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Abstract

We determine all hyperbolic 3-manifolds M admitting two toroidal Dehn fill-
ings at distance 4 or 5. We show that if M is a hyperbolic 3-manifold with a torus
boundary component Ty, and r, s are two slopes on Ty with A(r,s) = 4 or 5 such
that M (r) and M (s) both contain an essential torus, then M is either one of 14
specific manifolds M;, or obtained from My, Ms, M3 or My, by attaching a solid
torus to OM; — Ty. All the manifolds M; are hyperbolic, and we show that only the
first three can be embedded into S3. As a consequence, this leads to a complete
classification of all hyperbolic knots in S admitting two toroidal surgeries with
distance at least 4.
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1. Introduction

Let M be a hyperbolic 3-manifold, by which we shall mean a compact, con-
nected, orientable 3-manifold such that M with its boundary tori removed admits
a complete hyperbolic structure with totally geodesic boundary, and suppose that
M has a torus boundary component Ty. If r is a slope on Ty then M (r) will denote
the 3-manifold obtained by 7-Dehn filling on M, i.e. attaching a solid torus V, to M
along Tp in such a way that r bounds a disk in V.. The Dehn filling M (r) and the
slope r are said to be exceptional if M (r) is either reducible, d-reducible, annular,
toroidal, or a small Seifert fiber space. Modulo the Geometrization Conjecture, the
manifold M (r) is hyperbolic if and only if M(r) is not exceptional.

Thurston’s Hyperbolic Dehn Surgery Theorem asserts that there are only finitely
many exceptional Dehn fillings on each torus boundary component of M. It is
known that if r,s are both exceptional then the geometric intersection number
A = A(r,s), also known as the distance between r and s, is small. In fact, the
least upper bounds for A have been determined for all cases where neither M (r)
nor M(s) is a small Seifert fiber space, by the work of many people. See [GW2]
and the references therein.

For toroidal fillings, it was shown by Gordon [Go] that if 7, s are toroidal slopes
then A(r,s) < 8, and moreover there are exactly two manifolds M with A = 8,
one with A = 7, and one with A = 6. In this paper we classify all the hyperbolic
3-manifolds which admit two toroidal Dehn fillings with A =4 or 5.

Already when A = 5 there are infinitely many such manifolds. To see this, let
M be the exterior of the Whitehead sister link, also known as the (—2, 3, 8)-pretzel
link. The boundary of M consists of two tori Ty and T3, and there are slopes
r,s on Ty with A(r,s) = 5 such that the Dehn filled manifolds M (r) = M (r, ),
M (s) = M(s, %) are toroidal; see for example [GW3]. Now for infinitely many slopes
t on Ty, My = M (x,t) will be hyperbolic and My (r) = M(r)(t), Mi(s) = M(s)(t)
will be toroidal. In this way we get infinitely many hyperbolic 3-manifolds with
boundary a single torus having two toroidal fillings at distance 5. We shall show
that, modulo this phenomenon, there are only finitely many M with two toroidal
fillings at distance 4 or 5, and explicitly identify them. Define two triples (N1, r1, 1)
and (N2, 72, $2) to be equivalent, denoted by (N1,71,81) = (Na,ra, s2), if there is a
homeomorphism from N; to Ny which sends the boundary slopes (r1, s1) to (r2, s2)
or (s2,72).

THEOREM 1.1. There exist 14 3-manifolds M;, 1 < i < 14, such that

(1) M; is hyperbolic, 1 < i < 14;

(2) OM; consists of two tori Ty, Th if i € {1,2,3,14}, and a single torus Ty
otherwise;

(8) there are slopes r;,s; on the boundary component Ty of M; such that
M(r;) and M(s;) are toroidal, where A(r;,s;) = 4 if i € {1,2,4,6,9,13,14}, and
A(ri,s;) =5 ifi € {3,5,7,8,10,11,12};

(4) if M is a hyperbolic 3-manifold with toroidal Dehn fillings M (1), M (s) where
A(r,s) =4 or 5, then (M,r,s) is equivalent either to (M;,r;,8;) for some 1 <i <
14, or to (M;(t),r;,s;) where i € {1,2,3,14} and t is a slope on the boundary
component Ty of M;.

PROOF. The manifolds M; are defined in Definition 21.3. (1) is Theorem 23.14.
(2) follows from the definition. (3) and (4) follow from Theorem 21.4. O
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REMARK 1.2. Part (4) in Theorem 1.1 is still true if the hyperbolicity is replaced
by the assumption that M is compact, connected, orientable, irreducible, atoroidal,
and non Seifert fibered, in other words, M may be annular or J-reducible but not
Seifert fibered.

PROOF. First assume M is O-irreducible. Then any essential annulus must
have at least one boundary component on a non-toroidal boundary component
of M as otherwise M would be either toroidal or Seifert fibered. Attaching a
hyperbolic manifold X to each non-toroidal boundary component of M will produce
a hyperbolic manifold M’, and we may choose X so that M’ has more than three
boundary components. One can show that M’(r) and M’(s) are still toroidal,
which is a contradiction to Theorem 21.4. Now assume M is 0-reducible. Then M
is obtained by attaching 1-handles to the boundary of a manifold M”. If a 1-handle
is attached to a toroidal component T' of OM" then either M” = T x I, which is
impossible because M (r) and M (s) would be handlebodies and hence atoroidal, or
T would be an essential torus in M, contradicting the assumption. It follows that
M has a higher genus boundary component. One can check that M”(r) and M"(s)
are still toroidal, which leads to a contradiction to Theorem 21.4 as above. O

The manifolds My, My and M5 were discussed in [GW1]; M;, i = 1,2, 3 is the
exterior of a link L; in S3, where L; is the Whitehead link, Lo is the 2-bridge
link associated to the rational number 3/10, and L3 is the Whitehead sister link.
See Figure 24.1. The other M, can be built using intersection graphs on tori,
see Definition 21.3 for more details. For ¢ # 4,5, each M; can also be described
as a double branched cover of a tangle Q; = (W;, K;), where W; is a 3-ball for
1 =0,...,13, and a once punctured 3-ball for i = 1,2,3,14. This is done in [GW1]
for 1 = 1,2, 3, and in Section 22 for the other cases. See Lemma 22.2.

Some results on the case A = 5 have been independently obtained by Teragaito
[T2]. He obtains a finite set of pairs of intersection graphs of punctured tori at
distance 5 which must contain all the pairs of graphs that arise from two toroidal
fillings on a hyperbolic 3-manifold at distance 5. Seven of his pairs correspond to
the manifolds in our list for A = 5. The one in [T2, Figure 15] gives rise to a
manifold obtained by attaching a thickened M6bius band to 77 C 0Mj3 so that the
union of the Mébius band with a Mobius band in Ms3(r3) (Ms5(s3)) makes a Klein
bottle. The manifold itself contains a (2, 1) cable space and hence is non-hyperbolic,
but one can attach a solid torus to it to make it hyperbolic. Therefore the graphs
in [T2, Figure 15] correspond to infinitely many hyperbolic manifolds, all of type
Ms5(t) for some slopes ¢ on Tj.

We remark that the related problem of determining all hyperbolic 3-manifolds
with two Dehn fillings at distance at least 4 that yield manifolds containing Klein
bottles has been solved by Lee [L1, L2] (see also [MaS]).

Since M; has more than one boundary component only when i € {1,2, 3,14},
we have the following corollary to Theorem 1.1 (together with [Go]), which in the
case A = 5 is due to Lee [L1]. Note that all boundary components of the manifolds
are tori.

COROLLARY 1.3. Let M be a hyperbolic 3-manifold with more than one bound-
ary component, having toroidal Dehn fillings M (r), M(s) with A = A(r,s) > 4.
Then each boundary component of M is a torus, and either

(1) A =4 and (M,r,s) = (M;,r;,s;) forie{1,2,14}, or
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(2) A =5 and (M,r,s) = (Ms,r3,53).

In [GW1] and [GW3] it is shown that if M is a hyperbolic 3-manifold with
fillings M (r) and M (s), one of which is annular and the other either toroidal or
annular, then either (M,r,s) = (M;,r;,s;) for i € {1,2,3}, or A(r,s) < 3. It is
also known that if M (r) contains an essential sphere or disk, and M (s) contains
an essential sphere, disk, annulus or torus, then A(r,s) < 3; see [GW2] and the
references listed there. Corollary 1.3 then gives

COROLLARY 1.4. Let M be a hyperbolic 3-manifold with a torus boundary com-

ponent Ty and at least one other boundary component. Let r,s be exceptional slopes
on Ty. Then either (M,r,s) = (M;,r;, s;) fori € {1,2,3,14}, or A(r,s) < 3.

In [GT] Goda and Teragaito showed that if a hyperbolic manifold M has at least
three boundary components and has two toroidal slopes 7, s then A(r, s) < 4. Since
each of the manifolds M; in Theorem 1.1 has at most two boundary components,
the above corollary shows that A(r,s) < 3. This is sharp as there is an example in
[GW1] that realizes this upper bound.

A pair (M, Tp) is called a large manifold if T is a torus on the boundary of the
3-manifold M and Ho(M,0M — Ty) # 0 (see [Wu3]). Teragaito [T2] proved that
there is no large hyperbolic manifold M admitting two toroidal fillings of distance
at least 5. The following corollary clarifies the case of distance 4.

Theorem 22.3 Suppose (M, Ty) is a large manifold and M is hyperbolic and con-
tains two toroidal slopes r1,79 on Ty with A(r1,r2) > 4. Then M is the Whitehead
link exterior, and A(ry,rs) = 4.

Theorem 1.1 gives information about toroidal Dehn surgeries on hyperbolic
knots in S3. It follows from [Go] that the only such knot with two toroidal surgeries
at distance > 5 is the figure eight knot, for which the 4 and —4 surgeries are toroidal.
Teragaito has shown [T3] that the only hyperbolic knots with two toroidal surgeries
at distance 5 are the Eudave-Mufioz knots k(2,—1,n,0), n # 1. We can now
determine the knots with toroidal surgeries at distance 4. Denote by L; = KUK/
the link in Figure 24.1(i), where K/ is the component on the left. Denote by L;(n)
the knot obtained from K by 1/n surgery on K. One can check that Ls(n) is
the same as the Eudave-Mutioz knot k(3,1, —n,0) in [Eu, Figure 25], which is the
mirror-image of k(2,—1,1 4 n,0) [Eu, Proposition 1.4].

Theorem 24.4 A knot K in S® is hyperbolic and admits two toroidal surgeries
K(r1), K(re) with A(r1,r2) > 4 if and only if (K, r1,72) is equivalent to one of the
following, where n is an integer.

(1) K=Li(n), n#0,1; 1 =0, ry =4.

(2) K=1Ls(n),n#0,+1; 11 =2—9n, r, = -2 — 9n.

(3) K = Ls(n), n#0; r1 = =9 —25n, ro = —(13/2) — 25n.

(4) K is the Figure 8 knot; r1 =4, ro = —4.

The only hyperbolic knots known to have more than two toroidal surgeries are
the figure eight knot and the (—2,3, 7)-pretzel knot, with toroidal slopes {—4,0,4}
and {16,37/2,20} respectively. This led Eudave-Munoz [Eu] to conjecture that a
hyperbolic knot in S? has at most three toroidal surgeries. Teragaito [T1] showed
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that there can be at most five toroidal surgeries. Theorem 1.1 and [T3, Corollary
1.2] lead to the following improvement.

Corollary 24.5 A hyperbolic knot in S has at most four toroidal surgeries. If
there are four, then they are consecutive integers.

Here is a sketch of the proof of Theorem 1.1. A toroidal Dehn filling M (r)
on a hyperbolic 3-manifold M gives rise to an essential punctured torus F' in M
whose boundary consists of n > 0 circles of slope r on Ty, where the capped-off
surface F' is an essential torus in M (r). Hence, in the usual way (see Section 2),
two toroidal fillings M (r1), M(r2) give rise to a pair of intersection graphs I'y, 'y
on the tori 13'1, FQ, with nq, ny vertices respectively. The proof consists of a detailed
analysis of the possible pairs of intersection graphs with A(ry,79) = 4 or 5, using
Scharlemann cycles and other tools developed in earlier works in this area. This
enables us to eliminate all but 17 pairs of graphs. As is usual in this kind of setting,
the permissible graphs all have small numbers of vertices. Eleven of the pairs
correspond to the manifolds M;, 4 < i < 14. We show that any of the remaining
pairs must correspond to a pair of fillings on M; or M;(t) for i € {1,2,3}.

Here is a more detailed summary of the organization of the paper. Section 2
contains the basic definitions and some preliminary lemmas. In Sections 3-5 we
deal with the generic case ni,ng > 4, ultimately showing (Proposition 5.11) that
this case cannot occur. More specifically, Section 3 shows that the reduced positive
graph T'F of I', (see Section 2 for definitions) has no interior vertices, and this is
strengthened in Section 4 to showing that each component of f‘j must be one of the
11 graphs in Figure 4.2. These are ruled out one by one in Section 5. In Sections
6-11 we consider the case where some n, = 4. Section 6 discusses the situation
where the graph I', is kleinian; this arises when the torus F, is the boundary of a
regular neighborhood of a Klein bottle in M(r,). (The results here are also used
in the discussion of the case n1,n2 < 2.) Sections 7, 8 and 9 show that if n, =4
and T’y is non-positive then n, < 4. Section 10 shows that if I';y and I's are both
non-positive then n; = ny = 4 is impossible. Section 11 shows (Proposition 11.9)
that if 'y is positive then there are exactly two pairs of graphs, one with n, = 2,
the other with n, = 1. These give the manifolds My and M; respectively. If we
suppose n, < ny, it now easily follows (Proposition 11.10) that n, < 2.

In Sections 12-16 we deal with the case n, < 2, ny > 3. The conclusion
(Proposition 16.8) is that here there are exactly six pairs of graphs. Two of these
are the ones described in Section 11, and the four new pairs give the manifolds
Mg, M7, Mg and My. More precisely, in Section 12 we rule out the case where I’
is positive, and in Sections 13 and 14 we consider the case where n; > 4 and both
graphs I'; and I's are non-positive. It turns out that here there is exactly one pair of
graphs (Proposition 14.7), corresponding to the manifold Mg. We may now assume
that ny, = 3 or 4. Section 15 establishes some notation and elementary properties
for graphs with n, < 2. In Section 16 we show that if I'; and I's are non-positive
then np, = 3 is impossible and if n, = 4 then there are exactly three examples, M7,
Mg and Mg.

Sections 17-20 deal with the remaining cases where both n; and ny are < 2. In
Section 17 we introduce an equivalence relation, equidistance, on the set of edges of
a graph I',, and show that, under the natural bijection between the edges of I'; and
T'3, the two graphs induce the same equivalence relation. This gives a convenient
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way of ruling out certain pairs of graphs. Section 18 considers the case n, = 2 and
ny = 1, and shows that here there are exactly three examples. Section 19 considers
the case n1 = ne = 2, 'y, positive, showing that there are two examples. Finally,
in Section 20 we consider the case n; = ny = 2, I'; and I'y both non-positive, and
show that there are exactly six pairs of graphs in this case. The final list of all 11
possible pairs of graphs with ni,ns < 2 is given in Proposition 20.4. Five of these
correspond to the manifolds Mg, M11, M12, M3 and Myy.

The remaining six pairs of graphs in Proposition 20.4 have the property that
one of the graphs has a non-disk face. In Section 21 we show (Lemma 21.2), using
the classification of toroidal/annular and annular/annular fillings at distance > 4
given in [GW1] and [GW3], that in this case the manifold M is either M;, M2 or
M3, or is obtained from one of those by Dehn filling along one of the boundary
components.

In Section 22 we show how the manifolds M;, 6 < i < 14 may be realized as
double branched covers. Using this, in Section 23 we show that the manifolds M;
are hyperbolic. Finally, in Section 24 we give the applications to toroidal surgeries
on knots in S3.

We would like to thank Masakazu Teragaito and the referee for some very
helpful comments.

2. Preliminary lemmas

Throughout this paper, we will fix a hyperbolic 3-manifold M, with a torus
Ty as a boundary component. A compact surface properly embedded in M is
essential if it is m-injective, and is not boundary parallel. We use a,b to denote
the numbers 1 or 2, with the convention that if they both appear in a statement
then {a,b} = {1,2}.

A slope on Tj is a toroidal slope if M(r,) is toroidal. Let r, be a toroidal
slope on Ty. Denote by A = A(ry,72) the minimal geometric intersection number
between 1 and ro. When A > 5 the manifolds M have been determined in [Go].
We will always assume that A = 4 or 5. Let F, be an essential torus in M (ry),
and let F, = F, N M. If M(r,) is reducible then by [Wul] and [Oh] we would have
A < 3, which is a contradiction. Therefore both M (r,) are irreducible.

Let n, be the number of boundary components of F, on Ty. Choose F,in M (rq)
so that n, is minimal among all essential tori in M(r,). Minimizing the number
of components of F} N Fy by an isotopy, we may assume that Fy N F5 consists of
arcs and circles which are essential on both F,. Denote by J, the attached solid
torus in M (r,), and by u; (i = 1,...,n,) the components of F‘a N J,, which are all
disks, labeled successively when traveling along J,. Similarly let v; be the disk
components of Fb N Jy. Let T'y be the graph on Fa with the u;’s as (fat) vertices,
and the arc components of F; N Fy as edges. Similarly for I',. The minimality of
the number of components in F} N F5 and the minimality of n, imply that I'; has
no trivial loops, and that each disk face of I, in Fa has interior disjoint from Fy.

If e is an edge of I', with an endpoint = on a fat vertex u;, then x is labeled j
if z is in u; Nv;. In this case e is called a j-edge in I',, and an i-edge in I'y. Labels
in I', are considered as integers mod np; in particular, n, +1 = 1. When going
around Ou;, the labels of the endpoints of edges appear as 1,2, ..., n; repeated A
times. Label the endpoints of edges in I'y similarly.
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Each vertex of I', is given a sign according to whether .J, passes E, from the
positive side or negative side at this vertex. This also induces an orientation on
the boundary of the vertex. Two vertices of I', are parallel if they have the same
sign, otherwise they are antiparallel. Note that if F,isa separating surface, then
n, is even, and v;,v; are parallel if and only if ¢, have the same parity. We use
val(v, G) to denote the valence of a vertex v in a graph G. If G is clear from the
context, we simply denote it by val(v).

When considering each family of parallel edges of I', as a single edge é, we
get the reduced graph [, on F,. It has the same vertices as I',. Bach edge of
I', represents a family of parallel edges in I'y. We shall often refer to a family of
parallel edges as simply a family.

DEFINITION 2.1. (1) An edge of T, is a positive edge if it connects parallel
vertices. Otherwise it is a negative edge.

(2) The graph T, is positive if all its vertices are parallel, otherwise it is non-
positive.

We use I'} (resp. I'; ) to denote the subgraph of T';, whose vertices are the ver-
tices of I', and whose edges are the positive (resp. negative) edges of I',. Similarly
for Il and T'; .

