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Abstract— Synchronization of coupled dynamical systems is a
widespread phenomenon in both biological and engineered net-
works, and understanding this behavior is crucial for control-
ling such systems. Considerable research has been dedicated to
identifying the conditions that promote synchronization in dif-
fusively coupled systems, where coupling relies on the difference
between the states of neighboring systems and vanishes on the
synchronization manifold. In particular, contraction theory pro-
vides an elegant method for analyzing synchronization patterns
in diffusively coupled networks. However, these approaches do
not fully explain the emergence of synchronization behavior in
non-diffusively coupled networks where the coupling does not
vanish on the synchronization manifold and hence the dynamics
on the synchronization manifold differ from the uncoupled
systems. Inspired by neuronal networks connected via non-
diffusive chemical synapses, we extend contraction theory to
establish sufficient conditions for global synchronization in
general non-diffusively coupled nonlinear networks. We demon-
strate the theoretical results on a network of Hindmarsh-Rose
oscillators connected via chemical synapses and networks of
FitzHugh-Nagumo oscillators connected via chemical synapses
and additive coupling.
Keywords Complete synchronization, non-diffusive cou-
pling, digraphs, contraction theory, logarithmic norms,
Hindmarsh-Rose, FitzHugh-Nagumo.

I. INTRODUCTION

The primary objective of this work is to investigate how neu-
ron coupling affects the existence, stability, and robustness
of synchronization patterns in neuronal networks. Neuron
communication can occur through electrical or chemical
transmissions, with one common form of electrical transmis-
sion being known as a gap junction, which can be modeled
by the voltage difference between the coupling neurons. This
type of coupling is diffusive and only relies on the difference
between neighboring system states, which vanishes on the
synchronization manifold where all states become identical.
However, the diffusive coupling is not commonly found in
the brain. Instead, chemical transmissions in the form of
synaptic coupling and autapse (self-connection) are preva-
lent. The influence of these coupling dynamics and their
interactions on synchronization has been studied in [1], [2],
[3], [4], where they are modeled by the product of post-
synaptic voltage and pre-synaptic synapse, resulting in non-
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diffusive coupling. Unlike diffusive coupling, non-diffusive
coupling does not vanish on the synchronization manifold.

The study of network synchronization in diffusively coupled
networks using contraction theory [5], [6] and master sta-
bility function [7], [8] is a well-established research area.
Complete synchronization in networks of homogeneous sys-
tems with diffusive coupling has been extensively explored in
[9], [10], [11]. Cluster synchronization solutions in heteroge-
neous systems with diffusive coupling have been studied in
[12], while stochastic synchronization in stochastic networks
has been reported in [13], [14], [15]. However, relatively
little effort has been devoted to studying synchronization
patterns that arise from non-diffusive coupling networks
coupled through digraphs (directed graphs). This paper aims
to address this gap in the literature.

This paper focuses on analyzing a network of homogeneous
(identical) non-linear systems that are interconnected through
digraphs and non-diffusive coupling. Our objective is to
establish conditions that ensure the existence of complete
synchronization solutions and determine their global stability.
The paper is structured as follows. Section II presents the
networks we are investigating and provides a review of
the relevant concepts from contraction theory. Section III
presents our main result. In Section IV, we apply our
theory to several neuronal networks and present numerical
simulations. Finally, we conclude in Section V.

II. PRELIMINARIES

In this paper, we consider a network of N coupled systems
described by the following equations. For i = 1, . . . , N,

Ẋi = F (Xi) + σ

N∑
j=1

αijH(Xi, Xj). (1)

