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Abstract. We prove a weighted version of Selberg’s orthogonality conjecture for

automorphic L-functions attached to irreducible cuspidal representations of GLm

over Q. Using this weighted orthogonality, we obtain the uniqueness of factorization

of general L-functions. As a consequence, we prove that the L-function attached

to an automorphic irreducible cuspidal representation of GLm over Q cannot be

factored further.

1. Introduction. It is a far-reaching conjecture of Langlands [11] that the most

general L-function is indeed the L-function L(s,Π) attached to an automorphic repre-

sentation Π of GLn over an algebraic number field. It was further conjectured that this

L(s,Π) is equal to a product of L-functions L(s, πj) attached to automorphic irreducible

cuspidal representations πj of GLmj
over Q in a unique way:

(1.1) L(s,Π) = L(s, π1) · · ·L(s, πk).

These L(s, πj) are called principal or primitive L-functions over Q in the sense that they

are supposed to be L-functions that cannot be factored further. They are believed to be

the building blocks of all L-functions.

A known special case of the unique factorization (1.1) is for Π being an automorphic

irreducible cuspidal representation of GLn over a cyclic algebraic number field F , when Π

is invariant under the action of the Gal(F/Q). According to Arthur and Clozel [1], such

a representation Π is the base change of π ⊗ η, where π is an automorphic irreducible

cuspidal representation of GLn over Q, and η is any idele class character of Q trivial on

NF/Q(F×
A ). In terms of L-functions, we have the factorization

L(s,Π) =
∏

η

L(s, π ⊗ η)
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uniquely.

In this paper we will prove the uniqueness of the factorization in (1.1). That is, if any

general L-function can be written as a product of principal L-functions L(s, πj) for GLmj

over Q, we will show that this factorization is unique.

Theorem 1.1. Let πj and π′
i, j = 1, . . . , k, i = 1, . . . , l, be automorphic irreducible

cuspidal representations of GLmj
(QA) and GLm′

i
(QA) with unitary central characters,

respectively. Then

(1.2) L(s, π1) · · ·L(s, πk) = L(s, π′
1) · · ·L(s, π′

l)

cannot hold, if there is a πj which is not equivalent to any π′
i.

By taking k = 1, Theorem 1.1 implies that L(s, π1) cannot be factored further.

Corollary. The L-function L(s, π) attached to an automorphic irreducible cuspidal

representation π of GLm(QA) cannot be factored into L(s, π′
1) · · ·L(s, π′

l) nontrivially,

where π′
i is an automorphic irreducible cuspidal representation of GLm′

i
(QA) with uni-

tary central character.

Unique factorization of L-functions in the Selberg class (Selberg [18]) has been studied

by Conrey and Ghosh [2] and Ram Murty [14], under the Selberg orthogonality conjecture

(Conjecture 1.1 below). For automorphic L-functions, Ram Murty [15] proved that L(s, π)

is primitive, i.e., cannot be factored further, when π is an automorphic irreducible cuspidal

representation of GL2(QA), under the Ramanujan conjecture. Our proof of Theorem 1.1

and its Corollary is unconditional.

The proof of Theorem 1.1 will utilize a weighted version of Selberg’s orthogonality for

automorphic L-functions. Let π be an automorphic irreducible cuspidal representation

of GLm(QA). Then the global L-functions attached to π are given by products of local

factors for Re s > 1 (Godement and Jacquet [5]):

L(s, π) =
∏

p

Lp(s, πp),

Φ(s, π) = L∞(s, π∞)L(s, π),

where

Lp(s, πp) =

m
∏

j=1

(

1 − απ(p, j)p−s
)−1
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and

L∞(s, π∞) =
m
∏

j=1

ΓR(s + µπ(j)).

Here ΓR(s) = π−s/2Γ(s/2), and απ(p, j) and µπ(j), j = 1, . . . ,m, are complex num-

bers associated with πp and π∞, respectively, according to the Langlands correspondence.

Denote

aπ(pk) =
∑

1≤j≤m

απ(p, j)k.

Then for Re s > 1, we have

(1.3)
d

ds
log L(s, π) = −

∑

n≥1

Λ(n)aπ(n)

ns
,

where Λ(n) = log p if n = pk and = 0 otherwise. If π′ is an automorphic irreducible

cuspidal representation of GLm′(QA), we define L(s, π′), απ′(p, i), µπ′(i), and aπ′(pk)

likewise, for i = 1, . . . ,m′. If π and π′ are equivalent, then m = m′ and {απ(p, j)} =

{απ′(p, i)} for any p. Hence aπ(n) = aπ′(n) for any n = pk, when π ∼= π′.