A cycle in I, consisting of positive edges is a Scharlemann cycle if it bounds
a disk with interior disjoint from the graph, and all the edges in the cycle have
the same pair of labels {i,7 + 1} at their two endpoints, called the label pair of
the Scharlemann cycle. A Scharlemann cycle containing only two edges is called a
Scharlemann bigon. A Scharlemann cycle with label pair, say, {1,2} will also be
called a (12)-Scharlemann cycle. If Ty contains a Scharlemann cycle with label pair
{i,7 4 1}, we shall sometimes abuse terminology and say that the vertex u; of Ty, is
a label of a Scharlemann cycle. An extended Scharlemann cycle is a cycle of edges
{e1,...,ex} such that there is a Scharlemann cycle {e], ..., e} } with e; parallel and
adjacent to ej and e; # €}, 1 < i,j < k. If {e1,...,ex} is a Scharlemann cycle in
T'y then the subgraph of I'y consisting of these edges and their vertices is called a
Scharlemann cocycle.

A subgraph G of a graph I' on a surface F' is essential if it is not contained in
a disk in F'. The following lemma contains some common properties of the graphs
Iy. It can be found in [GW1, Lemma 2.2].

LEMMA 2.2. (1) (The Parity Rule) An edge e is a positive edge in T'y if and
only if it is a negative edge in I'y.

(2) A pair of edges cannot be parallel on both T'y and T's.

(8) If Ty, has a set of ny, parallel negative edges, then on Ty, they form mutually
disjoint essential cycles of equal length.

(4) If Ty has a Scharlemann cycle, then Fy is separating. In particular, T'y has
the same number of positive and negative vertices, so ny is even, and two vertices
v3,v5 of I'y are parallel if and only if ©,7 have the same parity.

(5) If Ty, has a Scharlemann cycle {ex, ..., e}, then the corresponding Scharle-
mann cocycle on T'y is essential.

(6) If np > 2, then Ty contains no extended Scharlemann cycle.

Let é be a collection of parallel negative edges on I'y, oriented from v; to vs.
Then é defines a permutation ¢ : {1,...,n,} — {1,...,n.}, such that an edge e
in € has label k at vy if and only if it has label ¢(k) at ve. Call ¢ the transition
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function associated to é. Define the transition number to be the mod n, integer
s = s(é) such that ¢(k) = k+s. If we reverse the orientation of é then the transition
function is ¢!, and the transition number is —s; hence if é is unoriented then ¢ is
well defined up to inversion, and s(é) is well defined up to sign.

LEMMA 2.3. (1) If a family of parallel negative edges in T, contains more than
ny edges (in particular, if the family contains 3 edge endpoints with the same label),
then T'y is positive, and the transition function associated to this family is transitive.

(2) If Ty contains two Scharlemann cycles with disjoint label pairs {i,i + 1}
and {j,j + 1}, then i = j mod 2.

(8) If ny > 2 then a family of parallel positive edges in T, contains at most
ny/2 4 2 edges, and if it does contain ny/2 + 2 edges, then ny =0 mod 4.

(4) Ty has at most four labels of Scharlemann cycles, at most two for each sign.

(5) A loop edge e and a non-loop edge €' on Ty cannot be parallel on Ty,.

(6) If ny, > 4 then T, contains at most 2ny, parallel negative edges.

PROOF. (1) This is obvious if n, < 2, and it can be found in [GW1, Lemma
2.3] if np > 2.

(2) and (3) are basically Lemmas 1.7 and 1.4 of [Wul]. If 'y, has ny/2 + 2
parallel positive edges then the two outermost pairs form two Scharlemann bigons.
One can then check the labels of these Scharlemann bigons and use (2) to show
that ny = 0 mod 4.

(4) If T, has more than four labels of Scharlemann cycles, then either one can
find two Scharlemann cycles with disjoint label pairs {i,i+1} and {j, j+1} such that
i—j =1 mod 2, which is a contradiction to (2), or one can find three Scharlemann
cycles with mutually disjoint label pairs, in which case one can replace F, by another
essential torus to reduce n, and get a contradiction. See [Wul, Lemma 1.10].

If 'y has three positive labels of Scharlemann cycles u;; then it has negative
labels of Scharlemann cycles u;, 1, for some €; = &1, which cannot all be the same,
hence I', has at least 5 labels of Scharlemann cycles, contradicting the above.

(5) Since e is positive on T', it is negative in I';. If e has endpoints on w; in Ty,
then on I'y its two endpoints are both labeled 4, hence the corresponding transition
number is 0, so any edge ¢’ parallel to e on I', must also have the same label at its
two endpoints, which implies that e’ is a loop on T',.

(6) This is [Go, Corollary 5.5]. O

LEMMA 2.4. If a label i appears twice among the endpoints of a family é of
parallel positive edges in Iy, then i is a label of a Scharlemann bigon in é. In
particular, if € has more than ny/2 edges, then it contains a Scharlemann bigon.

PROOF. Since the edges are positive, by the parity rule ¢ cannot appear at both
endpoints of a single edge in this family. Let ej,eq,...,exr be consecutive edges of
é such that e; and ex have ¢ as a label. Now k£ must be even, otherwise the edge
e(k+1)/2 would have the same label at its two endpoints. If £ > 4 and n; > 2 one
can see that these edges contain an extended Scharlemann cycle, which contradicts
Lemma 2.2(6). Therefore k = 2 or np = 2, in which case ej, ez form a Scharlemann
bigon with ¢ as a label.

If é has more than n;/2 edges, then it has more than n, endpoints, so some
label must appear twice. O

LEMMA 2.5. f‘a contains at most 3n, edges.
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PRrROOF. Let V, E, F be the number of vertices, edges and disk faces of .
Then V — E+ F > 0 (the inequality may be strict if there are some non-disk faces.)
Each face of ', has at least three edges, hence we have 3F < 2E. Solving those
two inequalities gives £ < 3V. O

LEMMA 2.6. If ny > 4 then the vertices of T'y cannot all be parallel.

Proor. By Lemma 2.5 the reduced graph I', has at most 3n, edges. For any
i, since v; on I'y has valence at least 4n,, there are 4n, i-edges on I',, hence two
of them must be parallel, so ¢ is a label of a Scharlemann cycle. Since there are
at most 4 such labels (Lemma 2.3(4)), we would have n, < 4, contradicting the
assumption. (I

A vertex v of a graph is a full vertex if all edges incident to it are positive.

LEMMA 2.7. Suppose ny, > 4. Then

(1) a family of parallel negative edges in Ty contains at most n, edges, hence
any label i appears at most twice among the endpoints of such a family;

(2) two families of positive edges in T, adjacent at a vertex contain at most
ny + 2 edges; and

(8) three families of positive edges in Ty, adjacent at a vertex contain at most
2ny edges, and if there are 2ny then ny = 6.

ProoF. (1) If a family of parallel negative edges on I'; contains more than
ng edges then by Lemma 2.3(1) all vertices of ', are parallel, which contradicts
Lemma 2.6.

If i appears three times among the endpoints of a family of parallel negative
edges in 'y then this family would contain more than n, edges, which is a contra-
diction.

(2) By Lemma 2.3(3) a family of parallel positive edges contains r < ny/2 + 2
edges. If two adjacent families €1, €y contain more than n, + 2 edges, then one of
them, say é1, has ny/2+ 2 edges while the other one has either n,/241 or ny/2+2
edges. Now é; contains two Scharlemann bigons, which must appear on the two
sides of the family because there is no extended Scharlemann cycle. There is also
at least one Scharlemann bigon in é;. Examining the labels of these Scharlemann
bigons we can see that they contain at least 5 labels, which contradicts Lemma
2.3(4).

(3) Assume the three families contain r > 2n; edges. Then one of the families
contains more than n;/2 edges, so by Lemma 2.2(4) ny, is even. By (2) two adjacent
families of parallel edges contain at most ny, 4+ 2 edges, while by Lemma 2.3(3) the
other family has at most np/2+2 edges, so we have 2ny, < r < (ny +2) + (ny/2+2),
which gives n, < 8.

If n, = 8 then the above inequalities force the three families to have 6,4,6
edges, and we see that all 8 labels appear as labels of Scharlemann bigons, which
contradicts Lemma 2.3(4). So we must have n;, = 6. By Lemma 2.3(3) we have
2np <71 < 3(np/2+ 1) = 12 = 2n;,. Hence r = 2ny,. O

LEMMA 2.8. If a vertex u; of I'y is incident to more than ny, negative edges,
then I'y has a Scharlemann cycle.

PROOF. In this case there are nj, + 1 positive i-edges in 'y, which cut the
surface Fp into faces, at least one of which is a disk face in the sense that it is a
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topological disk whose interior contains no vertices of I',. Hence the subgraph of
T, consisting of these edges is a z-edge cycle in the sense of Hayashi-Motegi [HM,
page 4468]. By [HM, Proposition 5.1] a disk face of this a-edge cycle contains a
disk face of a Scharlemann cycle. O

Consider a graph G on a closed surface F', and assume that G has no isolated
vertex. If the vertices of G have been assigned + signs (for example T'}), let X
be the union of G and all its faces ¢ such that all vertices on do have the same
sign, otherwise let X be the union of G and all its disk faces. A vertex v of G is
an interior vertex if it lies in the interior of X. A vertex v of G is a cut vertez if
a regular neighborhood of v in X with v removed is not connected. A vertex v of
G is a boundary vertex if it is not an interior or cut vertex. Note that if G = f‘j{
then an interior vertex is a full vertex. Alternatively, let §(v) be the number of
corners around v which lie in X. Then v is an interior vertex if §(v) = val(v, G), a
boundary vertex if §(v) = val(v,G) — 1, and a cut vertex if §(v) < val(v,G) — 2.

Given a graph G on a surface D, let ¢;(G) be the number of boundary vertices
of G with valence ¢. Define

©(G) = 6co(G)+3c1(GQ) + 2¢2(G) + c3(G)
’Q/J(G) = Co(G) +c1 (G) + CQ(G) + Cg(G).
Note that ¥(G) is the number of boundary vertices of G with valence at most 3.

LEMMA 2.9. Let G be a connected reduced graph in a disk D such that any
interior vertex of G has valence at least 6. Then ¢(G) > 6. Moreover, if G is not
homeomorphic to an arc or a single point then ¥(G) > 3.

PROOF. Let X be the union of G and all its disk faces. The result is obviously
true if G is a tree. So we assume that GG has some disk faces.

First assume that X has no cut vertex, so it is a disk, and ¢o(G) = ¢1(G) = 0.
The double of G along X is then a graph G on the double of X, which is a sphere.
Note that the valence of a vertex v of G is either at least 6, or it is 2 or 4 when v
is a boundary vertex of G with valence 2 or 3, respectively. Since each face has at
least three edges, an Euler characteristic argument gives

1 1 = 2
2=V-E+F<V-2B= ;(1 = gval(vi, G)) < 302(G) + 5e3(G).
Therefore p(G) = 2¢2(G) + ¢3(G) > 6. Since ¢o(G) = ¢1(G) = 0, we also have

P(G) = c2(G) + e3(G) > 59(G) > 3.

Now assume that X has a cut vertex v. Since G is connected and contained
in a disk, X is simply connected, so we can write X = X; U X5, where X; are
subcomplexes of X such that X; N X = v, and G; = G N X; are nontrivial
connected subgraphs of G. The valence of v in G; is at least 1, so its contribution
to ¢(G;) is at most 3. Hence by induction we have

P(G) = (p(G1) = 3) + (p(G2) — 3) = 6.

By assumption X is not homeomorphic to an arc, so at least one of the X;, say Xj,
is not homeomorphic to an arc, and the other one has at least 2 boundary vertices
of valence at most 3, whether it is homeomorphic to an arc or not. Hence

Y(G) > p(Gr) +(Ga) —2>3+2—-2=3.
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LEMMA 2.10. Let G be a reduced graph on a torus T with no interior or isolated
vertex. Let V and E be the number of vertices and edges of G, and let k be the
number of boundary vertices of G.

(1) k > E—-V, and equality holds if and only if all disk face of G are triangles,
all non-disk faces are annuli, and each cut vertex has exactly two corners on annular
faces.

(2) G has at most 2V edges.

PROOF. (1) Let D be the number of disk faces of G. Then 0 = x(T) <
V — E + D, and equality holds if and only if all non-disk faces are annuli. Thus
D > E —V. For each vertex u of G, let d(u) be the number of corners of disk faces
incident to u. Then ), val(u) = 2E, and ), 6(u) > 3D > 3(E — V). Since there
is no isolated or interior vertex, we have val(u) — §(u) > 1, and equality holds if
and only if u is a boundary vertex. Let p be the number of non-boundary vertices.
Then

p< Y (val(u)—6(u) —1) <2E—3(E-V) -V =2V - E.

It follows that the number of boundary vertices is k = V —p > E — V, and
equality holds if and only if (i) V — F + D = 0, i.e. non-disk faces are annuli, (ii)
> 0(u) = 3D, so all disk faces are triangles, and (iii) val(u) — 6(u) — 1 = 1 for any
cut vertex, i.e. each cut vertex has exactly two corners not on disk faces.

(2) Since the number of boundary vertices is at most V, by (1) we have V' >
k>FE—V, hence E < 2V. O

LEMMA 2.11. Suppose all interior vertices of f‘j have valence at least 6, and
all boundary vertices of f‘j have valence at least 4. Let G be a component of f‘j
Then either (i) G is topologically an essential circle on the torus F,, or (ii) G has
no cut vertex, all interior vertices of G are of valence exactly 6, and all boundary
vertices of G are of valence exactly 4.

PROOF. Let X be the union of G and all its disk faces. If X is the whole torus
then all vertices are interior vertices, and an easy Euler characteristic argument
shows that all vertices must be of valence 6, so (ii) follows. Also, by Lemma 2.9 X
is not in a disk in £, as otherwise G would have a boundary vertex of valence at
most 3. Therefore we may assume that X has the homotopy type of a circle.

First assume that X has a cut vertex v. Recall that X is homotopy equivalent
to a circle, so if X — v is not connected, then v cuts off a subcomplex W of X which
lies in a disk in F},. By Lemma 2.9 the graph G N W has at least two boundary
vertices of valence at most 3, hence at least one such vertex v’ other than v, which
contradicts the assumption because v is then a boundary vertex of f‘j{ of valence
at most 3. Therefore we may assume that X — v is connected. Since X has the
homotopy type of a circle, X cut at v is a simply connected planar complex W, and
X is obtained by identifying exactly two points of W. Let G’ be the corresponding
graph on W. We may assume that X is not a circle as otherwise (i) is true. Thus
W is not homeomorphic to an arc. Therefore by Lemma 2.9 we have ¥(G’) > 3,
hence G’ has at least one boundary vertex v’ of valence at most 3 which is not
identified to v in . By definition v’ is a boundary vertex of f‘j of valence at most
3, which is a contradiction. This completes the proof that X has no cut vertex.

We may now assume that X is an annulus, so all vertices of G are either interior
vertices of valence at least 6 in the interior of X, or boundary vertices of valence at
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least 4 on 9X. Consider the double G” of G on the double of X along dX. Since
each boundary vertex of G of valence k gives rise to a vertex of valence 2k — 2 in
G", we see that G” is a reduced graph on a torus such that all of its vertices have
valence at least 6. An Euler characteristic argument shows that all vertices of G
must have valence exactly 6, hence (ii) follows. 0

LEMMA 2.12. If M(r,) contains a Klein bottle K, then

(1) T = ON(K) is an essential torus in M(rq); and

(2) K intersects the core K, of the Dehn filling solid torus at no less than ng/2
points.

PROOF. T bounds a twisted I-bundle over the Klein bottle N(K) on one side.
Since M (r,) is assumed irreducible, if T is compressible on the other side then
M (r,) is a Seifert fiber space over a sphere with (at most) three singular fibers of
indices (2,2, p) for some p, and if T is boundary parallel then M(r,) is a twisted
I-bundle over the Klein bottle. Either case contradicts the assumption that M ()
is toroidal. Therefore T is an essential torus. If |K N K,| < ng/2 then T would
intersect K, in less than n, points, contradicting the choice of n,. O

LEMMA 2.13. Suppose ng > 2, and I'y has both a 12-Scharlemann bigon e1 Ues
and a 23-Scharlemann bigon esUey. If ey Ueq and esUey are isotopic on Fy, then
the disk face D they bound on F, contains at least (ny/2) — 1 vertices in its interior.

PROOF. Let m be the number of vertices in the interior of D. Let D1, D5 be the
disk faces of (12)- and (23)-Scharlemann bigons in I'y. Shrinking the Dehn filling
solid torus of M(r,) to its core K, the union Dy U D2 U D is a Klein bottle @ in
M (ry). A regular neighborhood of @ intersects K, at an arc from u; to ug then to
ug, and one arc for each vertex of I', in the interior of D. Hence @) can be perturbed
to intersect K, at 1 + m points. By Lemma 2.12(2) we have m + 1 > n,/2, hence
the result follows. [l

An edge e of I, is a co-loop edge if it has the same label on its two endpoints,
in other words, it is a loop on the other graph I'y. Given a codimension 1 manifold
X in a manifold Y, use Y|X to denote the manifold obtained by cutting Y along
X.

LEMMA 2.14. Let é be a family of negative edges in I'y. Let G be the subgraph
of 'y consisting of the edges of € and their vertices.

(1) Each cycle component of G is an essential loop on B,

(2) (The 3-Cycle Lemma.) G cannot contain three disjoint cycles; in particular,
T, cannot have three parallel co-loop edges.

(8) (The 2-Cycle Lemma.) If Ty is positive then G cannot contain two disjoint
cycles; in particular, I’y cannot have two parallel co-loop edges.

PROOF. (1) Assume to the contrary that some cycle component of G is inessen-
tial on Fy. Let D be a disk bounded by an innermost cycle component of G, and
let D’ be the bigon disks on F, between edges of é. Let V;, be the Dehn filling solid
torus in M (rp). Then a regular neighborhood W of D UV, U D’ is a solid torus
containing the core of V; as a cable knot winding along the longitude at least twice.
See the proof of [GLi, Proposition 1.3]. In this case W N M is a cable space, which
is a contradiction to the assumption that M is a hyperbolic manifold.

(2) Let é =3 U...U ey, oriented consistently, with tails at «’ and heads at u”
on I',. Let s be the transition number of é. We may assume that e; has label i at
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its tail, so it has label i + s at its head. Let D; be the bigon on F, between e; and
€541

If & > ny then by Lemma 2.3(1) the transition function associated with é has
only one orbit, hence we may assume k < n. On I', these edges form disjoint
cycles and chains. Assume there are at least three cycles. Then ey, es, e3 belong to
three distinct cycles Cy,Ca, C3. Thus for i = 1,2, 3,

Ci=e;UersU...U €it(p—1)s

is an oriented cycle on Fy, for some fixed p. By (1) these are essential loops on Fy,
so they are parallel as unoriented loops.