Intrinsic dynamics. Each individual in the network is
described by a state Xi which is a vector function from
[0,∞) to Rn. The intrinsic dynamic of each node is modeled
by F :C ⊂ Rn → Rn, where C is a convex, open, and
connected of Rn.
Coupling Dynamics. The function H:C × C → Rn de-
scribes the connection between the nodes and the positive
constant σ represents a uniform coupling strength across the
network. The coupling function H can either be diffusive,
in which, H(Xj , Xi) = 0 when Xj = Xi, or non-diffusive,
that is, H(Xj , Xi) ̸= 0 when Xj = Xi. Note that we are
interested in non-diffusive coupling in this work.
Network Topology. A weighted graph G, with adjacency
(or connectivity) matrix A = [αij ], represents the network
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topology, i.e., αij > 0 if node j is connected to node i, and
zero otherwise. Note that A is not necessarily symmetric.
That is, the underlying graph is a digraph, i.e., a directed
graph. Also, note that we allow weights and loops (self-
connections) on digraphs. Let di =

∑
j αij be the in-degree

of node i, and D be a diagonal matrix with dis on its
diagonal. Then, Lin = D − A is the corresponding in-
degree Laplacian matrix with (at least) a zero eigenvalue
and corresponding right eigenvector 1 = (1, . . . , 1)⊤. For
the ease of notation, we drop in from Lin and simply show
it with L. We denote the eigenvalues of L by λi,L. Since
A is asymmetric, L is also asymmetric, and the eigenvalues
might be complex. In addition, the eigenvectors do not form
a basis for Rn.

A necessary condition for the existence of synchroniza-
tion solutions. Eq. (1) completely synchronizes if for any
solution X , there exists a solution ψ = (Xs, . . . , Xs)

⊤

such that ∥X(t) − ψ(t)∥≤ ect∥X(0) − ψ(0)∥, for some
synchronization rate c > 0. A synchronization solution
of the form (Xs, . . . , Xs)

⊤ exists only if
∑N

j=1 αij = k,
for all i = 1, . . . , N . That is, the adjacency matrix A
possesses a constant row sum k. Under this condition, the
synchronization solution (Xs, . . . , Xs)

⊤ satisfies

Ẋs = F (Xs) + σkH(Xs, Xs). (2)

Note that for a diffusive coupling, the coupling term van-
ishes, i.e., H(Xs, Xs) = 0. Therefore, the synchronization
solution has the same dynamics as the isolated system. This
is not true for a non-diffusive type of coupling, i.e., the
synchronization solution may differ from the solutions of
isolated systems, as shown in Eq. (2) and in Fig. 1 and Fig. 2
in Sec. IV below.

Assumption 1: For the rest of the paper, we assume that the
connectivity matrix has a constant row sum equal to k to
ensure the existence of synchronization solutions for Eq. (1).

Main goal. Assuming that the network possesses a syn-
chronization solution, our main goal of this paper is to
provide conditions that guarantee the global stability of
the synchronization solution. Our condition is based on the
intrinsic dynamics F , the coupling dynamics σ and H , and
the algebraic connectivity of the underlying graph.

Algebraic connectivity. The Courant-Fischer Theorem states
that the algebraic connectivity of an undirected graph, which
measures its connectivity, is equivalent to λ2,L. However, for
a digraph, this equivalence no longer holds. Therefore, to
generalize the concept of algebraic connectivity to digraphs,
we adopt the following definition from [16, Section 2.3].

Definition 1: For a digraph with Laplacian matrix L, Fiedler
algebraic connectivity denoted by a(L), is defined as follows

a(L) = min
X⊥1N ,X⊤X=1

X⊤LX.

As mentioned above, for general digraphs, a(L) ̸= ℜ(λ2,L).
That is because the eigenvectors of an asymmetric Laplacian

matrix do not form a basis of Rn (required by the Courant-
Fischer Theorem). Indeed, by [16, Corollary 4.14], a(L) ≤
ℜ(λ2,L) and the equality holds only when L is a normal
matrix which is a rare occurrence in practical applications.
Following [16, Theorem 2.35], the algebraic connectivity
a(L) is equal to the smallest eigenvalue of Q⊤L+L⊤

2 Q
where Q is an N × (N − 1) matrix whose columns form
an orthonormal basis for span{1N}⊥.

Assumption 2: A digraph is connected if it contains a node
that is reachable from other nodes in the graph. For a
connected digraph, a(L) > 0. In this work, we assume that
the graphs are connected.

