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Abstract— We study phase reduction for noisy oscillator
models by deriving a reduced order stochastic differential
equation describing the phase evolution using the first and
second order Phase Response Curves (PRCs). We discuss direct
methods and ordinary differential equations for computing
these PRCs, and derive approximate first and second moments
of the time period of the oscillator models in terms of functions
of the PRCs. We illustrate the theoretical results on a noisy
Hopf bifurcation normal form, on a noisy Van der Pol oscillator,
and on a noisy bursting neuron model.

I. INTRODUCTION

Oscillator models are fundamental in modeling systems
with rhythmic behavior, including systems in ecology, neu-
roscience, and engineering [1–7]. Phase Response Curves
(PRCs) provide fundamental information about how these
oscillator models perform in a neighborhood of a stable
limit cycle and facilitate a reduction of a high dimensional
model to a one-dimensional phase model. Furthermore, when
multiple oscillator models interact with each other, such
one-dimensional reduced models enable the development of
coupled oscillator models that use only the phase information
and relative timing of their limit cycles.

PRC theory is typically developed for small deterministic
perturbations around the stable limit cycle and in such cases
it is sufficient to consider only the first order effects of the
perturbation on the limit cycle. In this paper, we consider
stochastic perturbations to the limit cycle and develop a
stochastic phase reduced model.

The idea of phase reduction goes back at least to [8]
and has been expanded and formalized in subsequent works,
including [1, 9, 10]. The references [11–13] provide a good
tutorial introduction to the topic.

Phase reduction for noisy oscillators has also received
some attention. Moehlis [14] considers oscillators under
small noise and studies mitigation techniques to reduce the
effect of noise on the time periods of the oscillators. The
small noise assumption implies that the second order terms
in the Ito expansion can be discarded. Here, we relax this
assumption and towards this end use the notion of second
order phase response curves, which was introduced in [15].
Teramae et al. [16, 17] consider a setup very similar to that
studied in the present paper. However, their computations
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rely on the Stratonovich interpretation of stochastic differen-
tial equations, which leads to different reduced order models
than those derived below using the Ito interpretation.

Bonnin [18] considers a system similar to the one studied
here and analyzes the amplitude deviation and phase dynam-
ics. The effect of noise on oscillators has also been analyzed
in [3, 4] and references therein. Compared with these works,
we provide complementary techniques that illuminate phase
reduction from a PRC perspective.

In this paper, we consider stochastic perturbations to the
limit cycle and develop a stochastic phase reduced model.
Towards this end, we use the notion of second order phase
response curves. We show how the reduced system can be
used to determine distributions and moments of the noisy
oscillators’ time periods. We also derive series expansion
approximations to the first and second moments of the time
periods of the oscillator models. We illustrate the techniques
developed with three oscillator models, the noisy Hopf
bifurcation normal form, the noisy Van der Pol oscillator
and a noisy bursting neuron model.

The remainder of the paper is organized as follows. In
Section II, we recall some background on PRCs and phase
reduction. In Section III, we derive the phase reduced model
for noisy oscillators. In Section IV we develop computational
techniques to determine second order PRCs. We discuss
computation of distributions and moments of the time period
in Section V, and finally conclude in Section VI.

II. BACKGROUND

A. Phase Reduction for Oscillators

In this section we first review the phase reduction tech-
nique for oscillators. Consider the autonomous system

ẋ = F (x), x ∈ Rn, n ≥ 2, (1)

with an asymptotically stable hyperbolic limit cycle xγ(t) of
period T and frequency ω = 2π

T . The phase of an oscillator,
denoted by θ(t), is the time that has elapsed as its state
moves around the limit cycle xγ(t), starting from an arbitrary
reference point θ̄ on the cycle, called relative phase. The
phase, defined by θ(t) = ωt + θ̄ (mod 2π), reduces the
dynamics of (1) to the following scalar phase equation

θ̇(t) = ω, (2)

where θ̇ denotes dθ
dt . Note that there is a one to one

correspondence between phase θ and each point x on the
limit cycle xγ(t). This correspondence defines the following
phase map [10, 11] on the basin of attraction of xγ(t):

