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Abstract. In this report, we present a number-theory-based approach for discrete tomography (DT),which is based on parallel
projections of rational slopes. Using a well-controlled geometry of X-ray beams, we obtain a system of linear equations with
integer coefficients. Assuming that the range of pixel values isa(i, j) = 0, 1, . . . , M − 1, with M being a prime number, we
reduce the equations moduloM . To invert the linear system, each algorithmic step only needslog22 M bit operations. In the
case of a smallM , we have a greatly reduced computational complexity, relative to the conventional DT algorithms, which
requirelog2

2 N bit operations for a real number solution with a precision of1/N . We also report computer simulation results
to support our analytic conclusions.
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1. Introduction

Computed tomography (CT) refers to computerized synthesis of an image from external measurements
of a spatially varying function. Line integrals are the most common external measures, which are also
known as projections. This underlying function is traditionally real-valued. However, the range of
the underlying function is practically often discrete in industrial imaging and other applications. The
problems of discrete tomography (DT) are to determine the underlying function from weighted sums
over subsets of its domain. In the most essential sense, DT allows that given a discrete range of the
underlying function we find its values that could not be found without the knowledge on the discrete
range. Recently, DT attracts increasing interests, and becomes challenging and exciting.

Current studies (e.g. [3,6]) of DT are focused on algorithms derived from horizontal and vertical
projections, plus sometimes diagonal projections. If the number of unknowns is more than the number
of equations, these projections cannot determine a unique solution in the general case. Furthermore,
existing algorithms do not directly make use of the discreteness of pixel values to reduce the computational
complexity (see [1,7]). In this paper, we formulate a system of linear equations with integer coefficients,
and develop a number-theory-based algorithm for DT. In the next section, we describe a pre-specified
geometry for the formation of appropriate projections. In the third section, we propose a number-theory-
based algorithm that can be applied to projection data collected according to the pre-specified geometry.
Then, we present representative results obtained via computer simulation. In the last section, relevant
issues are discussed for futher research, and conclusions are made.
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2. Projection formation

Suppose an imagea(x, y) is divided into a square of gridn × n. The total number of cells isn2.
Assume each cell has size of1 × 1 and in each cella(x, y) takes a constant value. For1 � i, j � n,
let us denote bya(i, j) the constant function value in the(i, j)th cell, which is the cell enclosed by the
lines: x = i − 1, x = i, y = j − 1 andy = j.

It is easy to have horizontal and vertical projections. They are rays of width 1. The horizontal
projections given equations:

b0/1(j) =
n∑

i=1

a(i, j), j = 1, . . . , n, (1)

whereb0/1(j) is the density detected by theith ray. Here the subscript0/1 denotes the slope of the rays.
Similarly from the vertical projections we get

b1/0(i) =
n∑

j=1

a(i, j), i = 1, . . . , n, (2)

where1/0 represents the vertical slope.
There are two diagonal directions, one with slope1/1 and the other with slope−1/1. We take the

width of the rays equal to1/
√

2 and divide neighboring rays by linesy = x + k for slope= 1/1, and by
y = −x+k for slope= −1/1, for k ∈ Z. Note that each ray passes through1/2 area of a cell. Therefore
the diagonal projections with slope1/1 are

b1/1(k) =
n∑

j=0

(1
2
a(j, j + k) +

1
2
a(j + 1, j + k)

)
, −n < k � n, (3)

where we seta(i, j) = 0 if (i, j) is outside the range1 � i, j � n. Similarly from the other diagonal
direction we get equations

b−1/1(k) =
n∑

j=0

(1
2
a(j, n − j − k + 1) +

1
2
a(j + 1, n − j − k + 1)

)
, −n < k � n. (4)

The key idea of our new algorithm is to have projections in other directions, and to do so in such a way
that the resulting equations have integral coefficients. In this sense, our projections are different from
those in [1,8]. Letp/q be a positive rational number in its reduced form. Then the greatest common
divisor (p, q) = 1. Assume thatp > q > 0. We want to construct parallel rays of slopep/q, by dividing
our square grid into stripes using parallel linesy = (p/q)(x − j), −n < j � n. Then each stripe and
hence each ray have widthp/

√
p2 + q2 which is less than 1 but greater than1/2, becausep > q > 0.