Contraction Theory and Logarithmic Norm. To establish
our condition, we will use contraction theory, which is an
elegant tool for studying global synchronization stability.
Nonlinear system Ẋ = F (X) is contractive, if any two
trajectories X & Y converge to each other exponentially,
that is, for some c < 0,

∥X(t)− Y (t)∥≤ ect∥X(0)− Y (0)∥.

A proper tool for characterizing contractive systems is pro-
vided by the logarithmic norms of the Jacobian DF of the
vector field, evaluated at all possible states (see [17], [18],
[19], [20], [21]). That is, if for some norm ∥·∥X and some
negative constant c,

sup
X
µX [DF (X)] ≤ c < 0,

then Ẋ = F (X) is contracting. This framework analyzes a
nonlinear system via an infinite family of local linearization.
The key insight is that if all solutions are locally stable, then
they are globally stable.

III. MAIN RESULTS

We aim to establish conditions that foster synchronization in
non-diffusively coupled networks of nonlinear systems.

Theorem 1: Consider the network given in Eq. (1) with
Assumptions 1 and 2. Suppose that there exists a positive
definite matrix P such that PD2H(X,X) +D2H(X,X)P
is positive semidefinite, where D2H is the derivative of H
with respect to the second argument and is assumed to be a
non-negative diagonal matrix. Then, for any solution X of
Eq. (1), there exists a solution Xs of Eq. (2) such that

∥X(t)− X̄(t)∥2,IN⊗
√
P ≤ ect∥X(0)− X̄(0)∥2,IN⊗

√
P

where X̄ = (Xs, . . . , Xs)
⊤, c = supX∈C µ2,

√
P [A(X)] and

the matrix A(X) is equal to

DF (X) + σk(D1H +D2H)(X,X)− σa(L)D2H(X,X).

Furthermore, the network synchronizes when c < 0.

Proof: Let ei := Xi −Xs, e = (e1, . . . , eN )⊤, and

V (e) :=
1

2
e⊤(IN ⊗ P )e =

1

2

N∑
i=1

e⊤i Pei,



where ⊗ is the Kronecker product and IN is an N × N
identity matrix. We need to show that V̇ (e) ≤ 2cV (e). Since
Xi satisfies Eq. (1) and Xs satisfies Eq. (2), V̇ becomes

V̇ (e) =

N∑
i=1

e⊤i P (F (ei +Xs)− F (Xs))

+ σ

N∑
i=1

e⊤i P

N∑
j=1

αij(H(ei +Xs, ej +Xs)−H(Xs, Xs)).

Using Taylor expansions for a single variable and multivari-
able vector-valued functions, respectively, for the first and
second terms above, we get

V̇ =

N∑
i=1

e⊤i PDF (Xs)ei

+ σ

N∑
i,j=1

e⊤i Pαij (D1H(Xs, Xs)ei +D2H(Xs, Xs)ej)

= e⊤(IN ⊗ P )(IN ⊗DF (Xs))e

+ σke⊤(IN ⊗ P )(IN ⊗D1H(Xs, Xs))e

+ σe⊤(IN ⊗ P )(A⊗D2H(Xs, Xs))e

Since L = kIN −A, the last term of the above equation can
be written in terms of the Laplacian matrix as follows.

V̇ (e) = e⊤(IN ⊗ PDF )e+ σke⊤(IN ⊗ PD1H)e

+ σke⊤(IN ⊗ PD2H)e− σe⊤(L ⊗ PD2H)e.
(3)

Since PD2H(X,X) + D2H(X,X)P is positive semidef-
inite, there exists a symmetric matrix M(X) such that
PD2H(X,X) +D2H(X,X)P = 2M(X)⊤M(X). Hence,
the last term of Eq. (3) can be written as

e⊤(L ⊗ PD2H)e =
1

2
e⊤(L ⊗ (PD2H +D2HP ))e

= e⊤(L ⊗ (M⊤M))e

= ((IN ⊗M)e)⊤(L ⊗ Im)(IN ⊗M)e

≥ a(L)((IN ⊗M)e)⊤(IN ⊗M)e.