The Selberg orthogonality conjecture for automorphic L-functions L(s, π) was proposed

in 1989 (Selberg [18]). See also Ram Murty [14].

Conjecture 1.1. (i) For any automorphic irreducible cuspidal representation π of

GLm(QA)

(1.4)
∑

p≤x

|aπ(p)|2

p
= log log x + O(1).

(ii) For any automorphic irreducible cuspidal representations π and π ′ of GLm(QA)

and GLm′(QA), respectively,

(1.5)
∑

p≤x

aπ(p)āπ′(p)

p
� 1,

if π is not equivalent to π′.

A weaker version of this conjecture is

Conjecture 1.2. (i) For any automorphic irreducible cuspidal representation π of

GLm(QA)

(1.6)
∑

n≤x

(log n)Λ(n)|aπ(n)|2

n
=

1

2
log2 x + O(log x).
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(ii) For any automorphic irreducible cuspidal representations π and π ′ of GLm(QA)

and GLm′(QA), respectively,

(1.7)
∑

n≤x

(log n)Λ(n)aπ(n)āπ′(n)

n
� log x,

if π is not equivalent to π′.

Note that in (1.6) and (1.7), the sums are taken over primes (n = p) and prime powers

(n = pk, k > 1), while in Conjecture 1.1, the sums are taken over primes only. Rudnick

and Sarnak conjectured that the sums taken over prime powers contained in (1.6) and

(1.7) converge as x → ∞:

Conjecture 1.3. ([17]) For any fixed k ≥ 2,

∑

p

|(log p)aπ(pk)|2

pk
< ∞.

Conjectures 1.2 and 1.3 imply Conjecture 1.1.

Conjecture 1.2 Part (i) in (1.6) was proved by Rudnick and Sarnak [17]. They also

proved Conjecture 1.3 for GL2 and GL3. Recently, Kim and Sarnak [10] proved Conjecture

1.3 for GL4. Therefore, part (i) of Selberg’s original Conjecture 1.1 is known up to GL4.

On the other hand, part (ii) of Conjectures 1.1 and 1.2 is still open.

In [17], Rudnick and Sarnak first proved a weighted version of (1.6):

(1.8)
∑

n≤x

(

1 −
n

x

) (log n)Λ(n)|aπ(n)|2

n
=

1

2
log2 x + O(log x)

and deduced (1.6) from (1.8) using the fact that the left side of (1.6) is a sum of positive

terms. What we want to prove here is a weighted version of (1.7).

Theorem 1.2. For any automorphic irreducible cuspidal representations π and π ′ of

GLm(QA) and GLm′(QA), respectively,

(1.9)
∑

n≤x

(

1 −
n

x

) (log n)Λ(n)aπ(n)āπ′(n)

n
� log x,

if π is not equivalent to π′.

We note that we cannot remove the weight 1 − n/x from the left side of (1.9) using

standard methods, because the sum there is not of positive terms. For our purpose of

proving Theorem 1.1, however, there is no need to remove this weight. There is also no

need to remove terms on prime powers from the sum on the left side of (1.9). That is, we

do not assume Conjecture 1.3.
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When π and π′ are not twisted equivalent, i.e., when π 6∼= π′ ⊗αit for any t ∈ R, where

α(g) = |det(g)|, (1.9) was proved by the authors in [12]. In this paper, we will prove the

remaining case: (1.9) is true when m = m′ and π ∼= π′ ⊗ αiτ0 for some non-zero τ0 ∈ R.

We would like to express our sincere thanks to Peter Sarnak and Freydoon Shahidi for

helpful information and discussion.

2. Proof of Theorem 1.1. We first prove Theorem 1.1 using (1.8) and Theorem 1.2.

A similar argument was first used by Conrey and Ghosh [2] who deduced the uniqueness

of factorization in the Selberg class by assuming Conjecture 1.1 (cf. Ram Murty [14]).

Suppose that (1.2) holds. Taking logarithmic derivatives of both sides like in (1.3), we

get

−
∑

n≥1

Λ(n)

ns

(

aπ1
(n) + · · · + aπk

(n)
)

= −
∑

n≥1

Λ(n)

ns

(

aπ′

1
(n) + · · · + aπ′

l
(n)

)

for Re s > 1. Consequently

aπ1
(n) + · · · + aπk

(n) = aπ′

1
(n) + · · · + aπ′

l
(n)

for any n = pk ≥ 1. Consider the sum

∑

n≤x

(

1 −
n

x

)Λ(n) log n

n

(

aπ1
(n) + · · · + aπk

(n)
)

āπj
(n)(2.1)

=
∑

n≤x

(

1 −
n

x

)Λ(n) log n

n

(

aπ′

1
(n) + · · · + aπ′

l
(n)

)

āπj
(n).