Such a ray passes through several cells. By computing the area of each cell(i, j) it passes through, we
can determine the coefficient ofa(i, j) in the equation for this ray. The following theorem summarizes
our results. Here we denote by[x] the integral part of a real numberx, that is, the largest integer� x.
Denote by{x} the fractional part ofx, that is,{x} = x − [x].
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Theorem 1. Let p and q be positive integers with (p, q) = 1 and p > q. The equations from projections
of slope p/q are

bp/q(j) =
∑

1�l�n,
{ql/p}=0

(
q

2p
a(j + ql/p, l) +

(
1 − q

2p

)
a(j + ql/p + 1, l)

)

+
∑

1�l�n,
0<{ql/p}<q/p

((
q

2p
−
{

ql

p

}
+

p

2q

{
ql

p

}2
)

a(j + [ql/p], l)

+

(
1 − q

2p
+
{

ql

p

}
− p

q

{
ql

p

}2
)

a(j + [ql/p] + 1, l)

(5)

+
p

2q

{
ql

p

}2

a(j + [ql/p] + 2, l)

)

+
∑

1�l�n,
{ql/p}�q/p

((
1 +

q

2p
−
{

ql

p

})
a(j + [ql/p] + 1, l)

+
({

ql

p

}
− q

2p

)
a(j + [ql/p] + 2, l)

)
,

for −n < j � n.

We will prove this Theorem in the next section. Here we point out that the coefficients are all rational
numbers, and indeed, if multiplied by2pq, they become integers. This means that all our Eqs (1) through
(5), together with Eqs (6) to (8) below, can be rewritten as linear equations of integral coefficients. If we
seek integer solutionsa(i, j), we are dealing with a system of linear Diophantine equations. If the cells
are supposed to take valuesa(i, j) = 0, 1, . . . ,M − 1, we can further reduce these linear Diophantine
equations moduloM .

By simple reflections or change of coordinates, we can get equations for projections of slopesq/p,
−p/q, and−q/p.

Corallary 1. Let p and q be positive integers with (p, q) = 1 and p > q. The equations from projections
of slope q/p are

bq/p(j) =
∑

1�l�n,
{ql/p}=0

(
q

2p
a(l, j + ql/p) +

(
1 − q

2p

)
a(l, j + ql/p + 1)

)

+
∑

1�l�n,
0<{ql/p}<q/p

((
q

2p
−
{

ql

p

}
+

p

2q

{
ql

p

}2
)

a(l, j + [ql/p])

+

(
1 − q

2p
+
{

ql

p

}
− p

q

{
ql

p

}2
)

a(l, j + [ql/p] + 1)
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+
p

2q

{
ql

p

}2

a(l, j + [ql/p] + 2)

)
(6)

+
∑

1�l�n,
{ql/p}�q/p

((
1 +

q

2p
−
{

ql

p

})
a(l, j + [ql/p] + 1)

+
({

ql

p

}
− q

2p

)
a(l, j + [ql/p] + 2)

)
,

for −n < j � n.

Corallary 2. Let p and q be positive integers with (p, q) = 1 and p > q. The equations from projections
of slope −p/q are

b−p/q(j) =
∑

1�l�n,
{ql/p}=0

(
q

2p
a(n + 1 − j − ql/p, l) +

(
1 − q

2p

)
a(n − j − ql/p, l)

)

+
∑

1�l�n,
0<{ql/p}<q/p

((
q

2p
−
{

ql

p

}
+

p

2q

{
ql

p

}2
)

a(n + 1 − j − [ql/p], l)

+

(
1 − q

2p
+
{

ql

p

}
− p

q

{
ql

p

}2
)

a(n − j − [ql/p], l)

(7)

+
p

2q

{
ql

p

}2

a(n − j − [ql/p] − 1, l)

)

+
∑

1�l�n,
{ql/p}�q/p

((
1 +

q

2p
−
{

ql

p

})
a(n − j − [ql/p], l)

+
({

ql

p

}
− q

2p

)
a(n − j − [ql/p] − 1, l)

)
,

for −n < j � n.