The first equality holds because both P and D2H are
symmetric. The last inequality holds by the definition of a(L)
and that ((IN ⊗M)e)⊤(1N ⊗ In) = 0. Therefore,

−e⊤(L ⊗ PD2H)e ≤ −a(L)((IN ⊗M)e)⊤(IN ⊗M)e

= −a(L)e⊤(IN ⊗ (M⊤M))e

= −a(L)e⊤(IN ⊗ PD2H)e.

Incorporating the above inequality into Eq. (3), we obtain

V̇ (e) ≤ e⊤(IN ⊗ PDF )e+ σke⊤(IN ⊗ PD1H)e

+ σke⊤(IN ⊗ PD2H)e− σa(L)e⊤(IN ⊗ PD2H)e

=

N∑
i=1

e⊤i P [DF + σk(D1H +D2H)− σa(L)D2H]ei

≤ 2c

2

N∑
i=1

e⊤i Pei = 2cV (e).

The last inequality holds by the quad condition [22] and
gives the desired result.

In what follows, we will examine specific instances of
Theorem 1 and compare them with previous studies.
Diffusive coupling Eq. (1) is diffusively coupled if the
coupling vanishes on the synchronization manifold, that is,
H(X,X) = 0. In this case, the coupling function can be
written as H(X,Y ) = D(Y − X) for some non-negative
diagonal matrix D, or more generally, H(X,Y ) = G(Y )−
G(X) for some nonlinear function G with non-negative
diagonal DG. Therefore, D1H + D2H = 0, and c in
Theorem 1 becomes

c = sup
X∈C

µ2,
√
P [DF (X)− σa(L)DG]. (4)

The classical condition for synchronization, as studied in [9],
can be represented by the synchronization rate c when an
undirected graph is used to model the network. In this case,
a(L) = λ2,L. However, Eq. (4) is valid for any networks
coupled through non-linear diffusive coupling (as studied in,
e.g., [23]) and arbitrary digraphs.

Additive coupling If H(X,Y ) only depends on Y , say
H(X,Y ) = Y , the coupling is called additive which is
a common type of coupling among neurons. In this case,
since D1H = 0, the coupling term helps c being negative,
only if k − a(L) < 0. An example of such a digraph is a
complete graph (a(L) = k+1). An example of two coupled
FitzHugh-Nagumo with this type of coupling is studied in
[6]. In Sec. IV below, we will study an arbitrary network of
FN oscillators coupled through a digraph with k−a(L) < 0
and additive coupling. Note that a network coupled through
additive coupling with k − a(L) > 0 may still synchronize,
but since our theory only provides sufficient conditions, it
cannot justify its synchronization.

Excitatory synaptic coupling In an excitatory coupling,
D1H is negative definite, so it helps c to be more negative,
and hence it facilitates network synchronization. On the other
hand, since D2H is positive semidefinite, depending on the
sign of k − a(L), D2H may or may not help to make
c < 0. We will discuss two examples with excitatory synaptic
coupling in Sec. IV below.

Balanced graphs A graph is called balanced if the in-
degree of each node is equal to its out-degree. For example,
an undirected graph is a balanced graph. A graph is a k-
regular graph if each node has in- and out-degree equal to
k. Note that a k-regular graph is balanced, while a balanced
graph is not necessarily a k-regular graph. However, in
this paper, according to Assumption 1, whenever we use a
balanced graph in Eq. (1), it must be a k-regular graph for
some k. Suppose G is a balanced digraph with asymmetric in-
degree Laplacian L. Then, 1⊤L = 0 in addition to L1 = 0.
This means, Lsym = 1

2 (L + L⊤) which is the symmetric
part of L, is also a Laplacian matrix with spec(Lsym) equals
to 0 ≤ λ2,Lsym ≤ · · · ≤ λN,Lsym . Therefore, by Courant-
Fischer Theorem, for a balanced graph, the synchronization



rate c in Theorem 1 becomes

c = sup
X∈C

µ2,
√
P [DF +σk(D1H+D2H)−σλ2,Lsym

D2H].