Φ(x(t)) := θ(t) = ωt+ θ̄, x ∈ xγ , (3)



with dynamics

Φ̇(x(t)) = ∇Φ(x)·ẋ = ∇Φ(x)·F (x) = ω, x ∈ xγ , (4)

where · denotes the inner product.
We now consider the effect of small perturbations to the

dynamics of (1), which no longer leave xγ(t) invariant. To
this end, we first generalize the definition of the phase map
to a neighborhood of xγ(t). Since xγ(t) is asymptotically
stable, for any point y in the basin of attraction of xγ(t),
there exists an x ∈ xγ(t) such that as t → ∞, ‖X(t,x) −
X(t,y)‖ → 0, where X(·,x) is the unique solution of (1)
with initial condition x, and ‖ · ‖ is an arbitrary norm in
Rn. The set of all such points y is called the isochron of x.
For any x ∈ xγ , all the points on the isochron of x have
the same phase as x, i.e., Φ can be extended to the basin of
attraction of xγ as follows:

Φ(y) := Φ(x) = θ, ∀y ∈ isochron of x.

Note that the isochron of x is a level set of Φ(x).
Now consider (1) with a small perturbation

ẋ = F (x) + εG(x, . . .), x ∈ Rn, 0 < ε� 1. (5)

Then, using (4), we have

Φ̇(x(t)) = ∇Φ · ẋ = ∇Φ · (F + εG) = ω + ε ∇Φ ·G. (6)

Therefore, by definition of the phase map, the dynamics of
(5) can be reduced to the following phase equation

θ̇ = ω + ε ∇Φ ·G.

The gradient of the phase map,∇Φ, which is called the phase
response curve (PRC) and captures changes in the phase per
unit perturbation for small perturbations, plays an important
role in reducing the system (5). In what follows we review
two important methods to compute PRCs.

B. Computation of Phase Response Curves
The PRC, denoted by Z(θ), is defined by the gradient

of the phase map ∇Φ(x) at the point on the limit cycle
associated with phase θ. The PRC can be computed using a
direct method in which a perturbation is introduced at each
point of the limit cycle and the resulting change in phase is
recorded,

Zi(θ) =
∂Φ

∂xi
(x) = lim

r→0

1

r

(
Φ(x + rî)− Φ(x)

)
, x ∈ xγ ,

(7)
where î is the i-th coordinate vector.

Alternatively, the adjoint method can be used that solves
the following ODE in reverse time [6, 19]

d

dt
∇Φ(xγ(t)) = −DF>(xγ(t))∇Φ(xγ(t)), (8)

with constraint

∇Φ(xγ(0)) · F (xγ(0)) = ω, (9)

where DF> denotes the transpose of the Jacobian of F .
Note that due to the negative sign in front of −DF>, the
stability of the adjoint equation (8) is the opposite of the
stability of the limit cycle. Hence, the adjoint equation needs
to be solved in reverse time.

III. PHASE REDUCTION FOR NOISY OSCILLATORS

We now focus on the effect of noise in the dynamics
of equation (1) on its phase reduction. Consider (1) with
additive white noise

dx = F (x)dt+ σB(x)dW (t), (10)

where B(x) ∈ Rn×n is the input matrix, σ � 1 is a constant
determining the variability of noise, and dW (t) is a standard
n-dimensional Weiner process increment.

Before we discuss the phase reduction of noisy oscillators,
we first introduce the second order PRC, denoted by H(θ)
and defined by the Hessian of the phase map ∇2Φ(x) at the
point on the limit cycle associated with phase θ.

Proposition 1 (Phase reduction of noisy oscillators):
For the noisy oscillator (10) with an asymptotically stable
limit cycle in the absence of noise, the dynamics of the
phase in a neighborhood of the limit cycle is

dθ =
(
ω +

σ2

2
tr
(
B(xγ(t))>H(θ)B(xγ(t))

))
dt

+ σZ(θ)>B(xγ(t))dW (t), (11)

where tr(·) is the trace operator.
Proof: We apply the Ito formula [20, Theorem 4.16]

to the phase map Φ(x(t)) to obtain

dΦ = ∇Φ · F (x)dt+ σ∇Φ ·B(x)dW (t)

+
1

2

(
F (x)dt+ σB(x)dW (t)

)>∇2Φ(x)

×
(
F (x)dt+ σB(x)dW (t)

)
=
(
ω +

σ2

2
trace

(
B(x)>∇2Φ(x)B(x)

))
dt

+ σ∇Φ(x) ·B(x)dW (t),

which yields the desired result similarly to [20, Theorem
4.16].