Corallary 3. Let p and q be positive integers with (p, q) = 1 and p > q. The equations from projections
of slope −q/p are

b−q/p(j) =
∑

1�l�n,
{ql/p}=0

(
q

2p
a(l, n + 1 − j − ql/p) +

(
1 − q

2p

)
a(l, n − j − ql/p)

)

+
∑

1�l�n,
0<{ql/p}<q/p

((
q

2p
−
{

ql

p

}
+

p

2q

{
ql

p

}2
)

a(l, n + 1 − j − [ql/p])
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+

(
1 − q

2p
+
{

ql

p

}
− p

q

{
ql

p

}2
)

a(l, n − j − [ql/p])

(8)

+
p

2q

{
ql

p

}2

a(l, n − j − [ql/p] − 1)

)

+
∑

1�l�n,
{ql/p}�q/p

((
1 +

q

2p
−
{

ql

p

})
a(l, n − j − [ql/p])

+
({

ql

p

}
− q

2p

)
a(l, n − j − [ql/p] − 1)

)
,

for −n < j � n.

3. Algorithm and simulation

We select parallel rays whose slopes are rational numbers of the form±p/q, and control the width
and location of each ray in a specific way. The resulting linear equations then have all coefficients
being integers. Because of these integral coefficients, we may reduce this system of linear Diophantine
equations moduloM , if the cells are supposed to take valuesa(i, j) = 0, 1, . . . ,M − 1. In other words,
we seek solutions in the fieldZ/MZ, whenM is a prime number.

This linear system can be solved overZ/MZ in the same way as overR, using the standard Gaussian
elimination method, for example. The main advantage of our approach is that, overZ/MZ, each
operation uses onlylog2

2 M bit operations (cf. Cohen [2]). On the other hand, for solution procedures of
a linear system overR, each operation needslog2

2 N bit operations for a real number solution of precision
1/N . For smallM , the timelog2

2 M represents a big saving of computation time over the usuallog2
2 N

time.
As an example, let us look at the case ofM = 2, i.e., the case when every cell can only take value 0

or 1. NowZ/2Z is the finite field of two elements 0 and 1. Operations inZ/2Z are fast:0 × 0 = 0,
0 × 1 = 0, 1 × 1 = 1, 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0, etc. Each operation only needlog2

2 2 = 1 bit
operation.

On the other hand, the solution procedure for the same linear system is much slower if we seek a real
number solution to the precision of, let us say,0.01 = 1/100. With N = 100, one operation here need
log2

2 100 � 44 bit operations. In other words, our new algorithm uses only1/44 of the computation time
of a standard CT algorithm. This huge saving of computation time was observed in a computation of a
30 × 30 DT procedure using Matlab. For our new modulo 2 algorithm, the CPU time is significantly
faster than using a standard algorithm seeking real number solutions.

The linear equations are given in Section 2 from Eqs (1) to (8). In these equations, Eqs (1) and (2)
are derived from horizontal and vertical projections and are of integral coefficients. Equations (3) and
(4) are from diagonal projections; we need to multiply them by a factor 2 to get the equations of integral
coefficients we want. Note that if the cells are supposed to take integral valuesa(i, j) = 0, 1, . . . ,M −1,
b1/1(k) andb−1/1(k) will be integers or half integers. Consequently after multiplying them by 2, Eqs (3)
and (4) become linear equation of integral coefficients. Similarly, we can multiply Eqs (5) to (8) by2pq
and change them to linear equations of integral coefficients.
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In order to get enough equations from Eqs (5) through (8), we may fix a positive integerL and select
all p andq with 1 � q < p � L and(p, q) = 1. These fractionsq/p, together with 0 and 1, form a Ferry
sequence of levelL. There are about(3/π2)L2 such pairs ofp andq, which produce about(12/π2)L2

directions:±p/q and±q/p. In each of these directions we can get more thann but less than2n rays.
Since we needn2 linearly independent equations, we may set(12/π2)L2n = n2. This means thatL
may be set to equal to(π/

√
12)

√
n. For example, ifn = 256, we may setL = 14.

4. Discussions and conclusion

Much efforts are needed to optimize imaging protocols and reconstruction algorithms. Clearly, image
quality would depend on domain knowledge, imaging geometry, data completeness, noise level, and
algorithmic details. Extensive simulation and physical experiments must be performed in selected cases
to gain some insight into interplays among all the major factors.