Each bigon D14, gives a parallelism between an edge of C; and an edge of C5,
hence when shrinking the Dehn filling solid torus V; to its core knot K}, the union
A1 = UD1 45 is an annulus in M (ry) with 0A; = C1 U Cy. Similarly, Ay = UDsq s
is an annulus in M (rp,) with 04 = CoUC5. These A; are essential in M(rb)|ﬁ'b, the
manifold obtained from M (ry) by cutting along Fy, otherwise K, would be isotopic
to a curve having fewer intersections with By,

Let A}, A, A} be the annuli F3|(C,UCLUCs), with A, = C;UC; 1, (subscripts
mod 3.) Let m; be the number of times that K} intersects the interior of A. Then

S it 3= m

The annulus A; is said to be of type I if a regular neighborhood of 0A; lies on
the same side of F}, otherwise it is of type II. Note that if Fy is separating then
A; must be of type I. There are several possibilities. In each case one can find
an essential torus 7" in M (rp) which has fewer intersections with Kj. This will
contradict the choice of F, and complete the proof of (1).

Case 1. Cy is anti-parallel to both C1 and Cs.

In this case each T; = A; U A, is a Klein bottle for ¢ = 1,2, which can be
perturbed to intersect K} at p + m; points. Since > m; + 3p = ny, either Ty or T
can be perturbed to intersect K at fewer than ny/2 points, contradicting Lemma
2.12.

Case 2. Cy is anti-parallel to Cy, say, and parallel to the other cycle Cs.

Let Th = A; UA) and Tp = A; U Ao U A%, Then T; are Klein bottles, and they
can be perturbed to intersect K} at p + m1 and mg points, respectively. One of
these contradicts Lemma 2.12.

Case 3. Cy is parallel to both C1 and Cs.

If one of the A;, say Ay, is of type IT, then T} = A;UA] is a non-separating torus
(because it can be perturbed to intersect F}, transversely at a single circle), and it
intersects K3 at p+m; < np points. Since M (rp) is irreducible, T} is incompressible
and hence essential, which contradicts the choice of F,.

If both A; are of type I then one can show that A; U A U Af is an essential
torus T" which can be perturbed to intersect K} in ms + p < ny points. The proof
is standard: The torus F}, and the annuli Ay, Az cut M(rp) into a manifold whose
boundary contains four tori Th = Ay U A}, To = Ay U AL U AL, T3 = Ao U A}, and
Ty = As U A] U A}, Each of these tori T; can be perturbed to have fewer than ny
intersections with the knot K3, and hence bounds a manifold W; which is either
a solid torus or a T? x I between T; and a component of dM (ry,). Moreover, if
W; is a solid torus then the annulus T; N Fb is essential on OW; in the sense that
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it is neither meridional nor longitudinal (otherwise F, would be compressible or
could be isotoped to have fewer intersections with K3). Now we have M(ry) =
(WL UW)U (W UW3) = WUW”, with W NW" atorus T = A; UAs U AL which
can be perturbed to intersect Ky at ms3—+p < ny points. Since W' = W Uay W4 and
A is essential in both W; and Wy, T is incompressible and not boundary parallel
in W'; similarly for W”. It follows that T is a contradiction to the choice of Fy.
(3) The proof of this part is much simpler. Let A;, A} be as above, and let
A7 be the complement of A} on F,. If Cy,C, are parallel then A; U Al is a
nonseparating torus in M (rp) which can be perturbed to intersect K} less than ny,
times, contradicting the choice of Fy. If (4, Cy are anti-parallel then A; U A} and
Ay U AY are Klein bottles, which can be perturbed to intersect K at a total of
ny — 2p points, where p is the number of vertices in C;; hence one of those will
intersect K less than np/2 times, which contradicts Lemma 2.12. O

When studying Dehn surgery via intersection graphs, we usually fix the surfaces
Fy, F5, and hence the graphs I'y, I's are also fixed. The following technique will allow
us to modify the surfaces and hence the graphs in certain situations. Lemma 2.15
will be used in the proofs of Lemmas 12.16 and 19.6.

Consider two surfaces Fi, F5 in a 3-manifold M with boundary slopes 71,72
respectively and suppose they intersect minimally. Let I'y,'s be the intersection
graphs on Fl,Fg, respectively. Let a be a proper arc on a disk face D of I, with
boundary on edges of I';. Then one can replace two small arcs of ', centered at
Oa by two parallel copies of a to obtain a new graph I'/, called the graph obtained
from T'y by surgery along .

Figure 2.1

A face D’ of T', is called a coupling face to another face D of I, along an edge
e1 of D if D’ has an edge ey such that ej, es are adjacent parallel edges on I'y, and
the neighborhoods in D and D’ of the e;’s lie (locally) on the same side of F},. Note
that this is independent of whether Fy is orientable or separating in M. See Figure
2.1. By definition D has no coupling face along e if e; has no parallel edge on I',
one coupling face along e; if e; has some parallel edges and is a border edge of the
family, and two otherwise. A 4-gon face D of I, looks like a “saddle surface” in
M| F,. In general it is not possible to push the saddle up or down to change the
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intersection graph. However, if some coupling face to an edge of D is a bigon then
this is possible. See Figure 2.2. More explicitly, we have the following lemma.

Figure 2.2

LEMMA 2.15. Let I'1,Ts be a pair of intersection graphs. Let QQ be a face of
Ty, and let e be an edge on 0Q). Let a be an arc on @ with boundary in the interior
of edges of Iy, cutting off a disk By containing e and exactly two corners of Q. If
some coupling face Q' of Q along e is a bigon, then F, can be isotoped so that the
new intersection graph T is obtained from T, by surgery along «.

ProoF. Cut M along Fp. Then the face @) is as shown in Figure 2.2. Let Bs
be the bigon in I', between e and the edge ¢ on @’. After shrinking the Dehn
filling solid torus V}, to its core knot Kj, the union B; U Bo U Q' is a disk Q” with
boundary the union of o and an arc on F,. Pushing Q" off K, gives a disk P in M
which has boundary the union of o and an arc on F}, and has interior disjoint from
F, U F,. Therefore we can isotope F, through this disk P to get a new surface F.
It is clear that the new intersection graph I'/, is obtained from T, by surgery along
Q. (]

Let u be a vertex of 'y, and P,Q two edge endpoints on Ou. Let I be the
interval on Ju from P to @ along the direction induced by the orientation of wu.
The edge endpoints of I', cut I into k£ subintervals for some k. Then the distance
from P to Q on Ju is defined as d,, (P, Q) = k. Sometimes we also use dr, (P, Q) to
denote d, (P, Q). If P,Q are the only edge endpoints of e1, ea on du, respectively,
then we define dy(e1,es) = d,(P,Q). Notice that if the valence of u is m, then
dy(Q, P) = m —d,(P,Q). The following lemma can be found in [Go].

LEMMA 2.16. [Go, Lemma 2.4] (i) Suppose P,Q € Ou; N Ov, and R, S €
Ouj NOvy. If dy, (P, Q) = du; (R, S) then d,, (P,Q) = dy, (R, S).

(11) Suppose that P € u; Nwvg, Q € u; Ny, R € ujNug, and S € u; N If
dy,(P,Q) = dy,; (R, S), then d,, (P,R) = d,,(Q,S).

Suppose two edges e, ez of I', connect the same pair of vertices u;, u;. Let py, qr
be the endpoints of e; on u;,u;, respectively, £ = 1,2. Then ey, e2 are equidistant
if du, (p1,p2) = du;(q2,q1). (Note that the orders of the edge endpoints have been
reversed.) Thus for example a pair of parallel positive edges is always equidistant,
but a pair of parallel negative edges is not unless their distance is exactly half of
the valence of the vertices.

Note that when u; # u; the above equation can be written as d,,(e1,e2) =
dy;(e2,e1). When u; = uj, dy,(e1, e2) is not defined, and there are two choices for



2. PRELIMINARY LEMMAS 15

the pair pg, gk, but one can check that whether the equality dy, (p1,p2) = du; (42, q1)
holds is independent of the choice of p;, g;.

The following lemma is called the Fquidistance Lemma. It follows from Lemma
2.16, and can also be found in [GW1]. Given an edge e, define de to be the pair of
vertices at the endpoints of e.

LEMMA 2.17. [GW1, Lemma 2.8]  Let eq,e2 be a pair of edges with deq =
Oes in both T'1 and T's. Then ey, e are equidistant in 'y if and only if they are
equidistant in T's.

Given two oriented slopes 11,72 on Ty, choose an oriented meridian-longitude
pair m, [ on the torus T so that r; = m, then the slope 75 is homologous to Jm+ Al
for some mod A integer J = J(r1,r2), called the jumping number between rq,rs.
Note that if A =4, then J = +1, and if A = 5, then J = £1 or +2. The following
lemma is call the Jumping Lemma and can be found in [GW1].

LEMMA 2.18. [GW1, Lemma 2.10]  Let Py, ..., Pa be the points of Ou; N Ovj,
labeled successively on Qu;. Let J = J(r1,72) be the jumping number of r1,79. Then
on v; these points appear in the order Py, Pay,..., Pany. In particular, they appear
successively as Py, ..., Pa along some direction of 0v; if and only if J = 1.

LEMMA 2.19. Let ey U...Ue, and €} U... U ey be two sets of parallel edges on
L. Suppose ey is parallel to e} and e, parallel to e on T'y. Then p = q.

ProOOF. Let D1, Dy, D3, Dy be the disks realizing the parallelisms of e; U e,
and e} U e’q onT,, and ey Ue] and e, U e’q on I'y. Then the union A = D1 U...U Dy
is a Mobius band or annulus in M with boundary on Tp. (It is embedded in
M, otherwise there is a pair of edges parallel in both graphs, contradicting Lemma
2.2(2).) If Ais a Mobius band then it is already a contradiction to the hyperbolicity
of M. If A is an annulus and p # ¢ then a boundary component ¢ of A has
intersection number p — ¢ # 0 with UJv; and hence is an essential curve on Tj.
Since e; is an essential arc on both A and F,, and F, is boundary incompressible, A
cannot be boundary parallel. It follows that A is an essential annulus in M, which
again contradicts the assumption that M is hyperbolic. O

LEMMA 2.20. Suppose I'y, is positive, ny, > 3, and I’y contains bigons e; Ues and
el Uel, such that ey, e} have label pair {i,j} and es, €, have label pair {i+1,j+ 1},
where j #i. Let C; = e1Ue] and Cy = eaUeh, be the loops on Fb. If C1 is essential
on Fb then Cy is essential on Fb and not homotopic to C.

PRrROOF. Let B and B’ be the bigon faces bounded by e; U ez and e} U eb,
respectively. Shrinking the Dehn filling solid torus to the core knot Kj, the union
B U B’ becomes an annulus A; in M(ry) with boundary Cy U Cs. Since Fy is
incompressible and C; is essential on Fb, it follows that Cy must also be essential
on Fb.

Now assume C}; are essential and homotopic on F,. Since i # j and np > 2,
C1,C5 have at most one vertex in common. If Cy,Cs are disjoint, let As be an
annulus on Fb bounded by C7 U Cy. If C1,C; has a common vertex v, 41 = vy,
let A; be the disk face of C7 U Cs in F‘b, which will be considered as a degenerate
annulus as it can be obtained from an annulus by pinching an essential arc to a
point. Let A% be the closure of Fy, — As. Let m and m’ be the number of vertices
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in the interior of Ay and A}, respectively. Then n, = m + m/ + k, where k is the
number of vertices on C7 U Cy, i.e., k =4 if C1 NCy = 0, and k = 3 otherwise.

First consider the case that C;NCy = (. Orient C7, Cs so that they are parallel
on the annulus A;. If they are also parallel on Fy then A; U Ay is a nonseparating
torus which can be perturbed to intersect Kj at m + 2 < n; points, which is a
contradiction. If they are anti-parallel then A; U Ay and A; U A} are Klein bottles
which can be perturbed to intersect K; at m and m’ points, respectively. Since at
least one of m, m’ is less than ny;/2, this contradicts Lemma 2.12.

The case that C; N Cy # () is similar. If C7,Cy are parallel then 4; U As is a
torus and can be perturbed to intersect K; at m + 1 < n; points; if they are anti-
parallel then A; U Az and A; U AL can be perturbed to be Klein bottles intersecting
Ky, at m + 1 and m/ points, respectively, which leads to contradictions as above
because m + 1 +m’ < ny, implies either 2(m + 1) < np or 2m’ < np. O

A triple of edge endpoints (p1,p2,p3) on I'y is positive if they appear on the
boundary of the same vertex v;, and in this order on dv; along the orientation of
0v;. Note that this is true if and only if d, (p1,p2) + dv, (P2, p3) = dv, (P1,D3).

LEMMA 2.21. (1) Suppose (p1,p2,ps) is a positive triple on T'y. Let k be a
fized integer and let p; be edge endpoints such that dr, (pi,p;) = k for all i. Then
(P}, p5, p5) is also a positive triple on Ty.

(2) Let e1 U ...Ue, be a set of parallel negative edges with end vertices uy,us
in T'y. Let u(p) € {ui,u2} for p =1,2,3, and let e;j(u(p)) be the endpoint of e;
at u(p). If (ei(u(1)), e;(u(2)), ex(u(3))) is a positive triple and i,j,k < r —t, then
(it (u(1)), ej44(w(2)), ex+e(u(3))) is also a positive triple.

PROOF. (1) Geometrically this is obvious: Flowing on Ty along 0F, moves the
first triple to the second triple, hence the orientations of the components of OF,
containing these triples are the same on 7j.

Alternatively one may use Lemma 2.16(ii) to prove the result. Since dr, (p;, p}) =
dr,(pj,p}) = k for all 4,7, by Lemma 2.16(ii) we have dr, (pi, p;) = dr, (p},p);) for
all i, j. Therefore dr, (p1,p2) + dr, (p2, p3) = dr, (p1, p3) if and only if dr, (p},p3) +
dr, (P, p3) = dr, (1, Pj)-

(2) This is a special case of (1) because

dr, (ei(u(1)), eie(u(1))) = dr,(e;(u(2)), €54 (u(2)))
= dr,(er(u(3)), exte(u(3))) =1
O

LEMMA 2.22. Suppose 'y is positive and n = ny > 3.

(1) Suppose é D e1 U ...Uepta, and the transition number s = 1. Let A be
the annulus obtained by cutting F, along the cycle e; U ... Ue,. Then the edges
€nt1,€nt2 lie in A as shown in Figure 2.3, up to reflection along the center circle
of the annulus.

(2) If s =1, n =3 and é; contains 6 edges e; U ... U eg then the edges are as
shown in Figure 2.4.

(8) Any family of parallel negative edges in T, contains at most 2n edges.

PRrOOF. (1) Let u,u’ be the end vertices of é in T',. Orient e; from u to v’ and
assume without loss of generality that e; has label ¢ at its tail e;(¢) in T'y. Since
s = 1, the head of e;, denoted by e;(h), has label i + 1 in T';,. The edges ey, ..., e,
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form an essential loop on the torus Fy. Cutting F, along this loop produces an
annulus, as shown in Figure 2.3.

Up to reflection along the center circle of the annulus we may assume that the
edge e,41 appears in this annulus as shown in Figure 2.3. We need to prove that
en+2 appears in I'y as shown in the figure.

Figure 2.3

Since I'y, is positive, we may assume that all vertices on Figure 2.3 are oriented
counterclockwise. Note that (e1(h), ent1(h),ea(t)) is a positive triple on T'y. By
Lemma 2.21(2) the triple (e2(h), enq2(h), e3(t)) is also a positive triple. This deter-
mines the location of the head of e,2, as shown in Figure 2.3. Applying Lemma
2.20 to e; Ueg and e,4+1 Uey12, we see that the loop es U e,42 is essential and not
homotopic to e; Uey,41 on Fb, so these two loops must intersect transversely at the
common vertex vz on Fb. Hence the edge e,,+2 must appear as shown in Figure 2.3.

(2) By (1) the first 5 edges must be as shown in Figure 2.4. These cut the
torus into a 3-gon and a 7-gon. The edge eg is not parallel to the other e;’s on
Iy, and hence must lie in the 7-gon, connecting vs to vi. For the same reason as
above, (e3(h), eg(h), es(t)) is a positive triple on dvy, hence the head of eg must be
in the corner on Qv; from e;(t) to e4(t) because the corner from ez(h) to ey (t) lies
in the 3-gon. Similarly, since (e1(h), e5(t), e4(h)) is a positive triple on Figure 2.4,
by Lemma 2.21(2) (e2(h),es(t),e5(h)) is also a positive triple, which determines
the position of the tail of eg. Therefore eg must be as shown in Figure 2.4.

(3) This follows from [Go, Corollary 5.5] when n > 4. Now assume n = 3 and
suppose there exist 2n + 1 = 7 parallel edges e; U ... Ue7 on I',. By the 3-Cycle
Lemma 2.14(2) we may assume that the transition number s # 0. Since n = 3, we
may assume without loss of generality that s = 1, hence by (2) the subgraph of T’
consisting of the edges e; U...Ueg is as shown in Figure 2.4. By the same argument
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as above, (e4(h),e7(h),e5(t)) and (ez(h), e7(t), e(h)) are positive triples on dv, and
Ovy, respectively. Since e7 must lie in the 6-gon face D in Figure 2.4, this is possible
only if e7 is parallel to ey, which is a contradiction to Lemma 2.2(2). 0

Figure 2.4

LEMMA 2.23. Let sign(v) be the sign of a vertex v, and define p, to be the sum
of the signs of the vertices of I'y. Then either py = 0 or po = 0. In particular,
n1,ne cannot both be odd.

PRrROOF. For each edge endpoint ¢ on u; Nv;, define sign(c) = sign(u;) sign(v;).
Then the parity rule says that the two endpoints of an edge e have different sign.
Summing over all edge endpoints on I', gives

0= Z A(sign(u;) sign(v;)) = A Z sign(u;) Z sign(v,;) = Apipe
2% i J
hence either p; =0 or ps = 0. O

3. I' has no interior vertex

In this section we will show that if n, > 4 then the graph I', does not have
interior vertices; in particular the vertices of I', cannot all be parallel. Recall that
we have assumed that A > 4.

LEMMA 3.1. If ny > 4 then 'y has no full vertex of valence at most 6.

PROOF. First assume n, # 6. Then by Lemma 2.7(3), three adjacent families
of positive edges in I', contain at most 2n;, — 1 edges, hence if I, has a full vertex
of valence at most 6 then

dny < Anp < 2(2np — 1) = 4ny — 2,

a contradiction.
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So suppose n, = 6, and let u; be a full vertex of I', of valence at most 6. By
Lemma 2.3(3), each family of edges incident to u; contains at most 4 edges. Since
there are at least 24 edges in at most 6 families, there must be exactly 6 families,
each containing exactly 4 edges. Each family contains a Scharlemann bigon, so
there are six Scharlemann bigons at the vertex u;. Since there are no extended
Scharlemann cycles, each Scharlemann bigon appears at one end of a family of
parallel edges. Thus by examining the labels around the vertex u;, one can see
that if one Scharlemann bigon has label pair {1, 2} then the others must have label
pair {1,2}, {3,4} or {5,6}, and that at least two pairs do occur as label pairs of
Scharlemann bigons. On the other hand, by Lemma 2.3(4) all three pairs cannot
appear as label pairs of Scharlemann bigons. Hence, without loss of generality, there
are incident to u; at least three (12)-Scharlemann bigons and a (34)-Scharlemann
bigon. Since on T, the edges of the (34)-Scharlemann bigon form an essential loop
on f‘b, there are at most two edges of Fb joining v to ve. Since the three (12)-
Scharlemann bigons give rise to six negative 1-edges of I'; joining v; to vg, three of
these must be parallel, contradicting Lemma 2.7(1). (]

LEMMA 3.2. If ny > 4 then f‘jl‘ has mo interior vertices.