Since πj is not equivalent to any π′
i, the right side of (2.1) is � log x, by Theorem 1.2. On

the left side of (2.1), we get at least one, and possibly more copies of 1
2 log2 x + O(log x)

by (1.8). This contradiction proves Theorem 1.1. �

3. Rankin-Selberg L-functions. We will use the Rankin-Selberg L-functions

L(s, π × π′) as developed by Jacquet, Piatetski-Shapiro, and Shalika [6], Shahidi [19],

and Moeglin and Waldspurger [13], where π and π ′ are automorphic irreducible cuspidal

representations of GLm and GLm′ , respectively, over Q with unitary central characters.

This L-function is also given by local factors:

(3.1) L(s, π × π′) =
∏

p

Lp(s, πp × π′
p)

where

Lp(s, πp × π′
p) =

m
∏

j=1

m′

∏

k=1

(

1 − απ(p, j)απ′(p, k)p−s
)−1

.
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The Archimedean local factor L∞(s, π∞ × π′
∞) is defined by

L∞(s, π∞ × π′
∞) =

m
∏

j=1

m′

∏

k=1

ΓR(s + µπ×π′(j, k))

where, when π∞ and π′
∞ are unramified,

{

µπ×π′(j, k) : 1 ≤ j ≤ m, 1 ≤ k ≤ m′
}

=
{

µπ(j) + µπ′(k) : 1 ≤ j ≤ m, 1 ≤ k ≤ m′
}

.

Denote

Φ(s, π × π′) = L∞(s, π∞ × π′
∞)L(s, π × π′).

We will need the following properties of the L-functions L(s, π × π ′) and Φ(s, π × π′).

RS1. The Euler product for L(s, π × π′) in (3.1) converges absolutely for Re s > 1

(Jacquet and Shalika [7] ).

RS2. The complete L-function Φ(s, π × π′) has an analytic continuation to the entire

complex plane and satisfies a functional equation

Φ(s, π × π′) = ε(s, π × π′)Φ(1 − s, π̃ × π̃′),

with

ε(s, π × π′) = τ(π × π′)Q−s
π×π′

where Qπ×π′ > 0 and τ(π × π′) = ±Q
1/2
π×π′ (Shahidi [19], [20], [21], and [22]).

RS3. When π̃ 6∼= π′⊗αit for any t ∈ R, Φ(s, π×π′) is holomorphic. When m = m′ and

π̃ ∼= π′⊗αiτ0 for some τ0 ∈ R, the only poles of Φ(s, π×π′) are simple poles at s = iτ0 and

1 + iτ0 coming from L(s, π × π′) (Jacquet and Shalika [7], [8], Moeglin and Waldspurger

[13]). We will only consider the latter case in the proof of Theorem 1.2.

RS4. Φ(s, π × π′) is meromorphic of order one away from its poles, and bounded in

vertical strips (Gelbart and Shahidi [4]).

RS5. Φ(s, π × π′) and L(s, π × π′) are non-zero in Re(s) ≥ 1. (Shahidi [19])

In addition, we will also use the following simple properties of the Γ-function. If

λ(s) = min
n≤0

|s − n|,

then

(3.2) −
d

ds
log Γ(s) �

1

λ(s)
+ log(|s| + 2),
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and

(3.3)
d2

ds2
log Γ(s) �

1

λ(s)
.

For the proof of (3.2), see e.g. Pan and Pan [16] p.49. To show (3.3), one appeals to Pan

and Pan [16] p.48, to get

−
d

ds
log Γ(s) =

1

s
+ γ +

∞
∑

n=1

( 1

n + s
−

1

n

)

where γ is Euler’s constant. Therefore

d2

ds2
log Γ(s) =

1

s2
+

∞
∑

n=1

1

(n + s)2
=

∞
∑

n=0

1

(n + s)2
�

1

λ(s)
.

Let C(δ) be the complex plane with the discs |s − n| < δ, n = 0,−1,−2, · · · excluded.

Then by (3.2) and (3.3), for s ∈ C(δ) we have

−
d

ds
log Γ(s) �δ log(|s| + 2),

d2

ds2
log Γ(s) �δ 1.

Lemma 3.1. Assume m = m′ and π̃ ∼= π′ ⊗ αiτ0 for some nonzero τ0 ∈ R. For any T

∑

ρ

1

1 + (Im(ρ) − T )2
� log

(

Qπ×π′(|T | + 2)
)

where ρ runs over all the non-trivial zeros of L(s, π × π ′).

