, x2) + dI2).

Equation (22) has a unique solution if the matrix C is nonsingular, i.e., det C 6= 0. The
matrix C can be written as

C =

(
A B
B A

)
,
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where A =

(
0 c5 0
c4 0 c7
0 c6 0

)
and B = diag (c1, c2, c3). Since

(
I 0
I I

)(
A B
B A

)(
I 0
−I I

)
=

(
A− B B

0 A+ B

)
,

where I and 0 are identity and zero matrices of appropriate sizes, and as shown in [13],

det

(
A− B B

0 A+ B

)
= det(A− B) det(A+ B),

we have

det C = det(A− B) det(A+ B) = det

 −c1 c5 0
c4 −c2 c7

0 c6 −c3

 det

 c1 c5 0
c4 c2 c7

0 c6 c3


= −(c1c2c3 − c1c6c7 − c3c4c5)2.

Hence, C is nonsingular if and only if c1c2c3 − c1c6c7 − c3c4c5 6= 0.
Next, we show that perturbing each CPG unit by an external current can be equivalent

to perturbing the coupling strengths. Recalling (7) and Assumptions 2 and 4, adding Iiext to
each unit i is equivalent to adding ∆i := ω̃i/H(2/3 − η; ξ) to the contralateral coupling ci,
i = 1, 2, 3, and keeping the other coupling strengths unchanged. Note that ω̃i is of order ε
and H is of order 1; therefore ∆i is of order ε.

For example, adding I1
ext to unit 1 is equivalent to adding ω̃1 to the corresponding phase

equation; therefore by Assumption 4, we get

φ̇1 = ω + ω̃1 + c1H(φ4 − φ1; ξ) + c5H(φ2 − φ1; ξ)

= ω + ω̃1 + c1H(2/3− η; ξ) + c5H(φ2 − φ1; ξ)

= ω +
ω̃1

H(2/3− η; ξ)
H(2/3− η; ξ) + c1H(2/3− η; ξ) + c5H(φ2 − φ1; ξ)

= ω +

(
ω̃1

H(2/3− η; ξ)
+ c1

)
H(2/3− η; ξ) + c5H(φ2 − φ1; ξ)

= ω + (∆1 + c1)H(2/3− η; ξ) + c5H(φ2 − φ1; ξ).

6. Discussion. In [1] we studied a homogeneous interconnected phase oscillator model for
insect locomotion, and we showed that the cyclic motion of each leg can be described by an
oscillator and that the insect’s speed increases with the common external input, Iext, that
each leg receives. At high speeds, when Iext is large, the model generates a unique stable
tripod gait, as observed experimentally in cockroaches and fruit flies. However, for small Iext,
the model’s low speed dynamics include both stable forward and backward tetrapod gaits
and a stable gait that has not been observed in insects, in which triple, double, and single
swing phases occur [1, Figure 29]. While fruit flies exhibit forward and backward tetrapod
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gaits at low speeds, the latter have only been seen in backward walking [12], and we therefore
propose that brain or central nervous system inputs are likely used to switch among and select
particular gaits.

In the present paper, we relax the assumption of homogeneous oscillators and allow het-
erogeneous ipsilateral external inputs denoted by Iext + Iiext(t) for i = 1, 2, 3. Preserving
contralateral symmetry of inputs, we find that, at low speed with small Iext, and appropriate
choices of small heterogeneities Iiext(t), i = 1, 2, 3, the heterogeneous model generates only one
stable approximate forward or backward tetrapod gait, as is observed experimentally. The
selection of a stable gait is accomplished via sequences of saddle-node bifurcations in which
all but one of the stable gaits disappears as particular currents Iiext(t) increase. See Table 1
for a summary of the behaviors presented in section 4.

The paper [4], noted in our introduction, achieves similar effects on interunit phase differ-
ences via short excitatory and inhibitory “global stimuli” which move the network’s state into
the domain of attraction of a desired stable fixed point, while multiple stable fixed points con-
tinue to coexist. In contrast, our heterogeneous inputs eliminate stable states via bifurcations,
thereby shepherding the system’s state toward a new stable fixed point.

At high speeds the single stable solution of the heterogeneous model is a tripod gait, as
in the homogeneous case, and the model exhibits a transition from a forward or a backward
tetrapod to a tripod gait as Iext increases (see Figure 9 for the former case).

In future work, we propose to allow the heterogeneous external inputs to be noisy and to
study the resulting effects on the existence of gaits and their transitions.

Appendix. A network of weakly interconnected bursting neurons. In [1, section 2.1],
we employed an ion-channel bursting neuron model for an insect CPG which was developed
in [9, 14]. The bursting neuron model of each unit of the CPG contains a system of four
ODEs describing transmembrane cell voltages, slow and fast ionic gates, and the dynamics of
neurotransmitter release at synapses, as follows:

Cv̇ = −{ICa(v) + IK(v,m) + IKS(v, w) + IL(v)}+ Iext,(23a)

ṁ =
γ

τm(v)
[m∞(v)−m],(23b)

ẇ =
δ

τw(v)
[w∞(v)− w],(23c)

ṡ =
1

τs
[s∞(v)(1− s)− s],(23d)

where the ionic currents are of the following forms:

(24)
ICa(v) = ḡCan∞(v)(v − ECa), IK(v,m) = ḡK m (v − EK),

IKS(v, w) = ḡKSw (v − EKS), IL(v) = ḡL(v − EL).

The steady state gating variables associated with ion channels and their time scales take the
forms

(25)

m∞(v) =
1

1 + e−2kK(v−vK)
, w∞(v) =

1

1 + e−2kKS(v−vKS)
,

n∞(v) =
1

1 + e−2kCa(v−vCa)
, s∞(v) =

a

1 + e−2ks(v−Epre
s )

,
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Table 2
The constant parameters in the bursting neuron model.