Proor. This follows from Lemma 3.1 if n, < 2 because in this case either
l"‘Ir = I‘ and there is a full vertex of valence at most 6, or n, = 2 and there is no
interior vertex. Therefore we may assume that n, > 3.

Suppose to the contrary that f‘j{ has an interior vertex u;. By Lemma 3.1 all
interior vertices of f‘j have valence at least 7, hence we can apply Lemma 2.11 to
conclude that f‘;‘ has a boundary vertex u; of valence at most 3.

By Lemma 2.7(3) the three families of adjacent positive edges at uq contain at
most 2n; edges, hence there are 2n;, adjacent negative edges. On I', this implies
that each vertex v; is incident to two positive edges with label 1 at v;, which cannot
be parallel as otherwise there would be at least n, + 1 > n,/2 + 2 parallel positive
edges, contradicting Lemma 2.3(3). Therefore the reduced graph ', contains at
least n positive edges On the other hand, the existence of an interior vertex in
F* implies that I', contains at least 2n, negative edges, as shown in the proof of
Lemma 3.1. Since I', has at most 3n; edges (Lemma 2.5), it must have exactly
ny positive edges and 2n;, negative edges. Since we have shown above that each
vertex in I is incident to at least two positive edges, it follows that it is incident
to exactly two positive edges.

We claim that a family of parallel positive edges in I'y contains at most n,/2
edges. If such a family contains more than n,/2 edges, then there is a Scharlemann
bigon on one side of the family, and by looking at the labels one can see that all
labels appear among the endpoints of this family, which is impossible because w;
being an interior vertex in f‘jl‘ implies that all edges in I', with ¢ as a label are
negative.

Since each vertex v; is incident to two families of positive edges, each containing
at most n,/2 edges, we see that v; is incident to at least 3n, negative edges. By
Lemmas 3.1 and 2.5 we see that I', has less than 3n, positive edges, hence two of
the negative edges incident to v; are parallel in I'y, so j is a label of a Scharlemann
bigon in I',. Since this is true for all vertices in I'p, by Lemma 2.3(4) we have
np < 4, which is a contradiction. O
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4. Possible components of '}’

LEMMA 4.1. Suppose f‘jl‘ has no isolated vertex or interior vertex. If some v; of
T’y is incident to more than 2n, negative edges in 'y, or if ng > 4 and v; is incident
to at most two families of positive edges in L'y, then i is a label of a Scharlemann
bigon in [y.

PROOF. If v; is a vertex of I'y incident to more than 2n, negative edges then
by Lemma 2.10(2) two of them are parallel in 'y, so by Lemma 2.4 they form a
Scharlemann bigon, hence i is the label of a Scharlemann bigon in I',. If n, > 4
and v; is incident to two families of positive edges in I', then by Lemma 2.3(3) each
family contains less than n, edges, hence v; is incident to more than 2n, negative
edges and the result follows from the above. O

In the rest of this section we assume n, > 4 for a = 1,2, and A > 4. By Lemma
3.2 T has no interior vertices. We will show that each component of I'l must be
one of the 11 graphs in Figure 4.2.

LEMMA 4.2. No vertex u of I, is incident to at most four positive edges and
at most one negative edge.

PROOF. By Lemmas 2.7(1) and 2.7(2) a family of negative edges contains at
most n, edges, and four adjacent families of positive edges contain at most 2(nj +
2) = 2ny, + 4 edges. Since T', has at least 4n;, edges incident to u, we would have
ny < 4, which is a contradiction to our assumption. 0

LEMMA 4.3. Suppose u; is incident to at most three positive edges in Iy, and
if there are three then two of them are adjacent. Then i is a label of a Scharlemann
bigon in T'y.

PROOF. In this case each label appears at the endpoint of some negative edge
at u;, so f‘gf has no isolated vertex. By Lemma 4.1 the result is true if u; is incident
to more than 2n; negative edges. So we assume that u; is incident to no more than
2n;, negative edges, and hence at least 2ny;, positive edges. By Lemma 2.7(2) the
two adjacent families of positive edges contain at most ny + 2 edges, while the other
positive family contains no more than ny/2 + 2 edges. Thus (np + 2) + (np/2+2) >
2ny, which gives n, < 8. Since one of the positive families contains more than
np/2 edges, it contains a Scharlemann bigon; by Lemma 2.2(4) np must be even,
so n, = 8 or 6. Using the above inequality and the fact that when n;, = 6 each
positive family contains at most 4 edges (Lemma 2.3(3)), we see that w; is incident
to exactly 2n; positive edges and 2n; negative edges. Dually, this implies that in
T, there are exactly 2n; positive i-edges and 2n; negative i-edges. (As always, an
edge with both endpoints labeled ¢ is counted twice.)

If 7 is not a label of a Scharlemann bigon in I'y, then the 2n; positive i-edges in
T'y are mutually nonparallel, so I', has at least 2n, positive edges. By Lemma 2.5
the reduced graph ', has no more than 3n, edges, so it has at most n, negative
edges. On the other hand, by Lemma 2.7(1) each family of parallel negative edges
in T', has at most two endpoints labeled 7; since there are 2n; such endpoints, I’
must have at least n; families of negative edges. It follows that I'y, has exactly n
families of negative edges, each having exactly two endpoints labeled 3.

Suppose np = 6. Then there are 12 edges in the three families incident to wu;,
and by Lemma 2.3(3) each family contains at most four edges, hence each family
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contains exactly four edges. If some of these edges are loops, then there are four
loops and four non-loop edges. No loop can be parallel to a non-loop edge in I'y since
otherwise the label ¢ would appear three times among a set of parallel edges in I'y. It
follows that all the 8 positive edges incident to u; are mutually nonparallel in I', so
the reduced graph ', would have at least 8 negative edges, which is a contradiction
as we have shown above that I, has exactly n, = 6 negative edges. Hence we can
assume there is no loop based at u;. Note that a family of four parallel edges in
I’y contains a Scharlemann bigon. If the label pair of the Scharlemann bigon is
{4,7 + 1}, then these two labels appear twice among the endpoints of this family,
and each of the other four labels appears exactly once. By Lemma 2.3(4) at most
four labels are the labels of some Scharlemann bigons in I'p, so there is some k
which is not a label of a Scharlemann bigon and hence appears exactly three times
among the endpoints of the positive edges incident to u;. Dually, this implies that
some negative edge in 'y contains only one i-edge, which is a contradiction as we
have shown above that each negative edge in I', must contain exactly two negative
i-edges.

The proof for n, = 8 is similar. In this case the numbers of edges in the three
positive families incident to u; are either (6,5,5) or (6,6,4). Using the fact that
there are at most four labels of Scharlemann cycles one can show that in either case
some label appears three times among the endpoints of these edges, which would
lead to a contradiction as above. 0

LEMMA 4.4. No vertex u; is incident to at most one edge in f;L

PrOOF. By Lemma 3.2 there are no interior vertices, hence by Lemma 2.11
either (i) f‘gf has a circle component, or (ii) f‘gf has a boundary vertex of valence
at most 3, or (iii) all vertices of f‘; are boundary vertices of valence 4.

In case (i) a vertex v; on the circle component is incident to at most two positive
edges with label i at v;, hence dually there are at most two negative edges with
label j at u;, and hence at least A — 2 > 2 positive edges with label j at u;, which
is impossible because u; is incident to at most one family of positive edges and by
Lemma 2.3(3) such a family contains at most one edge with label j at u;.

The proof for case (ii) is similar because by Lemma 2.7(3) a valence 3 boundary
vertex v; of f‘;‘ is incident to at most 2n, positive edges of I', and hence at most
two positive edges with label i at v;.

In case (iii), since u; is incident to at most ny/2 + 2 < ny, positive edges, there
is a label j such that all four edges with label j at u; are negative. Dually v; has
four positive i-edges. Since it is a boundary vertex, it is incident to at least 3n, +1
positive edges. On the other hand, since v; has valence 4 in f‘;‘, by Lemma 2.7(2)
it has at most 2(n, + 2) < 3n, positive edges, a contradiction. O

COROLLARY 4.5. FEach component of f‘j{ is contained in an essential annulus
but not a disk on F,.

Proor. By Lemma 2.6 f‘jl‘ has at least two components, so if the result is not
true then one can find a disk D on E}, such that DNT} is a component G of I'}. By
Lemma 4.4 G is not an arc, so by Lemma 2.9 it has at least three boundary vertices
of valence at most 3. By Lemma 4.3 these vertices are labels of Scharlemann cycles
in I'y, which is a contradiction because by Lemma 2.3(4) T', contains at most two
labels of Scharlemann cycles of each sign. 0
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Let G be a component of I'}” contained in the interior of an essential annulus A
on F,. By Corollary 4.5, G is not contained in a disk, hence it contains some cycles
which are topologically essential simple closed curves on Fa, and all such cycles are
isotopic to the core of A. We call such a cycle an essential cycle on G. Note that
a cycle may have more than two edges incident to a vertex, but an essential cycle
does not. An essential cycle C of G is outermost on A if all essential cycles of G
lie in one component of A|C. By cutting and pasting one can see that outermost
essential cycles always exist, and there are at most two of them, which we denote
by C; and C,., called the leftmost cycle and the rightmost cycle, respectively. Let Al
and A] be the components of A|Cj, called the left annulus and the right annulus of
Ci, respectively, labeled so that A% contains no essential cycles of G other than Cj.
Similarly for AL and A7, where the right annulus A" of C, is the one that contains
no essential cycles other than C,.

LEMMA 4.6. The interiors of Al and A% do not intersect G.

PROOF. Assuming the contrary, let G’ be the closure of a component of GNA!.
Since G is connected, G/ must intersect C; at some vertex v, but it cannot intersect
C} at more than one vertex, as otherwise the union of an arc in G’ and an arc on
C; would be an essential cycle in A% other than Cj, contradicting the definitions of
leftmost cycle and its left annulus. For the same reason, G’ contains no essential
cycles, hence it lies on a disk D in Af. By Lemma 4.4 G has no vertex of valence 1,
so G’ is not homeomorphic to an arc. By Lemma 2.9 G’ has at least three boundary
vertices of valence at most 3. Let v! and v? be such vertices other than v. They
are boundary vertices of G lying in the interior of A% with valence at most 3, and
vt # 0.

By Lemma 4.3, for i = 1,2 there is a Scharlemann bigon {ei, e} on ', with v
as a label, and by Lemma 2.2(5) C; = e} Ue} is an essential curve on F,, containing
v'. Since v? is a boundary vertex of G’, it is not a cut vertex, hence there is an arc
C’ on G’ connecting v! to v which is disjoint from v2. Now the union C; UC’" U C
cuts F, into an annulus and a disk D containing v? in its interior, so the cycle
C5 is also contained in the disk D, which is a contradiction to the fact that Cy is
topologically an essential curve on E,. O

Lemma 4.6 shows that G is contained in the region R between C; and C.. Since
G has no interior vertices, all its vertices are on C; U C,.. If Cj is disjoint from C|
then R is an annulus, and if C; = C). then R = C; = C, is a circle. In the generic
case we have C; N C,. = E1 U...U Ey, where each FE; is either a vertex or an arc.
The region R is then a union of these F; and some disks D, ..., Dg, such that 0D;
is the union of two arcs, one in each of C,. and C;. When kK =1 and F; = vis a
vertex, D; is a disk with a pair of boundary points identified to the single point v.
Note that a vertex of G is a boundary vertex if and only if it is on C;UC,. — C;NC,.

LEMMA 4.7. Let C = Cy or C,.

(1) If C has a boundary vertex u; of valence at most 3 then it has no other
boundary vertex of valence at most 4.

(2) If C' has a boundary verter u; of valence 2 then it has no other boundary
vertex.

PROOF. (1) By Lemma 4.3, i is a label of a Scharlemann bigon in I'y. On T,
the edges of this Scharlemann bigon form a cycle C’ containing u; and another
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vertex uy. By Lemma 2.2(5) C” is topologically an essential circle on the torus F,.
Since u; is a boundary vertex, one can see that C’ is topologically isotopic to C.
By Lemma 4.6 applied to G and to the component of f‘;‘ containing ug, there are
no other vertices of I';, between C” and C. Hence any boundary vertex u; # u; on
C is incident to at at most one family of parallel negative edges, connecting it to
ug. The result now follows from Lemma 4.2.

(2) Note that since u; is a boundary vertex, the edges of any Scharlemann bigon
on I'y, with ¢ as a label must connect u; to the same vertex u, on I'y, so there are
at most np such bigons because there are only two edges on I, connecting u; to
ug, each representing a family of at most n; edges. By Lemma 2.7(2) u; is incident
to at most ny 4+ 2 positive edges, hence at least 3n, — 2 negative edges. If a pair of
these edges are parallel on I'y, then they form a Scharlemann bigon. Hence by the
above we see that there are at most n; pairs of such edges. It follows that f‘b has
at least 3n, — 2 — np = 2ny, — 2 positive edges.

If u; is a boundary vertex of C other than w; then as in the proof of (1) it
is incident to at most one family of negative edges, so it has at least 3n; positive
edges. Since no three of those are parallel on I'y, we see that fb has at least 3n;/2
negative edges, so f‘b would have a total of at least 2n, — 2 + 3n;/2 > 3ny, edges,
contradicting Lemma 2.5. O

Now suppose C; N C,. # 0, and C; # C,. Then the region R between C; and
C, can be cut along vertices of C; N C). to obtain a set of disks, and possibly some
arcs. Let D be such a disk. If C; N C, is a single vertex v then D is obtained by
cutting R along v, in which case we use D NG to denote the graph on D obtained
by cutting G along v.

Figure 4.1

LEMMA 4.8. G’ = DN G is one of the four graphs in Figure 4.1.

PROOF. Let v',v” be the vertices of G’ lying on both C; and C,. (Note that
they are distinct vertices on G’ but may be identified to a single vertex on G.)
These vertices divide 0D into two arcs Ey and Fs, with F; C C; and Ey C C,.

By Lemma 4.7, each E; contains at most one vertex of valence at most 3 in
its interior. Therefore, if D contains at most one interior edge then G’ has at most
four vertices, so it is one of the four graphs in Figure 4.1. We need to show that D
cannot have more than one interior edge.

First suppose there is an interior edge e of G’ which has both endpoints on Ej.
We may choose e to be outermost in the sense that there is an arc E’ on E; with
OFE' = Oe, and there is no edge of G’ inside the disk bounded by E’Ue. Since G’ has
no parallel edges, there must be a vertex v in the interior of E’, which has valence
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2. By Lemma 4.7(2), in this case C; has no other boundary vertices, so F; has no
vertex other than v in its interior; in particular, e must have its endpoints on v’
and v”. This implies that all interior edges have both endpoints on Es, and by the
same argument as above we see that Fs has exactly one vertex in its interior, and
all edges must have endpoints on v’ and v”. Since G’ has no parallel edges, it can
have at most one edge connecting v’ to v”, and we are done.

We can now assume that every interior edge of G’ has one endpoint in the
interior of each E;. Let G' be the union of the interior edges. The above implies
that G cannot have a cycle, so it is a union of several trees with endpoints in the
interiors of Ey and F>. A vertex of valence 1 in G” is a vertex of valence 3 in G/,
and by Lemma 4.7(1) there is at most one such for each F;. Therefore G” is a
chain, with two vertices of valence 1 and k > 0 vertices of valence 2, so G’ has one
vertex of valence 3 on each FE;, and k vertices of valence 4. Note that these are
boundary vertices. However, by Lemma 4.7(1), if G has a vertex of valence 3 on C,
then it has no boundary vertex of valence at most 4 on C}, and similarly for C,.. It
follows that k = 0, which again implies that G’ has only one interior edge. |

LEMMA 4.9. If G is a component of 'y and C; N C, # 0, then G is one of the
graphs in Figure 4.2 (1) — (8).

ProOOF. If C} = C, then G is a simple cycle, in which case each vertex has
valence 2 and hence is a label of a Scharlemann bigon by Lemma 4.3. By Lemma
2.3(4), G has at most two such vertices, hence G is the graph in Figure 4.2(1) or

(2).

Suppose C; # C, and C; N C,. # (. We call the endpoints of C; N C,. breaking
points of G, which cut the region R between C; and C,. into several disks D1, ..., D
and possibly some arcs. By Lemma 4.8 each G; = D; N G is one of the graphs in
Figure 4.1. We say that G; is of type (j) if it is the graph in Figure 4.1(j). Since
G can have at most two boundary vertices of valence at most three, we see that
either kK =1, or kK = 2 and both G; are of type (1).

First assume that k = 2 and Gy, G5 are of type (1). By Lemma 4.7 the two
boundary vertices of G; must be one on each of Cj, C.. If the component of C; NC.
containing a breaking point v’ on G; is an arc instead of a vertex, then v’ would be
a vertex of I', which is incident to three positive edges, two of which are adjacent,
in which case by Lemma 4.3 v’ is a label of a Scharlemann bigon in I'y. Since
G contains no more than two Scharlemann bigon labels, this cannot happen. It
follows that G is the graph shown in Figure 4.2(6).

We can now assume k£ = 1. For the same reason as above, we see that if Gy is
of type (1), (2) or (3), then G is as shown in Figure 4.2(3), (5) or (4), respectively.
If G is of type (4), the breaking vertices may be incident to an edge in C; N C,., so
G is the graph in Figure 4.2(7) or (8). O
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Figure 4.2

LEMMA 4.10. If G is a component of f‘jl‘ and C;NC,. =, then G is one of the
three graphs in Figure 4.2 (9), (10), or (11).

PRrROOF. Note that in this case all vertices on C; and C,. are boundary vertices.
If C; has a vertex of valence 2 then by Lemma 4.7 it has no other vertices, in which
case (} is a loop and we have G = (}, so C; = C)., a contradiction. Therefore C;
and C, have no vertices of valence 2, hence all vertices of G have valence at least 3.

Doubling the annulus and calculating Euler characteristic, we see that

> (4 —wval(v;)) > 0.

By Lemma 4.7 G has at most two vertices of valence 3.

First assume that G has two vertices v, vo of valence 3. By Lemma 4.7 vy, vo
cannot both be on Cj or C), hence each of C; and C,. contains exactly one vertex of
valence 3. By Lemma 4.7 they cannot contain vertices of valence 4. By the above
formula G has either (i) no other vertex, or (ii) one other vertex with valence 6 or
5, or (iii) two other vertices, both having valence 5. One can check that in Case (i)
the graph is that of Figure 4.2(9), Case (ii) does not happen, and in Case (iii) the
graph is the one in Figure 4.2(11).