Proof. Since Φ(s, π × π′) is of order one (RS4), we have (see e.g. Davenport [3] Chapter

11)

Φ(s, π × π′) =
eA+Bs

(s − (1 + iτ0))(s − iτ0)

∏

ρ

(

1 −
s

ρ

)

es/ρ,

where A = Aπ×π′ and B = Bπ×π′ are constants depending on π × π′. Take logarithmic

derivative

(3.4)
d

ds
log Φ(s, π × π′) = B −

1

s − (1 + iτ0)
−

1

s − iτ0
+

∑

ρ

( 1

s − ρ
+

1

ρ

)

,

where here and throughout we set log 1 = 0. By the definition of Φ(s, π × π ′), we have

(3.5)
d

ds
log Φ(s, π × π′) =

d

ds
log L∞(s, π∞ × π′

∞) +
d

ds
log L(s, π × π′).
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The definition of L∞(s, π∞ × π′
∞) and (3.2) give

d

ds
log L∞(s, π∞ × π′

∞) =
∑

j,k

d

ds
log π−(s+µπ×π′(j,k))/2

+
∑

j,k

d

ds
log Γ

(s + µπ×π′(j, k)

2

)

�
∑

j,k

(

λ
(s + µπ×π′(j, k)

2

)−1

+ log(|s| + 2)
)

.

Let C(m) be the complex plane with the discs

|s − 2n + µπ×π′(j, k)| <
1

8m2
, n ≤ 0, 1 ≤ j, k ≤ m,

excluded. Then for s ∈ C(m) and all j, k,

λ
(s + µπ×π′(j, k)

2

)

≥
1

16m2
.

Thus in C(m)

(3.6)
d

ds
log L∞(s, π∞ × π′

∞) �m log(|s| + 2).

By (3.4), (3.5), and (3.6) we have

d

ds
logL(s, π × π′)(3.7)

= B +
∑

ρ

( 1

s − ρ
+

1

ρ

)

−
1

s − (1 + iτ0)
−

1

s − iτ0

+ O(log(|s| + 2)).

Here we give a remark about the structure of C(m). For j, k = 1, · · · ,m, denote by β(j, k)

the fractional part of Re(µπ×π′(j, k)). (If π and π′ are unramified at R, the Ramanujan

conjecture predicts that Re(µπ×π′(j, k)) = 0. We will not assume the Ramanujan conjec-

ture in this paper.) In addition we let β(0, 0) = 0 and β(m + 1,m + 1) = 1. Then all

β(j, k) ∈ [0, 1], and hence there exist β(j1, k1), β(j2, k2) such that β(j2, k2) − β(j1, k1) ≥

1/(3m2) and there is no β(j, k) lying between β(j1, k1) and β(j2, k2). It follows that the

strip S0 = {s : β(j1, k1) + 1/(8m2) ≤ Re(s) ≤ β(j2, k2) − 1/(8m2)} is contained in C(m).

Consequently, for all n = 0,−1,−2, · · · , the strips

(3.8) Sn = {s : n + β(j1, k1) + 1/(8m2) ≤ Re(s) ≤ n + β(j2, k2) − 1/(8m2)}

are subsets of C(m). This structure of C(m) will be used later. We will prove in a moment

that

(3.9) Re(B) = −
∑

ρ

Re
1

ρ
+ O(log Qπ×π′).
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Now taking real part in (3.7), we get by (3.9) that

Re
d

ds
log L(s, π × π′)(3.10)

=
∑

ρ

Re
1

s − ρ
− Re

1

s − (1 + iτ0)
− Re

1

s − iτ0

+ O
(

log(Qπ×π′(|s| + 2))
)

.

Let s = σ + iT with 2 ≤ σ ≤ 3 such that s ∈ C(m); this is possible by the structure of

C(m). We want to point out that the left side of (3.10) is O(1). In fact, by RS1, we have

for Re(s) > 1 that

d

ds
log L(s, π × π′) = −

∞
∑

n=1

Λ(n)aπ(n)aπ′(n)

ns
.

From aπ(pk) =
∑m

j=1 απ(j, p)k and the bound toward the Ramanujan conjecture proved

by Rudnick and Sarnak [17]

|απ(j, p)| ≤ p1/2−1/(m2+1),

we obtain for n = pk that

|aπ(n)| = |aπ(pk)| ≤ mpk(1/2−1/(m2+1)) ≤ m n1/2−1/(m2+1).

A similar estimate holds for aπ′(n) too. For n 6= pk, we have Λ(n) = 0. Thus we conclude

that
∞
∑

n=1

Λ(n)aπ(n)απ′(n)

ns
�m 1

for Re(s) = σ lying between 2 and 3. Therefore from (3.10) we deduce that

∑

ρ

σ − Re(ρ)

(σ − Re(ρ))2 + (T − Im(ρ))2
� log(Qπ×π′(|T | + 2)).