Some remarks and future directions
i) Theorem 1 assumes a constant weight matrix P , but it

is possible to consider a state-dependent matrix P (X).
If we do so, the matrix A becomes

DF + σk(D1H +D2H)− σa(L)D2H + P−1Ṗ .

While we do not explore this case in the current paper,
it is a topic that we plan to investigate in the future.

ii) Theorem 1 is currently restricted to weighted L2 norms.
Since it may not always be practical to identify the
appropriate weight for a given network, it is essential
to extend this result to non-L2 norms. However, this
remains an open question for future research.

iii) The network represented by Eq. 1 exhibits full homo-
geneity, which implies that all nodes share the same
intrinsic and coupling dynamics as well as inputs. As
a consequence, complete synchronization is expected, as
explained in Theorem 1. Nevertheless, real-world net-
works typically involve non-identical components. Thus,
we aim to extend our theory and investigate the stability
of cluster synchronization solutions in heterogeneous
networks, where heterogeneity may arise in the intrinsic
dynamics F , the coupling H , or graph properties such
as the in-degree k.

IV. APPLICATION TO NEURONAL NETWORKS AND
NUMERICAL SIMULATIONS

In this section, we apply our main result to two neuronal
models that are connected non-diffusively.

A. Networks of bursting Hindmarsh-Rose oscillators
The Hindmarsh-Rose (HR) model is a 3-dimensional system
(a reduced model of the 4-dimensional Hodgkin-Huxley
model) that describes how action potentials in neurons are
initiated and propagated. The dynamics of a single HR model
is described by v̇ = αv2 − v3 − w − n, ẇ = βv2 − w,
ṅ = ϵ(γv + δ − n) where v is the voltage, and w and n
are the gating variables related to the fast and slow currents,
respectively [24]. See Fig. 1(middle) for a numerical example
of a bursting HR model, where at each cycle, a sequence of
spikes is followed by a quiescent duration. In what follows,
we consider a network of N synaptically coupled HR models
and study its synchronization behavior. For i = 1, . . . , N , the
system

v̇i = αv2i − v3i − wi − ni + σ(Vs − vi)

N∑
j=1

αijΓ(vj)

ẇi = βv2i − wi

ṅi = ϵ(γvi + δ − ni),

(5)

describes the dynamics of each HR in the network. The
sigmoidal function

Γ(vj) =
1

1 + exp(− 2
3 (vj −Θs))

describes the synaptic input from neuron j to neuron i, i.e.,
H(Xi, Xj) = ((Vs − vi)Γ(vj), 0, 0)

⊤. Here, the state is
Xi = (vi, wi, ni)

⊤, and we assume vi belongs to the interval
[−1, 1], which contains the synchronization solutions.

Corollary 1: Any networks of HR models described in

Eq. (5) with
∑

j αij = k completely synchronize if σ >
M̄
k
,

where M̄ is a positive constant that depends on the HR
model parameters.

Proof: We will show that for P = diag{1, p2, 1
ϵγ },

c = sup
X∈C

µ2,
√
P [A(X)] = sup

X∈C
λmax[B(X)] < 0,

where A is as defined in Theorem 1, B is equal to

B =
√
P

A+ (A)⊤

2
(
√
P )−1 =

 −A B 0
B −1 0
0 0 −ϵ

 ,

and A,B and p2 are as follows.

A = −2αv + 3v2 + σkΓ(v)− σ(k − a(L))(Vs − v)Γ
′
(v)

B = βpv − 1

2p
, p2 =

3

β2(1 + (2α− β)2)
.

To show c < 0, we only need to show that for any v in
the domain, Det(B) = A − B2 > 0 (this concludes that
A > 0 and hence the trace is negative). Since the graph is
connected, the algebraic connectivity is positive. Therefore,
k−a(L) < k, and kΓ(v)−(k−a(L))(Vs−v)Γ

′
(v) < kΩ(v),

where
Ω(v) = Γ(v)− (Vs − v)Γ

′
(v).