If G contains only one vertex v of valence 3, then by the above formula it
contains at least one vertex of valence 5, and all other vertices are of valence 4. If
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C) contains v then by Lemma 4.7 it contains no vertices of valence 4. Since each
edge of G must have one endpoint on each of C; and C, we see that C; must
contain a vertex of valence 5, and C,. contains exactly two vertices, each of valence
4. One can check that there is no reduced graph satisfying these conditions.

Now assume that G has no vertices of valence 3. Then by the above formula all
vertices of G are of valence 4. Since G has no parallel edges, all edges of G—C;UC),
must connect C,. to Cy, so the graph G is completely determined by the number of
vertices k on C,., which must be the same as that on C;. Denote such a graph by
Gj. When k = 1, the graph G = G is shown in Figure 4.2(10). We need to show
that k > 1 does not happen.

Suppose k£ > 1. By Lemma 4.2 each vertex on C is incident to at least two
negative edges in [',. Let G’ be the component of f‘jl‘ adjacent to Cj, and let C".
be the outermost cycle of G’ adjacent to C;. If C. has only one vertex then two
negative edges based at some vertex v; on C; form an essential loop on the annulus
between C! and Cj, so there is only one negative edge of I, incident to any other
vertex on C7, which is a contradiction. Similarly if some vertex on C/. is a boundary
vertex of valence at most 3 then by Lemma 4.3 it is a label of a Scharlemann bigon,
which is again a contradiction because the two edges of the Scharlemann bigon
would form an essential loop as above. These facts rule out the possibility of G’
being a graph in Figure 4.2 (1) or (3) — (11). If G’ is the one in Figure 4.2(2) then
by Lemma 4.3 both of its vertices are labels of Scharlemann bigons. The edges of
these two Scharlemann bigons form two cycles, which cannot be on the same side of
G’ as otherwise one of them would lie on a disk, which contradicts Lemma 2.2(5).
Hence one of the pairs of edges connect a vertex of G’ to a vertex of Cj, which is
again a contradiction.

It now follows that if some component of f‘j is a G, for k > 2, then so are all
the other components. Moreover, none of the vertices is a label of a Scharlemann
cycle as otherwise some vertex would be incident to a single negative edge in Iy,
which would contradict Lemma 4.2. Hence I'y, has no Scharlemann cycles. On the
other hand, by Lemma 2.7(2) the four families of positive edges at a vertex v; of
G}, contain at most 2n; 4 4 edges, so v; is incident to at least Any — (2n, +2) > np
negative edges. By Lemma 2.8 this implies that I', does have a Scharlemann cycle,
which is a contradiction. |

COROLLARY 4.11. Suppose A >4, and ng > 4 for a =1,2. Then

(1) each component of f‘j{ is one of the 11 graphs in Figure 4.2; and

(2) each T, contains a Scharlemann cycle, hence Fy is separating, and ny s
even for b=1,2.

PROOF. (1) This follows from Lemmas 4.9 and 4.10.

(2) By (1), I'} contains either a vertex v of valence 2 or a boundary vertex of
valence at most 4. In the first case the result follows from Lemma 4.3. In the second
case by Lemma 2.7(2) v is incident to at most 2n; + 4 positive edges, hence at least
2np — 4 > nyp negative edges, so by Lemma 2.8 I';, has a Scharlemann cycle. O

5. The case ni,ne >4

In this section we will complete the proof that the generic case ni,ny > 4
cannot happen. We assume throughout the rest of the section that ni,ny > 4. Let
G be a component of I't. By Corollary 4.11 G is one of the graphs in Figure 4.2.
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We need to rule out all these possibilities. Recall that a component of fj is of type
(k) if it is the graph in Figure 4.2(k).

Here is a sketch of the proof. We first show (Lemma 5.4) that I'}" cannot have
two boundary vertices of valence 2, hence no component of I'f is of type (5)—(8).
Types (3) and (11) will be ruled out in Lemmas 5.6 and 5.7, so we are left with
types (1), (2), (4), (9) and (10). Lemma 5.8 will show that each vertex of a type
(10) component is a label of Scharlemann cycle, which implies that all vertices
of f‘j{ are labels of Scharlemann cycles, except the valence 4 vertex in a type (4)
component. Since f‘jl‘ has at most two Scharlemann labels of each sign, we see that
each f‘;‘ is a union of two type (4) components. This will be ruled out in Lemma
5.10, completing the proof of the theorem.

Each vertex u; in I'; has A edge endpoints labeled j. Define o(u;,v;) to be the
number of those on positive edges minus the number of those on negative edges. In
other words, it is the sum of the signs of the edges with an endpoint labeled j at
(7R

Define a vertex u of I'}" to be small if it is either of valence 2 or is a boundary
vertex of valence 3. Note that a component of type (1) or (3) in Figure 4.2 has one
small vertex, a component of type (10) has no small vertex, and all others have two
small vertices.

LEMMA 5.1. (1) U(’U,i, ’Uj) = —O’(’Uj, ul)

(2) If v; is a small vertez in f;‘ then o(u;,vj) > 0 for all i.

(3) If f; has a boundary vertex u,; of valence 2, then o(u;,v;) < 0 for all but
at most two j, at most one for each sign.

(4) If f‘j has a boundary vertex of valence 2, then f‘;‘ has at most one small
vertezr of each sign.

PROOF. (1) This follows from the parity rule Lemma 2.2(1).

(2) If v; has valence 2 in f‘gr then each label ¢ appears at most twice among
the positive edge endpoints. If v; is a boundary vertex of valence 3 in f‘gr then
by Lemma 2.7(3) it is incident to at most 2n, adjacent positive edges in I', hence
again each i appears at most twice among the positive edge endpoints. Since A > 4,
the result follows.

(3) If u; is a boundary vertex of valence 2 then by Lemma 2.7(2) there are at
most np + 2 adjacent positive edges, so at most two labels appear more than once
among the positive edge endpoints, and if there are two then they are adjacent, so
there is only one for each sign.

(4) This follows immediately from (2) and (3). O

LEMMA 5.2. Suppose f‘; has a boundary vertex u; of valence 2. Then all
components of I} are of type (1), (3) or (10). Moreover, for each sign there is at
most one component with vertices of that sign which is of type (1) or (3).

PRrROOF. This follows immediately from Lemma 5.1(4) and the fact that a com-
ponent of type (1) or (3) has one small vertex, a component of type (10) has no
small vertex, and all others have two small vertices. O

LEMMA 5.3. Let v, be a vertex of a type (10) component G of f‘;‘
(1) v; is incident to at most 2ng + 2 positive edges in T'y.
(2) o(ui,v;) > 0 for all but at most two wu;, one for each sign.
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PRrROOF. (1) By Lemma 2.7(2) the four families of adjacent parallel positive
edges incident to v; contain m < 2(n, +2) edges. If m > 2n,+2, then in particular
one of the families contains more than n,/2 edges, so it contains a Scharlemann
bigon. By Lemma 2.2(4) and Lemma 2.2(1) the labels at the endpoints of a loop at
v; must have different parity, which rules out the possibility m = 2n, + 3. Hence
m = 2n, + 4. Note that in this case there are at least 4 parallel loops {e1, ..., €4},
where e; is the outermost edge on the annulus containing G. By looking at the
labels at the endpoints of these loops, we see that es, e3 form a Scharlemann bigon,
which contradicts Lemma 2.2(6) because {e1, e4} is then an extended Scharlemann
cycle.

(2) Since v; is a boundary vertex of G, the positive edges incident to v; are
adjacent. Therefore (1) implies that o(v;,u;) < 0 for all but at most two 4, hence
by Lemma 5.1(1) we have o(u;,v;) > 0 for all but at most two u;, and if there are
two such u; then they are of opposite sign. 0

LEMMA 5.4. f‘j{ cannot have two parallel boundary vertices of valence 2; in
particular, no component G of I'T is of type (5), (6), (7) or (8).

PROOF. Suppose to the contrary that f‘j{ has two boundary vertices wu;, , u;, of
valence 2, and of the same sign. By Lemma 5.2, each component G’ of f;’ is of
type (1), (3) or (10). If G’ is of type (3) then it has a boundary vertex of valence
2, so applying Lemma 5.2 to this vertex (with fj and f‘gf switched), we see that G
must be of type (1), (3) or (10), which is a contradiction. Therefore G’ must be of
type (1) or (10).

By Lemma 5.1(3), o(ui,,vx) < 0 for all but at most two vy. Similarly for
o(uiy,vE). Since np > 4, there is a vertex v’ such that o(u,,v") < 0 for both
r = i1,42. On the other hand, if v’ is on a component G’ and if G’ is of type (1)
then by Lemma 5.1(2) we have o(u,,v") > 0 for all u,, while if G’ is of type (10)
then Lemma 5.3(2) says o(u,,v") > 0 for either r = i; or iy because u;, and u;,
are of the same sign. This is a contradiction. O

Note that a vertex u on a component G of f‘j is a boundary vertex if it lies on
one outermost essential cycle Cy of G but not the other one. In this case there is a
unique component G’ of f‘j and a unique outermost essential cycle Cy on G’ such
that C7 UC5 bounds an annulus on Fa whose interior contains no vertex of I',. We
say that G’ and Cy are adjacent to u.

LEMMA 5.5. Let u; be a vertex on a type (10) component G of f‘j If u; is not
a label of a Scharlemann cycle in Ty, then

(i) the component G' of T} adjacent to u; is of type (1), (3) or (10);

(1) u; is incident to exactly 2n, — 2 negative edges; and

(iii) T has only two components, each of type (4) or (11).

PROOF. We assume that u; is not a label of a Scharlemann cycle. Let G’ and C
be the component and outermost cycle adjacent to u;. If C' has a boundary vertex
u; of valence at most 3, then by Lemma 4.3 u; is a label of a Scharlemann cycle.
Since u; is a boundary vertex and there is no vertex between C' and the outermost
cycle on GG containing u;, the edges of the above Scharlemann cycle must connect
u; to u;, hence u; is also a label of the Scharlemann cycle, which is a contradiction.
Also, if G’ is of type (2) then by Lemma 4.1 each of its vertices is a label of a
Scharlemann cycle. Recall that the edges of a Scharlemann cycle in I'y, cannot lie
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in a disk on F,, hence the edges of one of the Scharlemann cycles must connect
a vertex on C to u;, which again is a contradiction. Therefore C' does not have
a boundary vertex of valence at most 3, and it is not on a type (2) component.
Examining the graphs in Figure 4.2, we see that G’ must be of type (1), (3) or (10).
Moreover, if it is of type (3) then C is the loop there. In any case, C' contains only
one vertex.

Let ¢ be the number of negative edges incident to u;. Since C has only one vertex
u;, u; is incident to at most two families of negative edges é1, €, all connecting u; to
uj, so by Lemma 2.7(1) ¢t < 2n;,. On the other hand, by Lemma 5.3 u; is incident to
at most 2ny + 2 positive edges, so t > 2ny, — 2. Therefore we have 2n, >t > 2n, — 2.

First assume ¢ = 2n;. Then each of é; and é; contains exactly n;, edges. Since
u; is not a label of Scharlemann cycle, by Lemma 2.4 these 2n;, edges are mutually
non-parallel on I'y, hence f‘;r has at least 2n; edges. On the other hand, by Lemma
2.10(2) it cannot have more than 2n; such edges, hence f‘;r has exactly 2n; edges,
each containing exactly one edge in é; U és. Counting the number of edges on each
graph in Figure 4.2, we see that each component of f;r must be of type (10) or (11).
Also, a component of type (11) has a vertex vy of valence 5 in f‘gr, so the above
implies that the label k appears 5 times among the endpoints of edges in é; U é,,
which is absurd. This rules out the possibility for a component to be of type (11).
Now notice that these two families of n; parallel edges have the same transition
function, hence if some edge has the same labels on its two endpoints, then they
all do. It follows that no component can be of type (10) because it has both loop
and non-loop edges. This completes the proof for the case t = 2ny,.

If t = 2np — 1 then one of é1, é5 contains ny edges and the other contains n, — 1
edges. Examining the labels at the endpoints of these edges we see that if an edge
in é; has labels of the same parity at its two endpoints then an edges in é3 would
have labels of different parities at its endpoints, and vice versa. This contradicts
the parity rule (Lemma 2.2(1)).

We can now assume t = 2n;, — 2. Without loss of generality we may assume
that the labels of the endpoints of é; U é; appear as 1,2, ...,mp,1,...,np — 2 on Ju;
when traveling clockwise, and we assume that the first n;, are endpoints of ;. (The
other cases are similar.) Let el (k = 1,2) be the edge in &) with label p at u;, and
assume that the label of e{ on w; is 1 + r for some r. Then one can check that the
label of ell) on u; is p + r, and the label of 612) on u; is p+r+ 2. (All labels are
integers mod ny.) Hence for any p between 3 and n;, the edges 6110 and 612)72 have
the same label p + r at u;. On I'y this implies that there are two positive edges,
connecting vy, to vp4, and vp4r to vp_2, SO v, are v,_o are in the same component
of f‘;r Since this is true for all p between 3 and ny, it follows that f‘;r has only two
components.

By Lemmas 2.8 and 2.2(4) f‘gf has the same number of positive vertices and
negative vertices, hence each component G has at least three vertices. This rules
out the possibility for G to be of type (1), (2), (3), (9) or (10). Combined with
Lemme 5.4 we see that each component of f‘;‘ is of type (4) or (11). |

LEMMA 5.6. No component of f‘j is of type (3).

ProoOF. By Lemma 5.2 if fj has a component of type (3) then each component
of I'} is of type (1), (3) or (10), and there is at most one component of type (1)
or (3) for each sign. Since np > 4 and a component of type (1) or (3) has at most
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2 vertices, there is at least one component G of f;’ of type (10) and at least one
other component G’ of the same sign. On the other hand, by Lemma 5.5 each
vertex of G is a label of a Scharlemann cycle, and by Lemmas 4.1 and 4.3 at least
one vertex of G’ is a label of a Scharlemann cycle, so there are at least three labels
of Scharlemann cycles of the same sign, contradicting Lemma 2.3(4). O

LEMMA 5.7. No component of I’} is of type (11).

PROOF. An outermost cycle on a component G of type (11) contains two paral-
lel vertices u; and u;, where u; is of valence 3 and hence the label of a Scharlemann
bigon (Lemma 4.3), and u; has valence 5. If {ej, ez} is a Scharlemann bigon on
I, with label pair {i,7 + 1}, say, then on T', these edges form an essential curve
containing the vertices u; and wu;11, which separates u; from all other vertices of
opposite sign, hence all negative edges incident to u; have their other endpoints on
ui4+1, and they are all parallel. Thus u; has at most n; negative edges, and hence
at least 3n;, adjacent positive edges. In particular, each label appears at least three
times among endpoints of positive edges at u;. Dually, each vertex vy in I'y is
incident to at least three negative edges labeled j at vg. If vy is a boundary vertex,
then this implies that it is incident to at least 2n, + 1 negative edges, so by Lemma
4.1 it is a label of a Scharlemann cycle.

By Lemmas 5.4 and 5.6 a component of T’} is of type (1), (2), (4), (9), (10) or
(11). By the above and Lemma 4.1 all vertices of I'y except those with valence 4
in type (4) components are labels of Scharlemann cycles. Since ny > 4 and there
are at most two Scharlemann labels for each sign, we see that f;r has only two
components, each of type (4), so n, = 6, and f‘gr has 10 positive edges. By Lemma
2.5 Ty has at most 3n, — 10 = 8 negative edges. On the other hand, we have
shown that u; in I', is incident to at least 3n; = 18 positive edges; since no three
of them are parallel in T', ', has at least 18/2 = 9 negative edges, which is a
contradiction. O

LEMMA 5.8. Each vertex of a type (10) component of f‘j is a label of a Scharle-
mann bigon.

PROOF. Suppose that a vertex u; of a type (10) component of f‘j{ is not a label
of a Scharlemann bigon. By Lemmas 5.5 and 5.7 f‘;r is a union of two type (4)
components, so ny = 6, I', has 10 positive edges, and no more than 3n, — 10 = 8
negative edges.

By Lemma 5.5(ii) u; is incident to (A — 2)n, + 2 = 6A — 10 positive edges
(loops counted twice). By Lemma 2.7(1) no three of these are parallel in Ty, hence
they represent at least 3A — 5 negative edges in I'y. Therefore A = 4, and we have
at least 7 negative edges in [',. We need to find two more to get a contradiction.

By Lemma 5.5(i) and Lemma 5.6 the component G of T’} adjacent to u; is of
type (1) or (10), so the outermost cycle of G adjacent to u; has a single vertex u;
and a single edge Ey. We claim that E; contains at least two edges of T'y.

If G is of type (10), then u; is incident to four families of positive edges in I',
with a total of 2n,+2 = 14 edges, where loops are counted twice. By Lemma 2.3(3)
each family contains no more than 4 edges, so the loop edge Ey contains at least
(14—2x4)/2 =3 edges of T'y. If G is of type (1) then since no three negative edges
incident to u; are parallel in I';, and since f;r has only 10 edges, we see that u; is
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incident to at most 20 negative edges, hence Ey contains at least (24 — 20)/2 = 2
edges. This completes the proof of the above claim.

Let e}, e} be the two edges in Ej closest to u;. By Lemma 2.2(2) they are
not parallel on I'y. We claim that on I'y neither of them is parallel to any edge
incident to u;, hence Iy contains at least 7+2 =9 negative edges. This will be a
contradiction as we have shown above that I', has at most 8 negative edges.

By Lemma 5.5(ii) there are exactly 2n, — 2 = 10 negative edges ey, ..., €19
connecting u; to u;. Without loss of generality we may assume that the sequence of
labels of the endpoints of these edges at u; is 1, ...,6, 1, ..., 4, counting clockwise, and
the labels of their endpoints at u; are r+2,7+3, ...,7—1, counting counterclockwise.
Thus {e}, e, } is a Scharlemann bigon with label pair {r,r + 1}.

Since € is a loop, by Lemma 2.3(5) if it is parallel in T'y to an edge e incident
to u; then e is also a loop. Note that e} and e must have the same label pair.
Let E5 be the loop of I’y based at w;. It has at most four edges el ey, ey ey,
with label pairs {5,6},{6,5},{1,4},{2, 3}, respectively. By Lemma 2.3(2) we have
{r,r+1} # {2, 3}, hence if €] is parallel to some e’/ then {r,r+1} = {5,6},s0r = 5,
and hence the label sequence of the above negative edges at u; isalso 1, ...,6,1, ..., 4.

The 10 edges ey, ..., e19 are divided into two families F1, E». Since |E;| < 6,
we have |F1| = 4, 5, or 6. If |E1| = 5 then the edge e; would have label 1 at u;
and label 6 at u;. Since v; and vg on I'y are antiparallel, this is impossible by the
parity rule. If |[E;| = 4 then e; has the same label 1 at its two endpoints, which
contradicts the fact that I'y has no loop. Similarly if |E;| = 6 then e; has the same
label 1 at its two endpoints, which is again a contradiction. This completes the
proof of the Lemma. |

LEMMA 5.9. Fach f‘j is a union of two type (4) components.