This gives the assertion of Lemma 3.1 because 0 ≤ Re(ρ) ≤ 1.

It remains to prove (3.9). We start from the definition of Φ(s, π×π ′). By aπ(n) = āπ̃(n)

and the fact that {µπ×π′(j, k)} = {µπ̃×π̃′(j, k)}, we have L(s, π̃ × π̃′) = L(s̄, π × π′) and

L∞(s, π̃∞ × π̃′
∞) = L∞(s̄, π∞ × π′

∞). It follows that

(3.11) Φ(s, π̃ × π̃′) = Φ(s̄, π × π′),

i.e.,

exp
(

Aπ̃×π̃′ + sBπ̃×π̃′

)

(s − 1 + iτ0)(s + iτ0)

∏

ρπ̃×π̃′

(

1 −
s

ρ

)

es/ρ(3.12)

=
exp

(

Āπ×π′ + sB̄π×π′

)

(s − 1 + iτ0)(s + iτ0)

∏

ρπ×π′

(

1 −
s

ρ̄

)

es/ρ̄.
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Taking s = 0 in (3.12), we get

(3.13) Aπ̃×π̃′ = Āπ×π′ .

By (3.11), Φ(ρ̄, π × π′) = 0 if and only if Φ(ρ, π̃ × π̃′) = 0, and consequently

(3.14)
∏

ρπ×π′

(

1 −
s

ρ̄

)

es/ρ̄ =
∏

ρπ̃×π̃′

(

1 −
s

ρ

)

es/ρ.

Inserting (3.14) and (3.13) into (3.12), we obtain

(3.15) Bπ̃×π̃′ = B̄π×π′ .

On the other hand, by (3.4) and the functional equation in RS2, we get

Bπ×π′ =
d

ds
log Φ(0, π × π′) −

1

1 + iτ0
−

1

iτ0
(3.16)

= −
d

ds
log Φ(1, π̃ × π̃′) + O(log Qπ×π′)

= −Bπ̃×π̃′ −
∑

ρπ̃×π̃′

( 1

1 − ρ
+

1

ρ

)

+ O(log Qπ×π′).

Applying (3.15), we conclude

2Re(Bπ×π′) = −
∑

ρπ×π′

(

Re
1

1 − ρ̄
+ Re

1

ρ̄

)

+ O(log Qπ×π′).

By the functional equation and (3.11), we have Φ(1− ρ̄, π×π ′) = 0 if and only if Φ(ρ, π ×

π′) = 0. Therefore in the above formula we can write ρ in place of 1− ρ̄, and (3.9) follows.

�

4. Estimation of logarithmic derivatives.

Lemma 4.1. Assume m = m′ and π̃ ∼= π′ ⊗ αiτ0 for some nonzero τ0 ∈ R. (a) Let

T > 2. The number N(T ) of zeros of L(s, π × π′) in the region 0 ≤ Re(s) ≤ 1, |Im(s)| ≤ T

satisfies

N(T + 1) − N(T ) � log(Qπ×π′T )

and

N(T ) � T log(Qπ×π′T ).

(b) For any |T | > 2, we have

∑

|T−Im(ρ)|>1

1

(T − Im(ρ))2
� log(Qπ×π′ |T |).
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(c) Let s = σ+it with −2 ≤ σ ≤ 2, |t| > 2. If s ∈ C(m) is not a zero or pole of L(s, π×π ′),

then

d

ds
logL(s, π × π′)

=
∑

|t−Im(ρ)|≤1

1

s − ρ
−

1

s − 1 − iτ0
−

1

s − iτ0
+ O

(

log(Qπ×π′ |t|)
)

.

(d) For |T | > 2, there exists τ with T ≤ τ ≤ T + 1 such that when −2 ≤ σ ≤ 2

d

ds
log L(σ + iτ, π × π′) � log2(Qπ×π′ |τ |).

(e) For |T | > 2, there exists τ with T ≤ τ ≤ T + 1 such that when −2 ≤ σ ≤ 2

d2

ds2
log L(σ + iτ, π × π′) � log3(Qπ×π′ |τ |).

Proof. (a) The first estimate follows from Lemma 3.1 and the observation that

N(T + 1) − N(T ) =
∑

T<Im(ρ)≤T+1

1 �
∑

T<Im(ρ)≤T+1

1

1 + (T − Im(ρ))2
.

The second inequality can be deduced from the first.

(b) The left side here is less than

2
∑

|T−Im(ρ)|>1

1

1 + (T − Im(ρ))2
,

which in combination with Lemma 3.1 gives the desired result.