Remark 1: If B(x) is the identity, (11) reduces to

dθ =
(
ω +

σ2

2

n∑
i=1

Hii(θ)
)
dt+ σZ(θ)>dW (t). (12)

Example 1: (Phase reduction of noisy Hopf bifurcation
normal form.) We consider the normal form of a supercritical
Hopf bifurcation with additive noise:

dx1 = (µx1 − ωx2 − (x21 + x22)x1)dt+ σdW1(t),

dx2 = (ωx1 + µx2 − (x21 + x22)x2)dt+ σdW2(t).
(13)

Recall that, without noise, the dynamics of (13) yields a
circular limit cycle centered at the origin with radius

√
µ and

frequency ω. Furthermore, given the phase θ on the limit cy-
cle, the associated point (xγ1 , x

γ
2) = (

√
µ cos(θ),

√
µ sin(θ)).

Equivalently, θ = Φ(xγ1 , x
γ
2) = tan−1(xγ2/x

γ
1). It follows

immediately that

Z(θ) =
1
√
µ

(
− sin(θ)
cos(θ)

)
,

H(θ) =
1

µ

(
sin(2θ) − cos(2θ)
− cos(2θ) − sin(2θ)

)
.

(14)



Therefore, using equation (12), the phase reduction for the
noisy Hopf bifurcation normal form (13) is

dθ = ωdt+
σ
√
µ
dW (t). (15)

�

IV. COMPUTATION OF SECOND ORDER PHASE
RESPONSE CURVES

Similar to the PRC, the second order PRC, denoted by
H(θ) = ∇2Φ(x), can be computed using a direct method as
follows.

Hij(θ) =
∂2Φ

∂xi∂xj
(x) = lim

r→0

1

r

(
∂Φ

∂xj
(x + rî)− ∂Φ

∂xj
(x)

)
.

Alternatively, the second order PRC solves the following
ODE in reverse time

Ḣ(θ) = −∇2F(Z(θ)⊗ I)−DF>H(θ)−H(θ)DF , (16)

where all the arguments (xγ(t)) from ∇2F and DF are
dropped; ∇2F = [∇2F 1 · · · ∇2F n] is an n×n2 matrix and
represents the Hessian matrix of the vector field F , ⊗ is the
Kronecker product and I is the n × n identity matrix. The
initial condition is determined by the following constraint

F>(xγ(0))H(θ)F (xγ(0)) = −
(
F>DF>

)
(xγ(0))Z(θ).

(17)
Proposition 2 (Computing the second order PRC):

Consider system (1) with an asymptotically stable limit
cycle xγ(t) and its corresponding phase map Φ. Let ∇2Φ
be the Hessian matrix of the phase map Φ. Then ∇2Φ
solves (16) with constraint (17). �

A proof of Proposition 2 can be found in [15, Section 2].
Remark 2: The following choices of initial conditions for

∇Φ and ∇2Φ guarantee the constraints given in (9) and (17),
respectively:

∇Φ(xγ(0)) =
ω

(F>F )(xγ(0))
F (xγ(0)),

∇2Φ(xγ(0)) = − ω

2(F>F )(xγ(0))
(DF +DF>)(xγ(0)).

Remark 3: In what follows, we vectorize [21] equa-
tion (16) and combine the corresponding equations of the
PRC and the second order PRC. Let Hv = vec(∇2Φ) be the
vectorization of ∇2Φ. Then

dZ

dt
= −DF>Z,

dHv

dt
= −(I ⊗DF> +DF> ⊗ I)Hv

− (I ⊗∇2F )vec(Z ⊗ I),

= −(I ⊗DF> +DF> ⊗ I)Hv

− (Z> ⊗ I ⊗ I)vec(∇2F ),

(18)

with constraints

F>(xγ(0))Z(0) = ω,

(F> ⊗ F>)(xγ(0))Hv(0) =
(
F>DF>Z

)
(xγ(0)),

where the following vectorization equalities are used for
arbitrary matrices A, B, and C:

vec(AB) = (I ⊗A)vec(B) = (B> ⊗ I)vec(A),

vec(ABC) = (C> ⊗A)vec(B).

Here I is an identity matrix of the appropriate size.
Remark 4: Due to the negative sign in the right hand side

of (16), or equivalently (18), its stability is the opposite of
the stability of the limit cycle. Hence, the equation needs to
be solved in reverse time.

Example 2: (Hopf bifurcation normal form.) For the
Hopf bifurcation dynamics (13) with σ = 0, it can be verified
that the matrix H derived in (14) satisfies (16).

