Title | Co-authors | Status | Link |

The focusing cubic NLS in exterior domains in three dimensions | Rowan Killip Monica Visan |
To appear in Appl. Math. Res. eXpress | arXiv:1501.05062 |

Quintic NLS in the exterior of a strictly convex obstacle | Rowan Killip Monica Visan |
To appear in Amer. J. Math. | arXiv:1208.4904 |

Riesz transforms outside a convex obstacle | Rowan Killip Monica Visan |
Int. Math. Res. Not. 2015 (2015), doi: 10.1093/imrn/rnv338. |
arXiv:1205.5784 |

Remarks of global wellposedness of liquid crystal flows and heat flows of harmonic maps in two dimensions |
Zhen Lei Dong Li |
Proc. Amer. Math. Soc 142 (2014), no. 11, 3801-3810 |
arXiv:1205.1269 |

Global well-posedness and scattering for defocusing energy critical NLS in the exterior of balls with radial data |
Dong Li Hart Smith |
Math. Res. Lett. 19 (2012), no. 1, 212-232 |
arXiv:1109.4194 |

Smooth global solutions for the two dimensional Euler Poisson system | Juhi Jang Dong Li |
Forum. Math. 26 (2014) no. 3, 645-701 |
arXiv:1109.3882 |

Dynamics for the energy critical nonlinear wave equation in high dimensions |
Dong Li | Trans. Amer. Math. Soc. 363 (2011), no. 3, 1137-1160 |
arXiv:0911.4745 |

Regularity of almost periodic modulo scaling solutions for mass-critical NLS and applications |
Dong Li | Anal. PDE 3 (2010), no. 2, 175-195 |
arXiv:0911.4746 |

Characterization of minimal-mass blowup solutions to the focusing mass-critical NLS |
Rowan Killip Dong Li Monica Visan |
SIAM J. Math. Anal. 41 (2009) no. 1, 219-236 |
arXiv:0804.1124 |

Dynamics for the energy critical nonlinear Schrodinger equation in high dimensions |
Dong Li | J. Funct. Anal. 256 (2009), no. 6, 1928-1961 |
arXiv:0902.0807 |

The mass-critical nonlinear Schrodinger equation with radial data in dimensions three and higher |
Rowan Killip Monica Visan |
Anal. PDE 1 (2008) no 2, 229-266 |
arXiv:0708.0849 |

Energy-critical NLS with quadratic potentials | Rowan Killip Monica Visan |
Comm. PDE 34 (2009), no. 10-12, 1531-1565 |
arXiv:0611394 |

Global well-posedness and scattering for the mass-critical nonlinear Schrodinger equation for radial data in high dimensions |
Terence Tao Monica Visan |
Duke Math. J. 140 (2007) no. 1, 165-202 |
arXiv:0609692 |

Minimal-mass blowup solutions of the mass-critical NLS | Terence Tao Monica Visan |
Forum Math 20 (2008) no. 5, 881-919 |
arXiv:0609690 |

The nonlinear Schrodinger equation with combined power-type nonlinearities | Terence Tao Monica Visan |
Comm. PDE 32 (2007) no. 7-9, 1281-1343 |
arXiv:0511070 |

Back