(c) By the structure of C(m), there exists 2 ≤ σ0 ≤ 3 such that s0 = σ0 + it ∈ C(m).

We deduce from (3.7) that

d

ds
log L(s,π × π′) −

d

ds
log L(s0, π × π′)(4.1)

= −
1

s − 1 − iτ0
−

1

s − iτ0
+

1

s0 − 1 − iτ0
+

1

s0 − iτ0

+
∑

ρ

( 1

s − ρ
−

1

s0 − ρ

)

+ O
(

log(Qπ×π′ |t|)
)

.

Because σ0 ≥ 2, the second term on the left side is O(1). By the same reason, 1/(s0 − 1−

iτ0) + 1/(s0 − iτ0) � 1. By (a), then

∑

|Im(ρ)−t|≤1

1

s0 − ρ
� log(Qπ×π′ |t|).

Also it follows from (b) and −2 ≤ σ ≤ 2 that

∑

|Im(ρ)−t|>1

( 1

s − ρ
−

1

s0 − ρ

)

�
∑

|Im(ρ)−t|>1

1

(t − Im(ρ))2
� log(Qπ×π′ |t|).

Inserting these estimates into (4.1), we get the desired result.
11



(d) By the counting of zeros in (a), we can choose c > 0 and τ with T ≤ τ ≤ T + 1

satisfying the following properties: For any σ + it with −2 ≤ σ ≤ 2 and |t − τ | ≤

c log−1(Qπ×π′ |T |), σ + it ∈ C(m), L(σ + it, π × π′) 6= 0, and σ + it is away from poles

1 + iτ0 and iτ0 of L(s, π × π′) by at least 1/3. Then for s = σ + iτ

d

ds
logL(s, π × π′)

�
1

c
log(Qπ×π′ |τ |)

∑

|τ−Imρ|≤1

1

−
1

s − 1 − iτ0
−

1

s − iτ0
+ O(log(Qπ×π′ |τ |))

� log2(Qπ×π′ |τ |)

by (c) and (a).

(e) The proof is similar and easier than that for (d). Now, instead of (3.4), (3.5), and

(3.6), we have

d2

ds2
log Φ(s, π × π′) = −

∑

ρ

1

(s − ρ)2
+

1

(s − 1 − iτ0)2
+

1

(s − iτ0)2
,

d2

ds2
log Φ(s, π × π′) =

d2

ds2
log L∞(s, π∞ × π′

∞) +
d2

ds2
log L(s, π × π′),

and in C(m),

d2

ds2
logL∞(s, π∞ × π′

∞)

=
∑

j,k

d2

ds2
log π−(s+µπ×π′ (j,k))/2 +

∑

j,k

d2

ds2
log Γ

(s + µπ×π′(j, k)

2

)

�
∑

j,k

λ
(s + µπ×π′(j, k)

2

)−1

by (3.3). Then from the definition of C(m) we get

d2

ds2
log L∞(s, π∞ × π′

∞) �m 1

for s ∈ C(m). Thus, instead of (3.7), we now have

d2

ds2
logL(s, π × π′)

=
d2

ds2
log Φ(s, π × π′) −

d2

ds2
log L∞(s, π∞ × π′

∞)

= −
∑

ρ

1

(s − ρ)2
+

1

(s − 1 − iτ0)2
+

1

(s − iτ0)2
+ O(1).

12



By an argument similar to that leading to (c) we get

d2

ds2
logL(s, π × π′)

= −
∑

|t−Im(ρ)|≤1

1

(s − ρ)2
+

1

(s − 1 − iτ0)2
+

1

(s − iτ0)2
+ O

(

log(Qπ×π′ |t|)
)

for s = σ + it as in the statement of (c). As in the proof of (d), we can choose c > 0 and

τ with T ≤ τ ≤ T + 1 satisfying the following properties: For any σ + it with −2 ≤ σ ≤ 2

and

(4.2) |t − τ | ≤ c log−1(Qπ×π′ |T |),

σ + it ∈ C(m), L(σ + it, π × π′) 6= 0, and σ + it is away from poles 1 + iτ0 and iτ0 of

L(s, π × π′) by at least 1/3. Then the desired result of (e) follows from

d2

ds2
logL(σ + iτ, π × π′)

�
1

c2
log2(Qπ×π′ |τ |)

∑

|τ−Im(ρ)|≤1

1

� log3(Qπ×π′ |τ |)

by (4.2). �

Lemma 4.2. Assume m = m′ and π̃ ∼= π′ ⊗ αiτ0 for some nonzero τ0 ∈ R as before. If

s is in some strip Sn as in (3.8) with n ≤ −2, then

d2

ds2
log L(s, π × π′) �m 1.