ProoOF. By Lemmas 5.4, 5.6 and 5.7, each component G of f‘j{ is of type (1),
(2), (4), (9) or (10). By Lemmas 4.1, 4.3 and 5.8, we see that all vertices u; of G are
labels of Scharlemann bigons, unless G is of type (4) and u; is the vertex of valence 4
in G. Since n, > 4 and I’} has at most two vertices which are labels of Scharlemann

bigons for each sign, we see that f‘j consists of exactly two components, each of
type (4). O
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(a) (b)

Figure 5.1

LEMMA 5.10. One of the f;r is not a union of two type (4) components.

PROOF. Assume that each f‘j is a union of two type (4) components. Each
vertex of I', has valence Any > 24, hence I', has at least 72 edges. Since a positive
edge in ', is a negative edge in I'y, we may assume that I'; has no more negative
edges than positive edges, so I'{” has at least 36 positive edges. Thus one component
G of T has at least 18 edges. Denote by G the reduced graph of G. It is of type
(4), so it is obtained from the graph in Figure 5.1(a) by identifying the top and
bottom vertices.

Let E1, ..., E5 be the edges of G. Denote by |E;| the number of edges of G in
E;, and call it the weight of E;. By Lemma 2.3(3), each |F;| < 4. Since G has at
least 18 edges, up to relabeling the weights of the edges are at least (4,4,4,4,2) or
(4,4,4,3,3).

Let D be a triangle face of G, and let Ey, Es, E3 be the edges of D. We will also
use D to denote the corresponding triangle face in G. If |E;| = 4 then by Lemma
2.4 E; contains a Scharlemann bigon, which must be at one end of the family of
parallel edges in E;. We say that the Scharlemann bigon in FE; is adjacent to D if
one of its edges is on the boundary of D.
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Figure 5.2

Sublemma If |Ey| = |Ez| = 4, then (i) |Es| = 2, and (i) exactly one of E1 and
Es has its Scharlemann bigon adjacent to D.

PrROOF. Let V7 be the fat vertex incident to both F; and F5. Without loss
of generality we may assume that the labels on 9V; are as shown in Figure 5.2(a),
where F is the upper right family of edges. Note that the positions of the Scharle-
mann bigons in 7, Fy determine the labels on 9V, and 0Vs.

If both E7 and E5 have their Scharlemann bigons adjacent to D, then the labels
are as shown in Figure 5.2(a), in which case we have three Scharlemann bigons
with disjoint label pairs, contradicting Lemma 2.3(4). If both Scharlemann bigons
of E1, F5 are non-adjacent to D, then the labels are as shown in Figure 5.2(b), in
which case the edges adjacent to those of D form an extended Scharlemann cycle,
which contradicts Lemma 2.2(6). This proves (ii).

We may now assume without loss of generality that the Scharlemann bigon of
E; is adjacent to D while that of Es is not adjacent to D. See Figure 5.2(c). In
this case the label pair of the Scharlemann bigon in E is {3,4}. If |E5| > 3 then
Es5 contains a Scharlemann bigon with label pair {6,1}. This contradicts Lemma
2.3(2), completing the proof of the sublemma. O

If the weights of the E; are at least (4,4, 4, 3, 3), or if the weights are (4, 4,4, 4, 2)
and the horizontal edge in Figure 5.1(a) has weight 4, then the boundary edges
of one of the triangles in Figure 5.1(a) have weights (4,4,3) or (4,4,4), which
contradicts the sublemma. Therefore the edges of G are exactly as shown in Figure
5.1(b). As in the proof of the sublemma, we may assume that the labels at the three
vertices in the upper triangle of G are as shown in Figure 5.1(b). The Scharlemann
bigons in the upper triangle have label pairs {3,4} and {1,2}, hence by Lemma
2.3(4) G cannot have a Scharlemann bigon on label pair {5, 6}. Therefore the labels
of the endpoints of the lower-right edges must be as shown in Figure 5.1(b). This
determines the labels at the lower vertex. But then neither Scharlemann bigon in
the lower triangle is adjacent to the triangle, contradicting the sublemma. (Il

PROPOSITION 5.11. The case that both ni,ne > 4 is impossible.

PRroOOF. This follows from the contradiction between Lemma 5.9 and Lemma
5.10. 0



34 CAMERON McA. GORDON AND YING-QING WU

6. Kleinian graphs

In Sections 6 — 11 we will improve Proposition 5.11 to show that n; < 2 for
i = 1 or 2. For the most part we will assume that n, = 4. In this section we
prove some useful lemmas. In particular, Lemmas 6.2 — 6.5 study kleinian graphs.
Lemma 6.2 gives basic properties of kleinian graphs, which will also be used later
in studying the case n, = 2.

DEFINITION 6.1. The graph T, is said to be kleinian if E, bounds a twisted
I-bundle over the Klein bottle N(K) such that each component of N(K)NV, is a
D? x I, and each component of N(K) N Fy is a bigon.

By Lemma 2.12, if M(r,) contains a Klein bottle K intersecting K, at n,/2
points then 9N (K) is an essential torus intersecting K, at n, points, hence in this
case we may assume that F, = 9N (K), where N (K is a small regular neighborhood
of K; in particular, T', is kleinian. In this case N(K) is called the black region, and
all faces of I'y, lying in this region are called black faces, and the others white faces.
We assume that the vertices of I', have been labeled so that uo;—1 U usg; lie on the
same component of V;, N N(K). The following lemma lists the main properties of
kleinian graphs.

LEMMA 6.2. Suppose T, is kleinian. Then

(1) each black face of Ty is a bigon;

(2) each family of parallel edges in Ty contains an even number of edges;

(8) Ty has no white Scharlemann disk, hence any Scharlemann cycle of T'y has
label pair {k,k + 1} with k odd;

(4) there is a free involution of Fa, which preserves Ty, sending uo;—1 to us;
and preserving the labels of edge endpoints.

PRrROOF. (1) follows from the definition. (2) follows from (1) because if there is
a family containing an odd number of edges then one side of that family would be
adjacent to a black face, which is not a bigon.

(3) Each edge of a white face is adjacent to a black bigon, so if there is a
white Scharlemann disk then the edges of the Scharlemann cycle and the adjacent
edges would form an extended Scharlemann cycle, which would be a contradiction
to Lemma 2.2(6).

(4) We may assume that the Dehn filling solid torus V, and the surface Fj
intersect N(K) in I-fibers. Thus the involution of F, obtained by mapping each
point to the other end of the I-fiber gives rise to the required involution of I',. [

LEMMA 6.3. Suppose n, = 4. Then Iy is kleinian if each vertex of T'y is a label
of a Scharlemann bigon in T'y.

ProoFr. Without loss of generality we may assume that I', has a (12) Scharle-
mann bigon. By assumption there is a Scharlemann bigon with 3 as a label. If
there is no (34) Scharlemann bigon then this Scharlemann bigon must have label
pair (23). Similarly the Scharlemann bigon with 4 as a label must have label pair
(14). We may therefore relabel the vertices of I', so that the label pairs of the
above Scharlemann bigons are (12) and (34) respectively.

Shrinking the Dehn filling solid torus to its core, the Scharlemann bigons be-
come Mobius bands Bis and Bss in M(r,). The union of these Mobius bands,

together with an annulus on f?'a, becomes a Klein bottle which can be perturbed to
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intersect the core of the Dehn filling solid torus at 2 = n,/2 points. By the con-
vention after Definition 6.1, Fa should have been chosen so that I'; is kleinian. [

LEMMA 6.4. Suppose n, = 4. Then Iy is kleinian if one of the following holds.

(1) Ty has a family of 4 parallel positive edges.

(2) Ty is positive.

(3) f‘;‘ has a full vertex v; of valence at most 7.

(4) f‘;‘ contains 4 adjacent families of positive edges with a total of at least 12
edges.

PrOOF. (1) Each label appears exactly twice among the edge endpoints of
a family of four parallel positive edges, hence by Lemma 2.4 it is a label of a
Scharlemann bigon.

(2) If T'y, is positive then every vertex u; of T, is incident to at least 4n;, negative
edges, two of which must be parallel in I', because by Lemma 2.5 I’y contains at
most 3n, edges. Hence by Lemma 2.4 these two edges form a Scharlemann bigon
with ¢ as a label. Since this is true for all 4, I'; is kleinian by Lemma 6.3.

(3) Consider the subgraph G of I, consisting of negative edges. Then the signs
of the vertices around the boundary of a face of GG alternate, hence each face has an
even number of edges. Using an Euler characteristic argument one can show that
G contains at most 2n, = 8 edges. By (2) we may assume Iy, is not positive, so by
Lemma 2.3(1) no 3 j-edges are parallel on I'y, hence A = 4 and G has exactly 8
negative edges, each containing exactly 2 j-edges, with one j label at each ending
vertex. Since each vertex u; has 4 j-labels, we see that u; is incident to exactly 8
j-edges, two of which must be parallel in I'y because val(vj,fzr) < 7. By Lemma
2.4 they form a Scharlemann bigon with i as one of its labels.

(4) By (1) we may assume that each family contains exactly 3 edges, so the
labels at the endpoints of the middle edge in each family are the labels of a Scharle-
mann bigon. It is easy to see that the 4 endpoints of the middle edges at the vertex
are mutually distinct, hence include all labels. O

Figure 6.1

LEMMA 6.5. Suppose n, =4. Let ey Uea UezUey and €} Ueb Ueh Ue) be two
families of parallel positive edges in I'y as shown in Figure 6.1. Then e; is parallel
to e, on Ty for alli.
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PROOF. Since e; U ey and e3 U eq form two disjoint essential cycles on Fa by
Lemma 2.2(5), any (12)-edge must be parallel to e; or ez and any (34)-edge parallel
to e or e4 on T',. Note also that if e; is parallel to e, on T, then es must be parallel
to €] (instead of €}) on T', as otherwise e;,es would be parallel on both graphs.
Therefore if the result is not true then either e; is parallel to e/, or ey is parallel to
e4, so there is a subset e} U...Ue], of the second family containing less than 4 edges,
such that e]. U e; and e/, U ey are parallel pairs on T',. This contradicts Lemma
2.19 [

LEMMA 6.6. Suppose ng, =4 and 'y is non-positive.

(1) No vertex v; of I'y can have two families of 4 positive edges with the same
label sequence on Ovj. In particular, v; cannot have two adjacent families of 4
positive edges.

(2) If T, is kleinian, then two adjacent families of positive edges of Ty contain
at most 6 edges, three contain at most 10, and four contain at most 12.

(3) A full vertex of f;r has valence at least 6.

PROOF. (1) If there are two families of 4 positive edges with the same label
sequence on Jv; then by Lemma 6.5 the two starting edges e1, €] of these families
will be parallel in I',. If e, e} have label ¢ at v; then on I', they have the same
label j at u;, so there are ny + 1 parallel negative edges at u;, and hence by Lemma
2.3(1) Ty, would be positive, a contradiction.

(2) By Lemma 6.2(2) the number of edges in each family of positive edges is
either 2 or 4, so by (1) two adjacent families contain a total of at most 6 edges.
The other two cases follow from this.

(3) Otherwise by Lemma 6.4(3) T, is kleinian, so the weight of each positive
family of T’y is either 2 or 4. If some full vertex v; has valence 5 or less in f‘;r then
it has two adjacent edge of weight 4, contradicting (1). 0

A bigon is called a non-Scharlemann bigon if it is not a Scharlemann bigon.

LEMMA 6.7. Suppose ng =4 and Ty is kleinian.

(1) Ezactly one edge on the boundary of a triangle face of f‘;r represents a non-
Scharlemann bigon. Each of the other two represents either a Scharlemann bigon
or a union of two Scharlemann bigons.

(2) If some vertex v; is incident to two edges of weight 4 in f‘;r then any other
edge of fb+ incident to v; represents a non-Scharlemann bigon.

PROOF. (1) Let é1,é2,é3 be the edges of a triangle face ¢ of f‘; By Lemma
6.2(2) each edge of f‘; represents 2 or 4 edges. From the labeling of the edges
around 0 one can see that there are exactly one or three é; which are neither a
Scharlemann bigon nor a union of two Scharlemann bigons. If there are three then
they form an extended Scharlemann cycle, which is impossible by Lemma 2.2(6).
Hence there must be exactly one such é;.

(2) Otherwise v; would be incident to 5 Scharlemann bigons, three of which
have the same label pair, say {1,2}. Then on I', there are six i-edges connecting
u1 to ug, which form at most two families because there is a Scharlemann cocycle
containing wus,us. It follows there there are three i labels at the endpoints of a
family, so it contains more than n; edges, contradicting Lemma 2.3(1). O

Suppose A = 4. Then a label j is a jumping label at w; if the signs of the four
j-edges incident to u; alternate.
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LEMMA 6.8. Suppose A =4. Then a label i is a jumping label at v; if and only
if j is a jumping label at u;. In particular, if v; is a boundary vertex of 1"2‘ then j
is not a jumping label at any u;.

PRrROOF. This follows from the Jumping Lemma 2.18. Let z1, ..., x4 be the four
points of u; Nv;. Since A = 4, the jumping number must be +1. Therefore they
appear in this order on both du; and Ov;, appropriately oriented. If j is a jumping
label at u; then we may assume z1,x3 are positive edge endpoints and x9, x4 are
negative edge endpoints on du;, which by the parity rule implies that x1,z3 are
negative edge endpoints and x4, x4 are positive edge endpoints on Jv;, hence i is a
jumping label at v;. ([l

LEMMA 6.9. Suppose ng, = 4, ny > 4, and Ty is non-positive. Then F, is
separating. In particular, uy is parallel to us and antiparallel to us and uy.

PROOF. The result follows from Lemmas 2.8 and 2.2(4) if some vertex u; is
incident to more than n; negative edges. In particular, since each farnily of positive
edges contains no more than n edges the result is true if val(u;, I ) < 2 for some
i. Hence we may assume that val(u;, 1"+) > 2 for all ¢. In particular, no component
of 1"+ is an isolated vertex. Since n, = 4 and I, is non—posmve each component
G of I‘j{ must have exactly two vertices, hence val(u;, I'}) > 2 implies that G’ must
be as shown in Figure 4.2(9) or (10). In either case I/ has a boundary vertex u;
of valence at most 4, so if n, > 4 then by Lemma 2.7(2) the 4 families of positive
edges contain at most 2(np + 2) < 3n, edges, hence u; is incident to more than ny,
negative edges and the result follows. Similarly if n, = 4 and some component of
I'f is of type (9) in Figure 4.2 then by Lemmas 6.4 and 6.6(2) the three positive
families at a boundary vertex u; of valence 3 in f‘j{ contain less then 12 edges, hence
u; is incident to more than n; negative edges and we are done. Therefore we may
assume that n, = 4, each component of fj is of type (10) in Figure 4.2, and each
u; is incident to at least 12 positive edges.

In this last case by Lemma 6.4(4) T'y is kleinian, so by Lemma 6.2(2) each
family of positive edges of I', contains either 2 or 4 edges. Since there is a total of
at least 12 positive edges incident to u; and by Lemma 6.6(2) two adjacent families
contain at most 6 edges, the weights of the four edges of f‘;‘ incident to u; must be
(4,2,4,2) successively. However since the first and the last belong to a loop in f;,
their weights must be the same, which is a contradiction. O

7. If n, =4, np > 4 and f‘j has a small component then T', is kleinian.

A component of fj is small if it has at most two edges; otherwise it is large. In
this section we will show that if n, = 4, ny > 4 and f‘jl‘ has a small component then
T, is kleinian. It is easy to see that the assumption implies that either val(uq, f‘j) <
1, or wal(u1,I}) = val(us, T'F) = 2 up to relabeling. (See the proof of Proposition
7.6.) The two cases are handled in Lemmas 7.3 and 7.5, respectively.

LEMMA 7.1. Suppose 'y contains a loop edge at us. Then I'y cannot contain
both (12)- and (14)-Scharlemann bigons.

PROOF. The loop e at us must be essential, otherwise it would bound some disk
containing some vertex and hence one of the Scharlemann cocycles in its interior,
which contradicts Lemma 2.2(5). Now the (12)- and (14)-Scharlemann bigons in
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T’y form two essential cycles in I', disjoint from e, so they must be isotopic on
F,, bounding a disk face containing no vertices of I', in its interior. This is a
contradiction to Lemma 2.13. ]

LEMMA 7.2. Suppose ng, = 4 and np > 4. If val(ul,fj) <1 and f‘;‘ has a
boundary vertex v; of valence at most 3, then Iy is kleinian.

PROOF. The assumption val(u1, f‘j{) < 1 implies that I, is non-positive, so by
Lemma 6.9 u; is parallel to ug and antiparallel to us,uy. Since uq is incident to
at most 1 family of positive edges, it is incident to at least three negative j-edges
at w1, so v; has at least three positive edge endpoints labeled 1. Hence v; being a
boundary vertex implies that it has at least 9 positive edges. If v; is incident to 10
or more positive edges of I'y then it has a family of 4 parallel positive edges and
hence T'y, is kleinian. Therefore we may assume that it has exactly 9 positive edges,
divided into three families of parallel edges, each family containing exactly three
edges. See Figure 7.1.

Figure 7.1

Since n, = 4, each of these families contains a Scharlemann bigon, so the labels
of the middle edge in the family are labels of a Scharlemann bigon. It follows that
1,2, 4 are labels of Scharlemann bigons. Thus if the result is not true then 3 is not
a label of Scharlemann bigon, and T, contains both (12)- and (14)-Scharlemann
bigons.

There are 7 adjacent negative edges at v;, so three of them have labels 1 or 3
at v;. These cannot all be parallel in I', as otherwise there would be three j-edges
in a family and hence the family would contain more than n; edges, contradicting
Lemma 2.3(1) and the fact that T'y, is not positive. On f‘j{ this implies that there are
at least two edges with endpoints on {u1,us}, hence val(uq, f‘j{) < 1 implies that
there is a loop é based at ugz. Since I'y contains both (12)- and (14)-Scharlemann
bigons, this is a contradiction to Lemma 7.1. 0

LEMMA 7.3. Suppose ng = 4 and ny > 4. If val(ui,fj) <1 for some i then
T, is kleinian.

PRrROOF. If Ty, is positive then T', is kleinian by Lemma 6.4(2). Therefore we
may assume that ', is non-positive. By Lemmas 2.3(3) and 2.3(1) each family
of parallel edges in ', contains at most n;, edges. Also, notice that since wu; is
incident to more than n;, negative edges, by Lemmas 2.8 and 2.2(4) the surface F,
is separating, hence u; is parallel to u; if and only if 7 and j have the same parity.

Without loss of generality we may assume that val(uy, ') < 1. Assume T, is
not kleinian. Then by Lemma 7.2 f‘gf has no boundary vertex of valence at most



7. THE CASE n, =4, n, > 4 AND I'7 HAS A SMALL COMPONENT 39

3, and by Lemma 6.4(3) it has no interior vertex of valence at most 7. Also, each
vertex v; of f‘gr has valence at least 3 because it is incident to at least three positive
edges with label 1 at v;, which by Lemma 2.3(3) must be mutually non-parallel.
Therefore by Lemma 2.11 all vertices of f‘gr are boundary vertices of valence 4.