For Γ(v) that we chose here, Ω(v) > 0 (see Fig. 1(bottom)
for a numerical example and Remark1 below for more

explanation). Therefore, A − B2 > 0 if σ >
1

k
supv M(v),

where

M(v) =
2αv − 3v2 +B2(v)

Ω(v)
.

Note that M is a continuous function on a compact set,
so it admits a maximum, say M̄. See Fig. 1(bottom) for a
numerical example).

Remark 1: The sigmoidal function Γ contains two parame-
ters, η := −2/3 and Θs. For k− a(L) < 0, e.g., a complete
digraphs, for any v ≤ Vs and any η, kΓ(v)−(k−a(L))(Vs−
v)Γ

′
(v) > 0. However, for k − a(L) > 0, the choice of

η becomes important, that is, we need to choose η small
enough to decrease the effect of Γ

′
on the synchronization

stability. This example has been studied in [25], [26] for
normal digraph and relatively large η. For k large, they
studied only the synchronization on the burst part of the
oscillator. Here, we control the coupling function to reduce
its effect when k is large and study the synchronization on
the whole part of the oscillator.

Numerical Example This is a numerical example to illus-
trate the result of Corollary 1. Consider a network of five HR
oscillators as described in Eq. (5) with parameters α = 2.8,



Fig. 1. (Top) A digraph of five nodes with k = 2 and and a1(L) = 1.382
is shown. (Middle) The voltage variables of a single HR and five HR that are
synaptically coupled via the graph on the top panel are shown. (Bottom) The
functions Ω(v) which is positive and M(v) which has a positive maximum
are shown. These functions are defined in the proof of Corollary 1.

β = 4.4, δ = 8, γ = 9, ϵ = 1.6, Vs = 1, and Θs = −2,
that are coupled through a digraph with in-degree k = 2,
as shown in Fig. 1(top). For this example, M̄ ≈ 1.408
(the maximum of the blue curve in Fig. 1(bottom)) and
k = 2 > a(L) ≈ 1.382. Therefore, our theory guarantees
synchronization for σ > 1.408/2 = 0.704. Fig. 1(middle)
depicts the time series of the voltage variable for a single
HR model and the synchronized voltages of the network
of HR models. Note the difference between the dynamics
of uncoupled and coupled oscillators due to non-diffusive
coupling.

B. Networks of spiking FitzHugh-Nagumo Oscillators
The two dimensions FitzHugh-Nagumo (FN) model is a
simplified version of the Hodgkin-Huxley model that can
capture the essential properties of neuron action potentials.
In this section, we explore a network of FN models that

are coupled through two distinct mechanisms: chemical
synapses, represented by a sigmoidal function, and additive
coupling, modeled by a linear function. Our objective is to
investigate the impact of these coupling mechanisms on the
synchronization patterns of the network.
1) Sigmoidal Coupling: A network of N synaptically cou-
pled FN is described as follows. For i = 1, . . . , N ,

v̇i = vi − v3i /3− a− wi + I + σ(Vs − vi)

N∑
j=1

αijΓ(vj)

ẇi = ϵ(vi − bwi)
(6)

where Γ is a sigmoidal function as follows

Γ(vj) =
1

1 + β(1 + exp(−0.1(vj −Θs)))

with β > 0 and an arbitrary threshold Θs. Then, the coupling
is H(Xj , Xi) = ((Vs−vi)Γ(vj), 0)⊤ where the state is Xi =
(vi, wi)

⊤. Note that we assume Vs − vi > 0 to ensure D2H
is positive semidefinite. Indeed, we assume vi ∈ [−2, 2].

Corollary 2: Any networks of FN models described in
Eq. (6) with

∑
j αij = k completely synchronize if σ > M̄

k ,
where M̄ > 0 is a constant and depends on the parameters.

Proof: We will apply Theorem 1 by showing that for
P = diag{1, 1ϵ }, and σ > M̄

k for some constant M̄ that we
will determine later,

c = sup
X∈C

µ2,
√
P [A(X)] = sup

X∈C
λmax[B(X)] < 0,

where A is as defined in Theorem 1, B is equal to

B =
√
P

A+ (A)⊤

2
(
√
P )−1 =

(
A 0
0 −ϵb

)
,

and A = 1 − v2 − σ[kΓ(v) − (k − a(L))(Vs − v)Γ
′
(v)].