Example 3: (Van der Pol oscillator.) We now consider the
van der Pol oscillator with additive white noise

dx1 =

(
x1 −

1

3
x31 − x2

)
dt+ σdW1(t) (19a)

dx2 = x1dt+ σdW2(t). (19b)

Fig. 1 shows the PRC and the second order PRC for
dynamics (19) with σ = 0. These 2-component PRCs are
computed by numerically solving (18) with initial conditions
discussed in Remark 2.
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Fig. 1: PRC (left) and 2nd order PRC (right) for the Van der Pol oscillator.

Example 4: (Bursting neuron model.) This bursting neu-
ron model, containing a system of 3 ODEs, was developed
for an insect central pattern generator (CPG) [22, 23]. It
describes the dynamics of trans-membrane cell voltages and
slow and fast ionic gates, as follows:

Cv̇ = −{ICa + IK + IKS + IL}+ Iext,

ṁ =
γ

τm(v)
[m∞(v)−m],

ẇ =
δ

τw(v)
[w∞(v)− w],

(20)

where the ionic currents are of the following forms

ICa(v) = ḡCan∞(v)(v − ECa),

IK(v,m) = ḡK m (v − EK),

IKS(v, w) = ḡKSw (v − EKS),

IL(v) = ḡL(v − EL).

The steady state gating variables associated with ion channels



and their time scales take the forms

m∞(v) =
1

1 + e−2kK(v−vK)
,

w∞(v) =
1

1 + e−2kKS(v−vKS)
,

n∞(v) =
1

1 + e−2kCa(v−vCa)
,

and

τm(v) = sech(0.5 kK(v − vK)),

τw(v) = sech(0.5 kK(v − vKS)).

CPGs are neural networks responsible for rhythmic behav-
iors such as breathing and walking. Therefore, the model’s
parameters, specified in Table I, are chosen such that equa-
tion (20) possesses an attracting hyperbolic limit cycle. As
shown in Fig. 2, the limit cycle contains a burst of spikes,
followed by a quiescent phase at low voltage with m ≈ 0.

Iext ḡCa ḡK ḡKS ḡL ECa EK EKS EL

35.65 4.4 9.0 0.5 2.0 120 -80 -80 -60

kCa kK kKS vCa vK vKS C γ δ

0.056 0.1 0.8 -1.2 2 -26 1.2 5.0 0.027

TABLE I: The constant parameters in the bursting neuron model.

Fig. 2: A limit cycle of the bursting neuron model (20), in (v,m,w) space.
The parameters are specified in Table I.

In [23, 24] a system of 6 weakly coupled bursting neuron
models like (20) were employed to study locomotion patterns
in insects. Using phase reduction techniques and the Averag-
ing Theorem, the 24 bursting neuron equations were reduced
to a system of 6 coupled phase equations in which the PRC
played a crucial role (see (6)). To reduce a system of 24
noisy bursting neuron equations, one also needs to compute
the second order PRC which we will do below. Note that we
will postpone the derivation of the 6 coupled phase equations
of noisy coupled bursting neuron models to future works.

In Fig. 3, the voltage and the first entries of the PRC
and the second order PRC of the bursting neuron model are
shown. We show only the first entries because perturbations
to a bursting neuron such as equation (20) enter from
other neurons via the external current Iext, so only the first
entries of the PRC Z and the second-order PRC H appear
in the phase equations. These are computed by solving
equations (8) and (16) in reverse time with initial conditions
given in Remark 2.

Fig. 3: The voltage and first entry of PRC and second order PRC of the
bursting neuron model (20) are shown.

V. TIME-PERIOD OF NOISY OSCILLATORS

In this section, we focus on leveraging the phase reduction
of a noisy oscillator towards computation of various statis-
tical properties of the time period of the noisy limit cycle.
Towards this end, we recall that one period of the noisy limit
cycle can be interpreted as the first passage/hitting time of
the phase variable θ evolving according to equation (11) with
absorbing boundary at θ = 2π and initial condition at θ = 0.
Let the first passage time of the stochastic process θ(t) with
respect to boundary 2π be defined by

T (θ0) = inf{τ > 0 | θ(τ) = 2π, θ(0) = θ0}. (21)

Then, the time period T = T (0).
We now discuss computation of the distribution of the

time period of a noisy oscillator. For the first passage time
defined in (21) and initial condition θ(0) = θ0, let G(θ0, t)
be defined by

G(θ0, t) = P(T ≥ t|θ(0) = θ0).