It is ackowledged that the most popular imaging geometry is fan-beam-oriented, instead of parallel-
beam-oriented. However, our findings are still of significance, because we can always rebin fan-beam
projection data to parallel-beam projection data in the format we prefer. This rebinning process is always
much faster than the reconstruction process. Furthermore, the rebinning is even a necessary intermediate
step in spiral/helical CT, in which an X-ray source rotation and an object translation are performed
simultaneously. We believe that fan-beam DT should be a most practical problem to solve in near future.

Although we have not addressed data inconsistence in this proof-of-concept report, we point out that
noise in data can be suppressed in the same spirit of the conventional linear system solution algorithms.
On the other hand, given a specific knowledge on the discrete range of the underlying function, more
efficient algorithms may be designed for various DT applications. We are particularly interested in
pursuing research along a number-theory direction. Relevant results will reported in future publications.

In conclusion, we have proposed a number-theory-based approach for discrete tomography (DT),
and demonstrated that our method can greatly reduce the computational complexity. Further work is
underway to generalize the findings, refine the algorithm and apply it to various applications.

Appendix. Proof of Theorem 1.

Suppose the slope of a ray isp/q, where(p, q) = 1, p > q > 0, and the ray is bounded byy = (p/q)x
andy = (p/q)(x − 1). Then this ray passes through cells in three different cases.

The first case is that there exists an integerm ∈ Z such that(l− 1)q/p < m < ql/p. This condition is
equivalent to0 < {ql/p} < q/p. In this case, the ray runs through three cells on levell with unknowns
a([ql/p], l), a([ql/p] + 1, l), anda([ql/p] + 2, l). The areas passed by the ray for the three cells are

w[ql/p],l =
1
2

([
ql

p

]
− q

p
(l − 1)

)(
p

q

[
ql

p

]
− (l − 1)

)

=
q

2p
−
{

ql

p

}
+

p

2q

{
ql

p

}2

,

w[ql/p]+1,l = 1 − p

2q

(
q

p
−
{

ql

p

})2

− 1
2

(
q

p
l −
[
q

p
l

])(
l − p

q

[
q

p
l

])
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= 1 − q

2p
+
{

ql

p

}
− p

q

{
ql

p

}2

,

w[ql/p]+2,l =
1
2

(
ql

p
+ 1 −

[
q

p
l

]
− 1
)(

l − p

q

[
ql

p

])

=
p

2q

{
ql

p

}2

.

Thus the projection over these three cells produces three terms for the linear equation

(
q

2p
−
{

ql

p

}
+

p

2q

{
ql

p

}2
)

a([ql/p], l)

(A1)

+

(
1 − q

2p
+
{

ql

p

}
− p

q

{
ql

p

}2
)

a([ql/p] + 1, l) +
p

2q

{
ql

p

}2

a([ql/p] + 2, l).

The second case is thatql/p ∈ Z, i.e., {ql/p} = 0. In this case the ray passes through two cells
on level l. The coefficients of the unknownsa(ql/p, l) and a(ql/p + 1, l) are wql/p,l = q/2p and
wql/p+1,l = 1 − q/2p, respectively. This case therefore contributes two terms to the linear equation

q

2p
a(ql/p, l) +

(
1 − q

2p

)
a(ql/p + 1, l). (A2)

The third case is when{ql/p} � q/p. In this case, the ray runs through two cells on levell and the
corresponding coefficients are:

wl,[ql/p]+1 =
1
2

([
ql

p

]
+ 1 − ql

p
+
[
ql

p

]
+ 1 − q

p
(l − 1)

)

=
q

2p
+ 1 −

{
ql

p

}

wl,[ql/p]+2 = 1 −
(

q

2p
+ 1 −

{
ql

p

})
=
{

ql

p

}
− q

2p
.

Hence the projection over these two cells has the following two terms

(
q

2p
+ 1 −

{
ql

p

})
a([ql/p] + 1, l) +

({
ql

p

}
− q

2p

)
a([ql/p] + 2, l). (A3)

Collecting Eqs (A1), (A2), and (A3), we prove Theorem 1.
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