Obviously, c < 0 if A < 0, or equivalently,

σ > sup
v

1− v2

kΓ(v)− (k − a(L))(Vs − v)Γ′(v)

Note that the denominator is always positive, so the inequal-
ity is valid. The reason is obvious when k − a(L) < 0. For
k − a(L) > 0, we use k − a(L) < k to argue that the
denominator is bounded below by kΩ(v) where

Ω(v) = Γ(v)− (Vs − v)Γ
′
(v) (7)

which is positive for FN as shown in Fig 2(bottom). There-
fore, σ > M̄

k , where M̄ = supv M(v), and

M(v) =
1− v2

Γ(v)− (Vs − v)Γ′(v)
. (8)

See Fig. 2(bottom) for a numerical example of M.

Numerical Example. Consider seven FN models as de-
scribed in Eq. (5) with parameters a = 0.5, b = 0.1,
ϵ = 0.08, I = −2, Vs = 35, Θs = −20 and β = 0.5,
that are coupled through a digraph with in-degree k = 2,
as shown in Fig. 2(top). For this example, M̄ ≈ 1.06 (the



Fig. 2. (Top) A digraph of seven nodes with k = 2 and a1(L) = 1.3465
is shown. (Middle) The voltage variables of a single FN and seven FN that
are synaptically coupled via the graph on the top panel are shown. (Bottom)
Ω(v) in Eq. (7) which is positive and M(v) in Eq. (8) which has a positive
maximum are shown.

maximum of the blue curve in Fig. 2) and k = 2 > a(L) ≈
1.35. Therefore, our theory guarantees synchronization for
σ > 1.06/2 = 0.53. Fig. 2 depicts the time series of the
voltage variable for a single FN model and the synchronized
voltages of the network of FN models.

2) Additive Coupling: We now consider a network of FN
oscillators coupled through additive coupling (linear non-
diffusive functions) described by H(Xi, Xj) = (vj , 0)

⊤

where Xi = (vi, wi)
⊤.

Corollary 3: Any networks of FN oscillators that are cou-
pled through additive coupling and a digraph with

∑
j αij =

k completely synchronize if σ > 1
a(L)−k > 0.

Proof: To apply Theorem 1, we let P = diag{1, 1ϵ }
and show that for σ > 1

a(L)−k > 0,

c = sup
X∈C

µ2,
√
P [A(X)] = sup

X∈C
λmax[B(X)] < 0,

where A is as defined in Theorem 1, B is equal to

B =
√
P

A+ (A)⊤

2
(
√
P )−1 =

(
A 0
0 −ϵb

)
,

and A = 1−v2+σ(k−a(L)). Note that here D1H = 0 and
D2H = 1 To show c < 0, we only need to show that A < 0.
Since −v2 ≤ 0, we need to show that 1+ σ(k− a(L)) < 0,
which is possible only if k − a(L) < 0 and σ > 1

a(L)−k .

V. CONCLUSION

In this paper, we have expanded the application of con-
traction theory to determine the global stability of syn-
chronization patterns arising from non-diffusively coupled
networks, with a specific focus on neuronal networks. Our
analysis provides both a necessary condition for the existence
of synchronization solutions and a sufficient condition for
their global stability. We applied our theory to two different
neuronal models, the bursting Hindmarsh-Rose and spiking
FitzHugh-Nagumo models, with two types of non-diffusive
coupling: sigmoidal synapse and linear additive coupling. In
all cases, we have shown that the bound for the coupling
strength is inversely proportional to the digraphs’ in-degree,
which is consistent with results obtained in previous studies
[6], [25]. Our findings have important implications for un-
derstanding the behavior of complex networks, particularly
those with non-diffusive coupling, and may have potential
applications in various fields such as neuroscience, engineer-
ing, and ecology.
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