For simplicity of exposition, in the following we assume that
B(x) = diag(β1, . . . , βn). Let

Π(θ0) =
1

2

n∑
i=1

β2
iHii(θ0), and ζ(θ0) =

1

2

n∑
i=1

β2
i Zi(θ0)2.

(22)
It is known [25, Section 5.5.1] that G is the solution to the
following Fokker-Planck equation

∂G

∂t
= (ω + σ2Π(θ0))

∂G

∂θ0
+ σ2ζ(θ0)

∂2G

∂θ20
, (23)

with initial condition G(θ0, 0) = 1, for each θ0 ∈ (−kπ, 2π),
and boundary conditions G(2π, t) = G(−kπ, t) = 0, where
k → ∞. Note that two boundary conditions are required to
solve the above Fokker-Planck equation, hence an absorbing
boundary is assumed at θ = −∞.

While the distribution of the time period contains all
its statistical information, solution of the partial differential



equation (23) can be tedious. Sometimes we are interested
only in computation of certain moments of the time period.
The moments of the passage/hitting time can be computed
by solving an ordinary differential equation (ODE) instead
of equation (23). Let Mn = E[T n] be the n-th moment of
the time period. Then, it is known [25, Section 5.5.1] that
Mn is the solution to the following ODE

(ω + σ2Π(θ0))
dMn

dθ0
+σ2ζ(θ0)

d2Mn

dθ20
= −nMn−1(θ0), (24)

with boundary conditions Mn(2π) = 0 and Mn(−kπ) = 0,
k →∞, and using the fact that M0 = 1.

We now compute approximate first and second moments
of the time period.

Proposition 3 (Approximate Moments of Time Period):
For the noisy oscillator (10) and the associated reduced
model (11) with B(x) = diag(β1, . . . , βn), the following
statements hold

i) The mean time period is

E[T ] =
2π

ω
− σ2

ω2

∫ 2π

0

Π(α)dα+ o(σ2);

ii) the second moment of the time period is

E[T 2] =
4π2

ω2
− 2σ2

ω3

∫ 2π

0

(2π − α)Π(α)dα

+
2σ2

ω3

∫ 2π

0

ζ(α)dα− 2σ2

ω3

∫ 2π

0

∫ 2π

ξ

Π(α)dαdξ + o(σ2).

The functions Π(α) and ζ(α) are defined in equation (22).
Proposition 3 is proved in the appendix.

Example 5: (Time period of the noisy Hopf bifurcation
normal form.) Recall that the phase reduction of a noisy
Hopf bifurcation normal form (13) is a diffusion equation
with constant drift and diffusion terms (15). The first hitting
time properties of this equation are well studied [25, 26],
and its time-period satisfies a Wald distribution.

p(t) =

√
2πµ

σ2t3
exp

(
−µ(2π − ωt)2

2σ2t

)
.

The mean and variance of the time period are

E[T ] =
2π

ω
, Var[T ] =

2πσ2

ω3µ
.

Remark 5: The first hitting time (21) of equation (15)
with respect to a single fixed threshold has been successfully
used to model interval timing behavior [27], which studies
how humans perceive time-interval lengths. The connection
with noisy oscillators provides a normative account to such
models. Similar investigations with bursting neurons could
produce more biophysically-grounded models. We intend to
investigate this in future work.

Example 6: (Time period of noisy Van der Pol oscillator.)
We now study the time-period of the noisy Van der Pol
oscillator (19). In Fig. 4, we compare the above analytic
approximations to the mean and second moment of the
time period derived via Proposition 3 with Monte Carlo
simulations performed on the dynamics of equation (19)
and averaged over 5000 samples. It can be seen that the

approximations in Proposition 3 are fairly accurate for the
range of σ shown here.
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Fig. 4: Comparison of time period statistics obtained using 5000 Monte
Carlo simulations of the noisy Van der Pol oscillator with analytic approx-
imations derived in Proposition 3.

VI. CONCLUSIONS

We studied phase reduction of noisy oscillator dynamics.
We leveraged the first and second order PRCs to derive a
scalar stochastic differential equation that describes phase
evolution in oscillator models. We discussed the direct
method and ODEs for computing the PRCs. We also dis-
cussed computation of the distribution and moments of noisy
oscillators’ time periods, deriving analytic approximations to
the first and second moments of these time periods in terms
of functions of their PRCs.