If np > 4 then by Lemma 2.3(3) the family of positive edges at u; contains at
most np/2 + 2 < ny, edges, so some v; is incident to 4 positive edges with label 1 at
v;, which implies that v; has at least 13 positive edges in four families, so one of
the families contains 4 edges and hence T',, is kleinian by Lemma 6.4(1). Similarly
if A > 4 then I', is kleinian.

)
I PN
-

A

(a) (b)

Figure 7.2

Now suppose A = n, = 4. Then val(vj,f‘gr) = 4 for all j implies that each
component of f‘gr has two loops and two non-loop edges, as shown in Figure 7.2(a).
By the parity rule a loop based at v; has labels of different parity on its two
endpoints, hence one sees that the number of positive edge endpoints of I', at each
v; is even. By Lemma 6.4(4) we may assume that v; has less than 12 positive edge
endpoints, hence the above implies that each v; is incident to exactly 10 positive
edge endpoints. If some v; is incident to only one loop in I'y then each of the
non-loop family incident to v; contains 4 edges and we are done. If some v; is
incident to two parallel loops in I'y, then they form a Scharlemann bigon with label
pair {1,2}, say. Each of the two non-loop families contains three edges, hence the
middle edge endpoint is a label of a Scharlemann bigon. Examining the labeling
we see that all labels are Scharlemann bigon labels.

We now assume that each v; is incident to three parallel loop edges. See Figure
7.2(b). The two outermost loops form a Scharlemann bigon with 1 as one of its
labels. There are 6 adjacent negative edges at vy, so three of then have labels 1 or
3 at v;. By the same argument as in the last paragraph of the proof of Lemma 7.2
we may assume that the two Scharlemann bigons at v; and vs have the same label
pair (12). The labeling of edge endpoints around v; and vs in a component of Fgr
is now as shown in Figure 7.2(b).

Because of the parity rule, the 4 non-loop edges cannot be divided into a family
of 1 and another family of 3 edges, so they must form two pairs of parallel edges.
From the labeling in Figure 7.2(b) one can see that they form two Scharlemann
bigons with label pairs {2,3} and {4, 1}, respectively. The result now follows from
Lemma 6.3. O
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We now assume that val(ui, I') = val(us, ) = 2. Then I'}" contains either
a cycle C' containing both w1, us, or it has two cycle components C,C’ containing
u1, U3, respectively.

LEMMA 7.4. If val(u;,I'}) = 2 then i is a label of a Scharlemann bigon in Ty.

PROOF. Let k be the number of interior vertices in f;’ Let m be the number
of edges in f‘gr We claim that m < 2n, + k. Formally adding edges to f‘gr if
necessary we may assume that any face A between two adjacent components of f‘gr
is an annulus. The assumption val(u;, f‘j{) = 2 implies that no component of f;r is
an isolated vertex. It is easy to see that if A contains p vertices then we can add
p edges to make each face on A a triangle. Therefore we can add at least n, — k
edges to f‘gr to create a graph G on the torus F}, whose faces are all triangles. By an
Euler characteristic argument we see that G has 3n; edges, hence f‘gr has at most
3ny — (np — k) = 2np + k edges, and the claim follows.

Now let m’ be the number of negative edges of T', incident to u;. Note that if
m < m’ then two negative edges at u; are parallel in 'y, and we are done. By Lemma
2.3(3) each positive family é in T, contains at most (n/2) + 2 edges. Moreover,
if £ > 0 then some label does not appear on endpoints of edges in é, so é has at
most np/2 edges. Since u; is incident to two families of positive edges, we have
m' > Any—2(np/2) > 3ny if k> 0, and m’ > Any —2(np/24+2) > 3npy—4 if k= 0.
Since m < 2np + k, we have m < m’ (and hence 7 is a label of a Scharlemann bigon
inTp), unless k=0, A=np =4 and m =m’ =8.

In this last case (k = 0, A =ny, = 4 and m = m’ = 8), all vertices of [} are
boundary vertices, hence by Lemma 6.8 there is no jumping label at u;. On the
other hand, since m’ = 8, each positive family at u; has 4 edges, so the two positive
families cannot be adjacent by Lemma 6.6(2); hence there is a label j such that the
two negative edges labeled j at u; are separated by the two positive edges labeled
7 at u;, so j is a jumping label at u;, which is a contradiction. O

LEMMA 7.5. If val(uy, I'}) = val(us,I}) = 2 then Ty is kleinian.

PRrROOF. By Lemma 7.4 uq, ug are labels of Scharlemann bigons. If some vertex,
say ug4, is not a label of Scharlemann bigon then there must be (12)- and (23)-
Scharlemann bigons in I',. By Lemma 7.4 we have val(ua, f‘;‘) > 2, so there is a
loop edge e of T'Y based at uy. This is a contradiction to Lemma 7.1 (with labels

permuted). O

PROPOSITION 7.6. If f‘j has a small component then (1) Ty is kleinian, and
(2) T'F has at most 4 edges.

PROOF. Let G be a small component of f‘j If G contains only one vertex u;
and two edges then it cuts the torus into a disk containing the other three vertices.
It is easy to see that in this case there is a vertex of valence at most 2 in f‘j{, which
by Lemma 2.3(3) is incident to at most 2n;, edges, hence at least 2n; negative
edges. By Lemma 2.8 T', has a Scharlemann cycle, so the surface F, is separating.
Therefore ug is parallel to u; and is antiparallel to us and uy. It follows that ugz is
incident to no positive edges, so by Lemma 7.3 T’ is kleinian. If G is not as above
then either it contains a vertex of valence at most 1, or it is a cycle, in which case
(1) follows from Lemmas 7.3 and 7.5.
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Since T',, is kleinian, by Lemma 6.2(4) there is a free involution of T', sending u;
t0 u;41, hence the number of edges ending at {uq, u4} is the same as the number of
edges ending at {u1,u3}, which is at most two in all cases discussed above. Hence
(2) follows. O

8. If n, =4, np > 4 and I'}, is non-positive then f‘j{ has no small
component

Denote by X the union of f‘; and all its disk faces.

LEMMA 8.1. Suppose n, = 4, ny > 4, I'y is non-positive, and f‘jl‘ has a small
component. Then

(1) each vertex of Ty is incident to at most 8 negative edges;

(2) if v is incident to more than 4 negative edges then j is a label of a Scharle-
mann bigon;

(3) if vj is a boundary vertex of valence 8 in f‘;r then it is incident to either 6
or 8 negative edges, and j is a label of a Scharlemann bigon;

(4) val(v;, f‘;r) > 3 if v; is a boundary vertex, and > 2 otherwise;

(5) each component of X is either (a) a cyclic union of disks and (possibly)
arcs, or (b) a cycle, or (¢) an annulus.

PROOF. Since fj has a small component, by Proposition 7.6 I, is kleinian,
and '} has at most 4 edges.

(1) If v, is incident to 9 negative edges then three of them are parallel on I',
because f‘jl‘ has at most four edges, which contradicts Lemma 2.3(3).

(2) If v; is incident to 5 negative edges then two of them form a Scharlemann
bigon in I', because f‘j{ has only four edges by Proposition 7.6.

(3) Since I'y, is kleinian, by Lemma 6.2(2) v; is incident to an even number of
negative edges. Each family of positive edges contains at most four edges, and by
Lemma 6.6 two adjacent families contain at most 6 edges, hence the three positive
families at v; contain at most 10 edges. The result now follows from (1) and (2).

(4) By (1) v, is incident to at least 8 positive edges, which are divided into at
least two families, and if two then they cannot be adjacent by Lemma 6.6(1).

(5) If a component of X is contained in a disk then by Lemma 2.9 it would
have either a boundary vertex of valence at most 2, which is impossible by (4), or
six boundary vertices of valence 3, which is a contradiction because by (3) each
such vertex is a label of Scharlemann bigon while by Lemma 2.3(4) f‘gr has at most
two labels of Scharlemann bigons for each sign. Therefore no component of X is
contained in a disk on the torus Fy. Since I, is not positive, this implies that each
component of X is contained in an annulus but not a disk on Ey.

If there is a sub-disk D of X such that DNX — D is a single point v then either
f‘; N D contains a boundary vertex of valence 2 other than v, or 3 boundary vertices
of valence 3 other than v, which again leads to a contradiction as above. ]

Let X; be a component of X, and let v; be a boundary vertex on the left
cycle C; of X7, as defined in Section 4. Then there is another component X5 of
X such that the annulus A between C; and the right cycle C/ of X3 has interior
disjoint from f‘gf Denote by m; the number of negative edges incident to v;, and
by m’ = m/} the number of negative edges on A which are not incident to v;.
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LEMMA 8.2. Suppose ng, = 4, ny > 4, I'y is non-positive, and f‘j{ has a small
component. Let vi be a boundary vertex of X1 with my > 4. Then

(1) vy is a label of a Scharlemann bigon;

(2) m' =0 if my =8;

(8) m' < 2;

(4) Ci contains no other boundary vertices of valence at most 4.

PROOF. (1) Since I'f has only four edges, two of the negative edges at v; form
a Scharlemann bigon on I',.

(2) If my = 8 then since f‘jl‘ has only 4 edges, the 8 negative edges at vy form
4 Scharlemann cocycles, which must all go to the same vertex vo on C). because vy
is a boundary vertex and the cocycles are essential loops. These cocycles separate
C; from C/, hence all negative edges in A incident to a vertex of C; — v; must have
the other endpoint on v2. On the other hand, by Lemma 8.1(1) vq is incident to at
most 8 negative edges, and by the above all of them must connect vo to v;. Hence
m' = 0.

(3) By Proposition 7.6 T', is kleinian, so by Lemma 6.2(2) m is even; hence by
(2) we may assume that m; = 6. Since I’} has only 4 edges, the 6 negative edges
incident to v; contain at least 2 Scharlemann cocycles, which connect v; to some
vg on CJ. If vs is incident to 8 negative edges in A then as in (2) these edges form
4 Scharlemann cocycles, which must all connect to the same vertex v; and hence
m’ = 0. By Lemma 6.2(2) each family of parallel edges in I';, has an even number
of edges, so v2 cannot be incident to 7 negative edges in A. If vy is incident to 6 or
less negative edges in A then by the above 4 of them connect to v1, so there are at
most 2 connecting to C; — vy, hence m' < 2.

(4) A boundary vertex on C; — vy of valence at most 4 in f‘; is incident to at
most 12 positive edges by Lemma 6.6(2), and hence at least 4 negative edges, which
must lie in A because it is a boundary vertex on C;. This contradicts (3). O

LEMMA 8.3. Suppose ng, = 4, ny > 4, I'y is non-positive, and f‘j{ has a small
component. If a component X1 of X contains a boundary vertex vi of valence 3,
then X1 is an annulus containing exactly two vertices, both of which are of valence
3 and are labels of Scharlemann bigons.

PRrROOF. By Lemma 6.6(2) vy is incident to at least 6 negative edges. Consider
the three possible types of X in Lemma 8.1(5). It cannot be a cycle because it has
a boundary vertex vy. If X7 is an annulus or a cyclic union of disks and arcs then
by Lemma 8.2(4), C; —v; has no boundary vertex of valence at most 4 in f‘gr, which
implies that there is a boundary vertex vs of valence 3 on the right circle C. of X7,
hence for the same reason C). —v3 contains no boundary vertex of valence at most 4.
By Lemma 8.2(3) there are at most 4 negative edges incident to C; U C,. — {v1,v3},
so there is no (non-boundary) vertex of valence 2 on X;. Thus either

(i) X1 is an annulus containing only the two vertices v and wvs; or

(ii) X7 is an annulus containing exactly four vertices and the other two are
boundary vertices of valence 5; or

(iii) X5 is as in Figure 8.1 (a) or (b).

Case (i) gives the conclusion of the lemma because, as in the proof of Lemma
8.2, a boundary vertex of valence 3 must be a label of a Scharlemann bigon. We
need to show that (ii) and (iii) are impossible.
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(a) (b)
Figure 8.1

In case (ii), let vs,v7 be the boundary vertices of valence 5 on X5, with vs C
C;. Note that all faces of X; are triangles. If v; had 8 negative edges then by
Lemma 8.2(2) vs would have no negative edge, which is impossible by Lemma 6.4(3).
Therefore v has exactly 6 negative edges and 10 positive edges, so by Lemma 6.6(1)
the weights of the edges of X incident to v; must be (4, 2,4). Similarly for v3. Now
the middle edge of X; at vs has weight 2 and the two boundary edges have weight 4,
so again by Lemma 6.6(1) the weights around vs must be (4,2,2,2,4). By Lemma
6.7(2) the edges of weight 2 must be non-Scharlemann. This is a contradiction
because a triangle with a corner at vs bounded by two weight 2 edges has two
non-Scharlemann bigons on its boundary while by Lemma 6.7(1) it has only one.

In case (iii), we assume X; is as in Figure 8.1(a). The other case is similar.
Let v1,v3 be the vertices of valence 3 in the figure, and let vs be the other vertex.
If m; = 8 then by Lemma 8.2(2) vs is incident to no negative edges on the side
of Cj, and at most 2 negative edges on the side of C, by Lemmas 8.1(3) and
8.2(3) applied to vs. Therefore the four positive edges of f‘gf at v are adjacent to
each other, representing a total of at least 14 edges. It follows that there are two
adjacent families of positive edges, each containing 4 edges, which is a contradiction
to Lemma 6.6(1). If my = mg = 6 then each of v; and v is incident to 10 positive
edges, so by Lemma 6.6(1) the weights of the edges of f;’ at v; and vs are (4,2,4), in
which case vs again has two adjacent families of 4 positive edges each, contradicting
Lemma 6.6(1). O

LEMMA 8.4. Suppose ng, = 4, ny > 4, I'y is non-positive, and f‘j{ has a small
component. If a component X1 of X does not contain a boundary vertex of valence
3, then

(1) Xy is either a cycle or an annulus containing exactly two vertices; and

(2) all vertices of X1 are labels of Scharlemann bigons.

PRrROOF. By Lemma 6.6(3) all interior vertices of X have valence at least 6.
Since X; has no boundary vertex of valence 3, by Lemma 2.11 it is either a cycle,
or an annulus with all interior vertices of valence 6, all boundary vertices of valence
4, and all faces triangles. The result is true when X is a cycle because any vertex of
valence 2 has more than 4 negative edges and hence is a label of Scharlemann cycle.
Therefore we assume that X7 is an annulus. If X; has an interior vertex vy then
by Lemma 6.6(2) the weights of the edges of X7 around v; must be (4,2,4,2,2,2)
and any edge of weight 2 represents a non-Scharlemann bigon. Thus the triangle
with a corner at v; bounded by two weight 2 edges has the property that it has at
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least two edges representing non-Scharlemann bigons, which is a contradiction to
Lemma 6.7(1). Therefore X; has no interior vertex.

First assume that some vertex v; on the left cycle C; of X7 is incident to less
than 12 positive edges, and hence more than 4 negative edges. Since all vertices of
X are of valence 4 in f‘fj, by Lemma 8.2(3) C; has no other vertices. In this case
C, also contains only a single vertex vs. By Lemma 6.6(2) vz cannot have more
than 12 positive edges, and if 12 then the weights around it are (4,2, 4, 2). However
this cannot happen because the first and the last numbers are the weights of the
loop edge at v3 and hence must be the same. Therefore v3 has less than 12 positive
edges. Now by Lemma 8.1(2) vs and vy are labels of Scharlemann bigons, and the
result follows.

Now assume that each vertex of X; is incident to 12 positive edges. This
implies that the weights of the edges of X around each vertex are either (4, 2,4, 2)
or (2,4,2,4), so any pair of adjacent edges have different weights. However, this
is impossible because two of the three edges of a triangle face must have the same
weight. ]

LEMMA 8.5. Suppose ng, = 4, ny > 4, T'y is non-positive, and f‘;‘ has a small
component. Then

(1) ny = 4.

(2) val(u;, TF) > 2 for all i.

(8) Each component of f‘jl‘ 1s a loop.

PROOF. (1) By Lemmas 8.3 and 8.4 each vertex of T', is a label of a Scharlemann
bigon, and by Lemma 2.3(4) there are at most 4 such labels. Hence n; = 4.

(2) Suppose u; is incident to at most one edge of f‘j{ By Lemmas 8.3 and 8.4
each component G of f‘gr consists of either (i) a cycle, or (ii) two loops and one
non-loop edge, or (iii) two loops and two non-loop edges. Since there are at least
3 negative j-labels at uq, there are at least 3 positive 1-labels at each v;, hence (i)
cannot happen. Moreover, since each v; is a boundary vertex containing at least
three positive 1-labels, it has more than 8 positive edges.

Suppose G is of type (ii). Then the label 1 appears three times on positive
edge endpoints around each of the two vertices of GG, hence it appears a total of 6
times among the three families of positive edges in G, so by Lemmas 2.4 and 6.2(3)
there is a (12)-Scharlemann bigon among each of these families. Since a loop and
a non-loop edge cannot be parallel in I', (Lemma 2.3(5)), these represents at least
four edges of fa connecting u; to ug, which cut the torus Fa into two disks. On the
other hand, by the parity rule a loop at a vertex v of G must have labels of different
parity on its two endpoints, so the total number of positive edges at v is at least
10, divided into three families, hence one of the families has four parallel edges,
which contains a (34)-Scharlemann bigon, giving a pair of edges on T, lying in the
interior of the disks above which must therefore be parallel. This is a contradiction
to the fact that a Scharlemann cocycle is essential (Lemma 2.2(5)).

Now suppose G is of type (iii). If some v; is incident to 12 positive edges then
by Lemma 6.6(1) the weights of the positive edges around v; are (4, 2,4, 2), which
is impossible because the first and the last weights are for a loop and hence must
be the same. Since v; is incident to more than 8 positive edges, it is incident to
exactly 10 positive edges, so the weights are (2,4,2,2) or (2,2,4,2) around each
vertex. The two loops must be (12)-Scharlemann bigons in order for each vertex
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to have 3 edge endpoints labeled 1. This completely determines the labeling of the
edge endpoints up to symmetry. Examining the labeling one can see that the family
of 4 parallel edges form an extended Scharlemann cycle, which is a contradiction
to Lemma 2.2(6).

(3) By Proposition 7.6 T, is kleinian, hence the torus F, is separating, so each
edge of f‘j{ has endpoints on vertices whose subscripts have the same parity. By (2)
a small component of f‘j{ must be a loop C. Let u; be a vertex of C. If C' does not
contain ug then the component of f‘jl‘ containing w3 must also be a loop because it
contains no other vertices, and it cannot contain more than one edge as otherwise
some component of I'} would lie in a disk and hence would have a vertex of valence
at most 1, contradicting (2). Thus the graph G consisting of u1,us and all edges
with endpoints on them is either one loop or two disjoint loops. By Lemma 6.2(4)
there is a involution of f‘j mapping w1 and us to us and u4 respectively, hence it
maps G to f‘;‘ — G. Therefore the components in f‘j — @ are also loops. O

PROPOSITION 8.6. Suppose ng = 4, ny > 4, and T'y is non-positive. Then f‘j{
has no small component.