Proof. By the functional equation in RS2, we have that

d2

ds2
logL∞(s, π∞ × π′

∞) +
d2

ds2
log L(s, π × π′)(4.3)

=
d2

ds2
log ε(s, π × π′) +

d2

ds2
log L∞(1 − s, π̃∞ × π̃′

∞)

+
d2

ds2
log L(1 − s, π̃ × π̃′).

Using the definition of L∞(s, π∞ × π′
∞) and (3.3) we get

d2

ds2
logL∞(s, π∞ × π′

∞)

=
∑

j,k

d2

ds2
log π−(s+µπ×π′ (j,k))/2 +

∑

j,k

d2

ds2
log Γ

(s + µπ×π′(j, k)

2

)

�
∑

j,k

λ
(s + µπ×π′(j, k)

2

)−1

.

13



As in the proof of Lemma 3.1, for all s ∈ C(m) and all j, k, we have

λ
(s + µπ×π′(j, k)

2

)

≥
1

16m2
.

Thus in C(m)

(4.4)
d2

ds2
log L(s, π∞ × π′

∞) �m 1.

Since Φ(s, π × π′) = L∞(s, π∞ × π′
∞)L(s, π × π′) is analytic for Re s > 1 (RS1) and has

only a simple pole 1 + iτ0 on Re s = 1 coming from L(s, π × π′) (RS3), the Archimedean

local factor L∞(s, π∞ × π′
∞) is analytic for Re s ≥ 1. Consequently Re(µπ×π′(j, k)) > −1

for all j, k. Now we take s = σ + it ∈ Sn with n ≤ −2 in (4.3); trivially σ < −1. Thus

d2

ds2
logL(1 − s, π̃∞ × π̃′

∞)(4.5)

�
∑

j,k

λ
(1 − s + µπ̃×π̃′(j, k)

2

)−1

�
∑

j,k

λ
(1 − σ + Re(µπ̃×π̃′(j, k))

2

)−1

�m 1.

Using σ < −1 again, we get

(4.6)
d2

ds2
log L(1 − s, π̃ × π̃′) � 1.

The desired result now follows from (4.3)-(4.6). �

5. Proof of Theorem 1.2. We will prove Theorem 1.2 when m = m′ and π̃ ∼=

π′ ⊗αiτ0 for some nonzero τ0 ∈ R. The case of π and π′ being not twisted equivalent was

proved by Liu and Ye [12]. By RS1, we have for Re(s) > 1 that

d

ds
log L(s, π × π̃′) = −

∞
∑

n=1

Λ(n)aπ(n)āπ′(n)

ns
,

and therefore

K(s) :=
d2

ds2
log L(s, π × π̃′) =

∞
∑

n=1

(log n)Λ(n)aπ(n)āπ′(n)

ns
.

By RS3 and RS5, K(s) is holomorphic in Re(s) > 1. On Re(s) = 1, L(s, π × π ′) is

nonzero (RS5) and has only a simple pole at s = 1 + iτ0. Thus

(5.1) K(s) =
1

(s − 1 − iτ0)2
+ G(s)

has only a double pole in Re s ≥ 1, where G(s) is analytic for Re s ≥ 1. On C, K(s) has

a double pole at each of the pole at iτ0, trivial zeros, and nontrivial zeros of L(s, π × π ′).
14



Note that

1

2πi

∫

(b)

ys

s(s + 1)
ds =

{

1 − 1/y if y ≥ 1,

0 if 0 < y < 1,

where (b) means the line Re(s) = b > 0. Then we have

∑

n≤x

(

1 −
n

x

) (log n)Λ(n)aπ(n)āπ′(n)

n

=
1

2πi

∫

(1)

K(s + 1)
xs

s(s + 1)
ds

=
1

2πi

(

1+iT
∫

1−iT

+

1−iT
∫

1−i∞

1+i∞
∫

1+iT

)

.

The last two integrals are clearly bounded by �
∫ ∞

T
(x/t2) dt � x/T . Thus

∑

n≤x

(

1 −
n

x

) (log n)Λ(n)aπ(n)āπ′(n)

n
(5.2)

=
1

2πi

1+iT
∫

1−iT

K(s + 1)
xs

s(s + 1)
ds + O

( x

T

)

.

Choose σ0 with −2 < σ0 < −1 such that the line Re(s) = σ0 is contained in the

strip S−2 ⊂ C(m); this is guaranteed by the structure of C(m). Let T be the τ such that

Lemma 4.1(e) holds. Now we consider the contour

C1 : 1 ≥ σ ≥ σ0, t = −T ;

C2 : σ = σ0, −T ≤ t ≤ T ;

C3 : σ0 ≤ σ ≤ 1, t = T.