Future directions for investigation include design of con-
trol protocols to minimize the influence of noise on the
oscillator time period statistics. Another interesting direction
is to extend the proposed methodology to coupled oscillators
and to study the influence of the second order PRC on their
synchronization.
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APPENDIX

PROOF OF PROPOSITION 3
We start by establishing the first statement. Let M1(θ0) =

T0(θ0) + σT1(θ0) + σ2T2(θ0) + o(σ2). Then, from equation
(24), we have

(ω + σ2Π(θ0))
(dT0
dθ0

+ σ
dT1
dθ0

+ σ2 dT2
dθ0

)
+

σ2ζ(θ0)
(d2T0
dθ20

+ σ
d2T1
dθ20

+ σ2 d
2T2
dθ20

)
+ o(σ2) = −1.

Collecting σi terms, for i ∈ {0, 1, 2}:

ω
dT0
dθ0

= −1 =⇒ T0 = −θ0
ω

+ c1

ω
dT1
dθ0

= 0 =⇒ ω
dT1
dθ0

= 0 =⇒ T1 = c2

Π(θ0)
dT0
dθ0

+ ω
dT2
dθ0

+ ζ(θ0)
d2T0
dθ20

= 0

=⇒ ω
dT2
dθ0

=
Π(θ0)

ω
=⇒ T2 =

1

ω2

∫ θ0

0

Π(α)dα+ c3.

Therefore,

M1(θ0) = −θ0
ω

+
σ2

ω2
Π̂(θ0) + c1 + σc2 + σ2c3 + o(σ2),



where Π̂(θ0) =
∫ θ0
0

Π(α)dα.
Using the boundary condition M1(2π) = 0, we get

c1 =
2π

ω
, c2 = 0, and c3 = − 1

ω2
Π̂(2π).

Therefore,

M1(θ0) =
2π − θ0
ω

− σ2

ω2
(Π̂(2π)− Π̂(θ0)) + o(σ2)

=
2π − θ0
ω

− σ2

ω2

∫ 2π

θ0

Π(α)dα+ o(σ2).

Thus,

E[T ] = M1(0) =
2π

ω
− σ2

ω2

∫ 2π

0

Π(α)dα+ o(σ2).

We now establish the second statement. Let M2(θ0) =
S0(θ0) + σS1(θ0) + σ2S2(θ0) + o(σ2). Then,

(ω + σ2Π(θ0))
(dS0

dθ0
+ σ

dS1

dθ0
+ σ2 dS2

dθ0

)
+

σ2ζ(θ0)
(d2S0

dθ20
+ σ

d2S1

dθ20
+ σ2 d

2S2

dθ20

)
= −2

(2π − θ0
ω

− σ2

ω2

∫ 2π

θ0

Π(α)dα
)

+ o(σ2).

Following the same steps as in the proof of statement (i), we
obtain

M2(θ0) =
θ20
ω2
− 4πθ0

ω2
+

2σ2

ω3
Π̂1(θ0)

− 2σ2

ω3
Π̂2(θ0) +

2σ2

ω3
Π̂3(θ0) +K2(σ) + o(σ2),

where Π̂1(θ0) =
∫ θ0
0

(2π − α)Π(α)dα, Π̂2(θ0) =∫ θ0
0
ζ(α)dα, Π̂3(θ0) =

∫ θ0
0

∫ 2π

ξ
Π(α)dαdξ and K2(σ) is the

integration constant.
Using the boundary condition M2(2π) = 0, we get

K2(σ) =
4π2

ω2
− 2σ2

ω3
Π̂1(2π) +

2σ2

ω3
Π̂2(2π)− 2σ2

ω3
Π̂3(2π).

Therefore,

M2(θ0) =
(2π − θ0)2

ω2
− 2σ2

ω3

∫ 2π

θ0

(2π − α)Π(α)dα

+
2σ2

ω3

∫ 2π

θ0

ζ(α)dα− 2σ2

ω3

∫ 2π

θ0

∫ 2π

ξ

Π(α)dαdξ + o(σ2).

Thus,

E[T 2] = M2(0) =
4π2

ω2
− 2σ2

ω3

∫ 2π

0

(2π − α)Π(α)dα

+
2σ2

ω3

∫ 2π

0

ζ(α)dα− 2σ2

ω3

∫ 2π

0

∫ 2π

ξ

Π(α)dαdξ + o(σ2).
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