Iext ḡCa ḡK ḡKS ḡL ḡsyn ECa EK EKS EL Epost
s Epre

s

Varies 4.4 9.0 0.5 2.0 0.01 120 -80 -80 -60 -70 2

kCa kK kKS ks vCa vK vKS a C γ τs δ

0.056 0.1 0.8 0.11 -1.2 2 -26 444.48 1.2 5.0 5.56 0.027

Figure 10. Left: A periodic orbit of the bursting neuron model, equation (23), in (v,m,w) space. Right:
The effect of Iext on the stepping frequency of the periodic orbit.

and

(26) τm(v) = sech (0.5 kK(v − vK)), τw(v) = sech (0.5 kK(v − vKS)).

The external current Iext, which represents input from the central nervous system and
brain, varies between 35.65 and 37.7 as speed increases. Other parameters are generally
fixed as specified in Table 2 and are chosen such that the model (23) possesses an attracting
hyperbolic limit cycle Γ. Most of the parameter values are taken from [14], but some of our
notation is different. See [1, section 2.1] for further details of the model and its parameters.

As shown in Figure 10 (left), the periodic orbit in (v,m,w) space contains a sequence of
spikes (a burst) followed by a quiescent phase, which correspond respectively to the swing
and stance durations of one leg. The burst from the CPG inhibits depressor motoneurons
and excites levator motoneurons, allowing the swing leg to lift from the ground [9, Figure
2] and [15, Figure 11] (see also [16, 17]). We denote the period of the periodic orbit by T ,
i.e., it takes T time units (ms here) to complete the stance and swing cycle of each leg. The
number of steps completed by one leg per unit of time is the stepping frequency and is equal
to ω = 2π/T . In [1, Figure 2], we observed that as one of the two parameters in the bursting
neuron model, either the slow time scale δ or the external current Iext, increases, the period
of the periodic orbit decreases, primarily by decreasing stance duration, and so the insect’s
speed increases. There, we used these parameters as speed parameters, denoted by ξ, and
studied transitions from tetrapod to tripod gaits as ξ increases. To see how Iext affects the
frequency of the periodic orbit, see Figure 10 (right).
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In [1], we assumed that inhibitory coupling is achieved via synapses that produce negative
postsynaptic currents. The synapse variable s enters the postsynaptic cell in (23a) as an
additional term, Isyn,

(27) Cv̇i = −{ICa + IK + IKS + IL}+ Iext + Isyn ,

where

(28) Isyn =
∑
j∈Ni

Isyn(vi, sj) =
∑
j∈Ni

−c̄jiḡsynsj
(
vi − Eposts

)
,

ḡsyn denotes the synaptic strength, and Ni denotes the set of the nodes adjacent to node
i. The multiplicative factor c̄ji accounts for the fact that multiple bursting neurons are
interconnected in the insects, and −c̄jiḡsyn represents an overall coupling strength between
hemisegments. Following [8] we assumed contralateral symmetry and included only nearest
neighbor coupling, so that there are three contralateral coupling strengths c1, c2, c3 and four
ipsilateral coupling strengths c4, c5, c6, and c7; see Figure 1. For example, c̄21 = c5, c̄41 = c1,
etc. We chose reversal potentials Eposts that make all synaptic connections inhibitory; this
implies that the ci’s are positive.

The following system of 24 ODEs describes the dynamics of the six coupled cells in the
network as shown in Figure 1. We assume that each cell, which is governed by (23), represents
one leg of the insect. Cells 1, 2, and 3 represent right front, middle, and hind legs, and cells
4, 5, and 6 represent left front, middle, and hind legs, respectively:

ẋ1 = f(x1) + c1g(x1, x4) + c5g(x1, x2),
ẋ2 = f(x2) + c2g(x2, x5) + c4g(x2, x1) + c7g(x2, x3),
ẋ3 = f(x3) + c3g(x3, x6) + c6g(x3, x2),
ẋ4 = f(x4) + c1g(x4, x1) + c5g(x4, x5),
ẋ5 = f(x5) + c2g(x5, x2) + c4g(x5, x4) + c7g(x5, x6),
ẋ6 = f(x6) + c3g(x6, x3) + c6g(x6, x5),

(29)

where xi = (vi,mi, wi, si)
>, f(xi) is as the right-hand side of (23), and

(30) g(xi, xj) =
(
−ḡsynsj

(
vi − Eposts

)
, 0, 0, 0

)>
is the coupling function with a small synaptic coupling strength ḡsyn. This assumption of
weak coupling is necessary for the use of phase reduction in section 2.

This 6-bursting neuron model was used to drive agonist-antagonist muscle pairs in a
neuromechanical model with jointed legs that reproduced the dynamics of freely running
cockroaches [18]; also see [19]. These papers and subsequent phase-reduced models [20, 8]
support our belief that the bursting neuron model is capable of producing realistic inputs to
muscles in insects. In [1, Figures 5 and 6], we showed that the 24 ODEs coupled bursting
neuron model with small Iext (or δ) can produce a tetrapod gait with two legs lifted off the
ground simultaneously in swing, and as Iext (or δ) increases, it can produce a tripod gait with
three legs lifted off the ground simultaneously in swing.
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[3] R. Barrio, M. Rodŕıguez, S. Serrano, and A. Silnikov, Mechanism of quasi-periodic lag jitter in
bursting rhythms by a neuronal network, European Phys. Lett., 112 (2015), 38002.
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