Note that the two poles, some trivial zeros, and certain nontrivial zeros of L(s+1, π×π ′),

as well as s = 0,−1 are passed by the shifting of the contour. The trivial zeros can be

determined by the functional equation in RS2: s + 1 = −µπ×π′(j, k) with σ0 < −1 −

Re(µπ×π′(j, k)) < 0. Here we used the facts that Re(µπ×π′(j, k)) > −1 and −2 < σ0 < −1
15



. Then we have

1

2πi

1+iT
∫

1−iT

K(s + 1)
xs

s(s + 1)
ds(5.3)

=
1

2πi

(

∫

C1

+

∫

C2

+

∫

C3

)

(5.4)

+ Res
s=0,−1

K(s + 1)
xs

s(s + 1)
(5.5)

+ Res
s=iτ0,−1+iτ0

K(s + 1)
xs

s(s + 1)
(5.6)

+
∑

σ0<−1−Re(µπ×π′ (j,k))<0

Res
s=−1−µπ×π′(j,k)

K(s + 1)
xs

s(s + 1)
(5.7)

+
∑

|Im(ρ)|≤T

Res
s=ρ−1

K(s + 1)
xs

s(s + 1)
.(5.8)

By Lemma 4.1(e), we get

∫

C1

�

1
∫

σ0

log3(Qπ×π̃′T )
xσ

T 2
dσ �

x log3(Qπ×π̃′T )

T 2
,

and the same upper bound also holds for the integral on C3. By Lemma 4.2, then

∫

C2

�

T
∫

−T

xσ0

(|t| + 1)2
dt � x−1.

By taking T ∼ x, the three integrals in (5.4) are

(5.9) �
log3(Qπ×π̃′x)

x
.

Obviously, (5.5) is

(5.10) Res
s=0,−1

K(s + 1)
xs

s(s + 1)
= K(1) + K(0)x−1.

Since the poles at s = iτ0 and s = −1 + iτ0 are double poles, The residues in (5.6) are

lim
s→iτ0

d

ds
(s − iτ0)

2K(s + 1)
xs

s(s + 1)
(5.11)

+ lim
s→−1+iτ0

d

ds
(s + 1 − iτ0)

2K(s + 1)
xs

s(s + 1)
.
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Using (5.1) we get

lim
s→iτ0

d

ds
(s − iτ0)

2K(s + 1)
xs

s(s + 1)
(5.12)

= lim
s→iτ0

d

ds

(

1 + (s − iτ0)
2G(s + 1)

) xs

s(s + 1)

= lim
s→iτ0

d

ds

xs

s(s + 1)
� log x.

Similarly the second term in (5.11) is � (log x)/x, and hence (5.6) is bounded

(5.13) Res
s=iτ0,−1+iτ0

K(s + 1)
xs

s(s + 1)
� log x.

Near a trivial zero s = −1 − µπ×π′(j, k) of order l in (5.7), we can express K(s + 1) as

−l/(s+ 1 +µπ×π′(j, k))2 plus an analytic function, like in (5.1). The residues in (5.7) can

therefore computed similar to what we did in (5.12). Because Re(µπ×π′(j, k)) > −1 and

−1 − Re(µπ×π′(j, k)) < 0, (5.7) is bounded

(5.14)
∑

σ0<−1−Re(µπ×π′ (j,k))<0

Res
s=−1−µπ×π′(j,k)

K(s + 1)
xs

s(s + 1)
� log x.

To compute the residues corresponding to nontrivial zeros in (5.8), we note that Φ(s, π×

π̃′) is of order 1 (RS4), and Φ(1, π × π̃′) 6= 0 (RS5). Using an argument like (3.16), we

see that
∑

ρ

1

|ρ(1 − ρ)|
< ∞.

Consequently, (5.8) becomes

∑

|Im(ρ)|≤T

Res
s=ρ−1

K(s + 1)
xs

s(s + 1)
(5.15)

= −
∑

|Im(ρ)|≤T

Res
s=ρ−1

1

(s + 1 − ρ)2
xs

s(s + 1)

�
∑

|Im(ρ)|≤T

∣

∣

∣

xρ−1 log x

ρ(ρ − 1)

∣

∣

∣

� log x.

Using (5.9), (5.10), and (5.13) through (5.15), we get a bound for (5.3)

1

2πi

1+iT
∫

1−iT

K(s + 1)
xs

s(s + 1)
ds � log x.

The desired estimate (1.9) now follows from this, (5.2), and the fact that T ∼ x. �
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