PROOF. Suppose to the contrary that f‘jl‘ has a small component. By Lemma
8.5 we have n, = 4 and each component of f‘;‘ is a loop. Thus each w; is incident
to at most 8 positive edges, so I', has no more positive edges than negative edges.

By Lemmas 8.3 and 8.4, each component X; of X is either a circle or an
annulus containing two vertices of f‘;r First assume that X, is a circle, so it is a
small component of f‘;r Applying Proposition 7.6 and Lemma 8.5 with I', and I'y,
reversed, we see that I'y, is kleinian, and all components of f‘;r are also circles, hence
T', also has the property that it has no more positive edges than negative edges.
Applying the parity rule we see that both graphs have the same number of positive
edges and negative edges. In particular, each family of positive edges contains
exactly 4 edges, which by Lemma 6.2(3) must consist of a (12)-Scharlemann bigon
and a (34)-Scharlemann bigon. Dually it implies that all negative edges connect 11
to us or ug to ug, so there are 4 families of negative edges, each containing exactly
4 edges. Now the two positive families at u; contain 4 edges each, and, whether
separated by the two negative families or not, their endpoints at u; have the same
label sequence. This contradicts Lemma 6.6(1).

We may now assume that X consists of two annular components X1, Xo, each
containing two vertices. Assume v1,v3 € X3. As in the last paragraph of the proof
of Lemma 8.5(2), in this case each vertex of I'; is incident to 8 or 10 positive edges,
therefore by Lemma 8.1(2) each vertex is a label of Scharlemann bigon, hence T,
is also kleinian.

If val(vl,l";) = 10 then v; is incident to at least 6 negative edges, which are
divided into two families of parallel edges on the annulus bounded by the loops at
v1 and vo. Since I'y is kleinian, each family contains an even number of edges, hence
the number of edges in these two families are 4 and 2, respectively. Examining the
labels at the endpoints of these edges, we see that two edges with the same label
i at v1 have different labels at vo. On I', this means that there are both loop and
non-loop positive edges incident to u;, which is a contradiction to the fact that f‘;‘
consists of cycles only.

We have shown that val(vj,I'j) = 8 for all j. Thus there are 16 positive edges
on 'y, so each of the two positive families incident to u; contains 4 edges. Since all
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vertices of I'y, are boundary vertices, there is no jumping label on any vertex of I'y,
hence by Lemma 6.8 there is no jumping label at u1, so the two families of positive
edges must be adjacent. This is a contradiction to Lemma 6.6(2). (]

9. If Iy is non-positive and n, = 4 then n, <4

Note that if ', is positive then each vertex of I'y is a label of a Scharlemann
bigon and hence np < 4 by Lemma 2.3(4). By Proposition 8.6 the statement in
the title is true if f‘j has a small component. Therefore we may assume that f‘jl‘
consists of two large components G; and Gs, each of which must be one of the
graphs of type (3), (9) or (10) in Figure 4.2. As before, denote by X, the union of
fj and all its disk faces, and by X; the components of X, containing G;, ¢ =1, 2.
Denote n = np.

LEMMA 9.1. Suppose that T'y is non-positive, ng = 4 and n > 4. Then f\gr
contains no interior vertezx.

PROOF. Otherwise I'y, has a vertex v; which is incident to positive edges only.
By Lemma 2.3(1) no three of these edges are parallel on I, so I', contains at least
An,/2 > 8 negative edges, and hence at most 3n, —8 = 4 positive edges by Lemma
2.5, so f‘j has a small component, contradicting our assumption. O

LEMMA 9.2. Suppose that Ty is non-positive, ng = 4 and n > 4. Suppose X,
is a disjoint union of two annuli. Let G be the subgraph of I'y consisting of positive
1-edges and all vertices. Then G cannot have two triangle faces D1, Doy with an
edge in common.

PROOF. Since X, is a disjoint union of two annuli, all negative edges of I',
incident to u; must have the other endpoint on the same vertex, say us, and vice
versa. On G this means that every edge has label pair (12), and all positive edges
with an endpoint labeled 1 or 2 are in G. Thus no edge in the interior of D; has
label 1 or 2 at any of its endpoints. Up to symmetry the labels on the boundary
of the two triangles must be as shown in Figure 9.1. Since the labels 3 and 4 must
appear between two label 1 at a vertex, one of the triangles, say D;, must contain
some (34) edges. Since all the vertices are parallel, one can see that the labels 3 and
4 appear at each corner of Dy, hence there are three edges inside of D;. Since there
is no trivial loop, they must form an extended Scharlemann cycle, contradicting
Lemma 2.2(6). O

Figure 9.1
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LEMMA 9.3. Suppose that Ty is non-positive, n, = 4 and n > 4. If X, is a
disjoint union of two annuli then Iy is kleinian.

PROOF. By Lemma 6.3 it suffices to show that each vertex u; of ', is a label of
a Scharlemann bigon. Let ¢; be the number of negative edges at u;. Since there are
at most two families of negative edges incident to u;, we have ¢; < 2n by Lemma
2.3(1). On the other hand, since u; is a boundary vertex of valence at most 4 in f‘j,
by Lemma 2.7 it is incident to at most 2(n+2) = 2n+4 positive edges. If there are
2n + 4 then wu; is incident to at least four loops and the four outermost loops form
an extended Scharlemann cycle, which is impossible by Lemma 2.2(6). Also by the
parity rule the loops have labels of different parity at its two endpoints, hence the
number of positive edges at u; must be even. It follows that u; is incident to either
2n or 2n + 2 positive edges, hence t; = 2n or 2n — 2.

Assume that u; is not a label of a Scharlemann bigon. Then the negative edges
at u; are mutually non-parallel positive edges in I'y, hence IA“EL has at least 2n — 2
edges. Denote by G the subgraph of '}, consisting of positive 1-edges. Let Y be the
union of GG and its disk faces, and let k£ be the number of boundary vertices of G.

First assume t; = 2n. By Lemma 9.1 G has no interior vertex, and clearly
it has no isolated vertex, so we can apply Lemma 2.10(1) to conclude that & >
ty —n = n. Since G only has n vertices, we must have k& = n, so all vertices
of G are boundary vertices, and hence there is no cut vertex. In this case Y
contains exactly n boundary edges, so it has at least one (actually n) interior edge
e. Since equality holds for the above inequality, by Lemma 2.10(1) all faces of YV
are triangles. Therefore e is the common edge of two adjacent triangle faces, which
is a contradiction to Lemma 9.2. Therefore this case is impossible.

Now assume t; = 2n — 2. In this case the two outermost loops at u; form a
Scharlemann bigon, so by Lemma 2.2(4) Fy is separating, hence two vertices of T’
are parallel if and only if they have the same parity. Therefore we can define G
(resp. G2) to be the union of the components of G containing v; with odd (resp.
even) i. Similarly for Y7 and Y;. Then G contains all the negative edges at u;
with odd labels, and G2 those with even labels. Therefore each G; contains exactly
n — 1 edges.

The 2n+ 2 positive edges at u; form at least n+ 1 negative edges in I’y because
any family of I', contains at most 2 such edges. Hence I', contains at least (n +
1)+ (2n—2) = 3n—1 edges. Since a reduced graph on a torus contains at most 3n
edges (Lemma 2.5), we may add at most one edge to make the faces of the graph
all triangles. Hence I, has at most one 4-gon and all other faces are triangles. In
particular, one of the G;, say G, has the property that all its faces are triangles.

Let V and F be the number of vertices and edges of G1, and let Ey,V}, be the
number of non-interior edges and boundary vertices, respectively. Note that V —V},
is the number of cut vertices, and E — E} is the number of interior edges. We have
shown that V =n/2 and E =n — 1.

By Lemma 2.10(1) we have V;, > E—V = (n—1) —n/2, hence G has V -V, <
V-(E-V)=(n/2)— (n—1-=n/2) = 1 cut vertex. If there is no cut vertex
then the number of non-interior edges is the same as the number of vertices V,
ie. By = V. If it has a cut vertex v then the equality V;, = E — V holds, so
by Lemma 2.10(1), v has exactly two corners not on disk faces, which implies v
is incident to at most 4 non-interior edges, while every other vertex is incident
to exactly two non-interior edges, hence E, < V + 1. In either case we have
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E-E,>E—-(V+1)=(m-1)—(n/2+1) > 1, so G has at least one interior
edge e. Since all faces of Y; are triangles, e is incident to two triangle faces of G,
which is a contradiction to Lemma 9.2. U

LEMMA 9.4. Suppose that Ty is non-positive, n, = 4 and n > 4. Then X, is
not a disjoint union of two annuli.

PROOF. Assume to the contrary that X, is a union of two annuli. Let ¢; be
the number of negative edges incident to u;. As in the proof of Lemma 9.3, we have
t; = 2n — 2 or 2n.

First assume that t; = 2n — 2. Let é;,é5 be the two families of edges in I',
connecting u; to us. Note that a (12)-Scharlemann bigon in 'y, must have one edge
in each of é; and é;. By Lemma 9.3 T, is kleinian, so all (12)-edges belong to
Scharlemann bigons in I', hence each edge e; in é; is parallel in T', to an edge €} in
é2, and the label of e; at u; is the same as that of e/ at us. In particular, é; and é;
have the same number of edges, hence each contains exactly n — 1 edges. Without
loss of generality we may assume that the label n does not appear at the endpoints
at uy of edges in é;. By the above, n does not appear at the endpoints at us of
edges of é5, hence the labels must be as in Figure 9.2. However, in this case the
edge labeled 1 at w; has its other endpoint labeled n, which is a contradiction to
the parity rule.

Figure 9.2

We now assume t; = 2n. Then the two families of negative edges from u; to
ugz have the same transition function ¢. Since there is a (12)-Scharlemann bigon,
©? = id, so the length of each ¢-cycle is 1 or 2. Since n > 4, it follows that the edges
of é; form at least 3 cycles on T', which is a contradiction to Lemma 2.14(2). O

LEMMA 9.5. Suppose that T'y is non-positive, ng, = 4 and n > 4. If G is of
type (3), then G is also of type (3), and the two loops of T} do not separate the
two vertices uz,us which are not on the loops.

PROOF. Let uz be the vertex of G; which has valence 2. If G5 is not of type (3),
or if the two loops é; Uéy of f‘jl‘ separates u3 and u4 then all negative edges incident
to ug have their other endpoint on the same vertex us of G3, and there are only
two such families. Hence ug is incident to only four families of parallel edges, so by
Lemmas 2.3(1) and 2.3(3) we must have n = 4, contradicting the assumption. O

LEMMA 9.6. Suppose that T'y is non-positive, n, = 4 and n > 4. Then f‘j{
cannot be a union of two type (3) components.
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PROOF. Suppose that f; is a union of two type (3) components, so I', has
6 positive edges €1, ...,66. By Lemma 9.5 the two loops do not separate the two
vertices which are not on the loops, so the edges appear as in Figure 9.3. By
Lemmas 2.3(1), 2.3(3) and 6.6(1) each vertex has valence at least 5, so there is one
edge é7 from usy to usz, two edges ég, €9 from uy to us, and one edge €19 from uy to
uyg. There are one or two edges €11 and €12 connecting us to ug. See Figure 9.3.

Figure 9.3

Denote by w; the number of edges in é;. By Lemma 2.7(2) the two positive
edges €o, €3 contain at most n + 2 edges, and the three negative families at wu
contains at most 3n edges, hence A = 4. Since each family contains at most n
edges, we have the following inequalities.

(1) n<wy+wy<n+2
(2) 3n —2 < wg +wg +wip < 3n
(3) n—2<w; <n fori =17,8,9,10

Since u; has at least n adjacent positive edge endpoints and n adjacent negative
edge endpoints, each vertex of I'y is incident to a positive edge and a negative edge,
hence F;’ has no isolated or interior vertex.

Claim 1. f‘;‘ has at least 2n —2 edges, hence ', has at most two jumping labels.

Let e € ég, and €’ € é19. Then e and €’ are not parallel in I, because if they
were then they would form a Scharlemann bigon and hence have the same label
pair on their endpoints, which is not the case because their label pairs are {1,2}
and {1, 4} respectively. Therefore the number of edges in f‘;r is at least

wg +wig > 3n—2—wg > 2n—2

Since f‘;r has no interior or isolated vertex, by Lemma 2.10(1) it has at most
2n—(2n—2) = 2 non-boundary vertices. Since these are the only vertices containing
jumping labels, by Lemma 2.18 they are the only possible jumping labels of T',,.

Claim 2. w1 + w12 > 2n — 2.
Note that since wg, w9 < n, we have

8n = wal(ui,Ty) +val(uz,Ty)
(’wz —+ w3 + ’wlo) + (w5 —+ wg + w7) + 2(’(1}8 + ’wg)
< (w2+w3+w7)+(w5+w6+w10)+4n
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Thus either we 4+ w3 + w7 > 2n or ws + we + wig > 2n. Because of symmetry we
may assume

(4) wa + w3 + wy > 2n

Divide the edge endpoints on dug into P;, Py, P3, Py, as shown in Figure 9.4.
Denote by k; the number of edge endpoints in P;. A label that appears twice in one
of the P; will be called a repeated label. Note that if P; contains a repeated label
then k; > n. Note also that a non-jumping label is a repeated label. Thus by Claim
1 there are at least n — 2 repeated labels among all the P;. Since k; = w; < n,
there is no repeated label in P;.

A
€3

>

(¢}
<2

Figure 9.4

First assume that k3 > n. If both ko, k4 < n then all repeated labels are in
Ps3, s0 k3 > 2n — 2 and we are done. Because of symmetry we may now assume to
the contrary that ko > n. Thus one of é;1,é3 contains more than n/2 edges, so by
Lemmas 2.4 and 2.2(4) n is even, hence n > 6. Note that in this case k4 < n, as
otherwise we would have 4n = > k; > (n — 2) + 3(n + 1) > 4n, a contradiction.
Thus Ps, P; contain all the repeated labels and there are at least n — 2 of them,
s0 ko + k3 > 3n — 2. Since ko = wy + ws > n+ 1 and w3 < (n/2) + 2, we have
wy > (n/2) — 1, so wg —w; < 3. By equation (4) above, we have

dn  =wal(us,Ty) = wy + ka + k3 + (w1 + w2)
:(k2+k3)+(w7+w3+w2)—(w3—wl)
>Bn—-2)4+2n—-3=5n—5>4n

This is a contradiction, which completes the proof for the case ks > n.

We now assume ks < n. Then each non-jumping label is a repeated label in
either P, or Py. By Lemma 2.7(2) we have ka, ky < n+2, so each of Py, Py contains
at most 2 repeated labels, hence there are at most 4 repeated labels. On the other
hand, we have shown that there are at least n — 2 repeated labels, so n — 2 < 4,
i.e.,, n < 6. As above, P, or P, containing a repeated label implies that n is even,
so n = 6; therefore there are at least 4 repeated labels. Hence there are exactly 4
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repeated labels, so ko = k4 = n+2 = 8. By Lemma 2.3(3) each of é;, és, é5 contains
exactly 4 edges.

By equation (3) above we haven—2 < ky = wy <n. If k; =n—1or n—2 then
the labels that do not appear in P; are repeated labels of both P> and Py, so there
are at most 3 distinct repeated labels, and hence at least n — 3 = 3 jumping labels,
contradicting Claim 1. If k; = n then k1 + ks + k4 = 3n+4, so the endpoints of the
4 edges of é; at P, have the same label sequence as those of é; at P,. Hence these
edges form an extended Scharlemann cycle, which is impossible by Lemma 2.2(6).

Claim 3. T', is kleinian.

Clearly each of u1, us is incident to more than 2n negative edges. Since w7 +wg+
wg = 4n — (w5 + wg) > 3n— 2, we have wy > n—2. By Claim 2 wy; + w2 > 2n—2,
hence w11 + w12 +wy > 3n—4 > 2n, so ug is also incident to more than 2n negative
edges. Similarly for u4. By Lemmas 9.1 and 2.10(2) f‘;r has at most 2n edges, so
two of the negative edges at u; are parallel on I'y, hence u; is a label of Scharlemann
bigon. Since this is true for all 7, I, is kleinian.

Claim 4. wy1 + wie = 2n — 2.

Since Ty, is kleinian, by Lemma 6.2(4) there is a free involution 7 of I, mapping
u1 to uz and us to ug. Thus n must map é;9 to é7 and hence wy = wig. We now
have wy + w3 + w7 = wo + w3 + wig > 4n — wg — wg > 2n. Since wy > 1, we see
that wi1 + w12 = 4n — (2wy + wa + w3 +wz) < 2n — 2. The result now follows from
Claim 2.

The involution 77 maps €11 to €12. Hence Claim 4 implies that wy; = w1z = n—1.
Since 7 is label preserving, the label sequence of é11 Ué15 on Jug is the same as that
on Juyg, SO we may assume without loss of generality that the label sequences are
as shown in Figure 9.2. One can see that in this case the transition function of €11
defined in Section 2 is transitive, which implies that all vertices of 'y, are parallel,
contradicting the assumption. This completes the proof of the lemma. ([

PROPOSITION 9.7. Suppose n, = 4 and I'y is non-positive. Then ny < 4.

PRroOF. Consider f‘j If f‘j has a small component then by Proposition 8.6
we have n, < 4. If fj has no small component then the component G containing
u1 must also contain ug, and it is either of type (3), (9) or (10). The result follows
from Lemma 9.4 if both components are of type (9) or (10), and from Lemmas 9.5
and 9.6 if at least one component is of type (3). O

10. The case n; = ny, =4 and I'y,I's non-positive

In this section we assume that n; = ny = 4 and I', is non-positive for a = 1, 2.
We will show that this case cannot happen. Denote by X, the union of f‘j and all
its disk faces. By Theorem 8.6 f‘j{ has no small component, so each component of
I is of type (3), (9) or (10) in Figure 4.2.

LEMMA 10.1. Suppose n1 = ng =4, and both I'y and I's are non-positive. Then
at least one component of I or 'y is of type (3).

PROOF. Suppose to the contrary that all components of f‘f and f‘;‘ are of type
(9) or (10). Then each component of X, is an annulus, hence any vertex u; of I',
is incident to at most 2 families of negative edges. By Lemma 2.3(1) each negative
family contains at most 4 edges, so u; is incident to at most 8 negative edges, and
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hence the number of negative edges is no more than the number of positive edges
in I',. Since this is true for ¢ = 1,2 and since a positive edge in one graph is a
negative edge in the other, the numbers of positive and negative edges of I', must
be the same, hence each vertex must be incident to exactly 8 positive and 8 negative
edges, so each negative family contains exactly 4 edges. Since I';, contains a loop,
one of the negative families in I', contains a co-loop and hence is a set of 4 parallel
co-loops, which is a contradiction to the 3-Cycle Lemma 2.14(2). O

LEMMA 10.2. Suppose n1 = ny = 4, and both 'y and T'y are non-positive. If
both components of I'f are of type (3), and no component of 'y is of type (3), then
T, is kleinian.

PRrOOF. Note that in this case all vertices of I', are boundary vertices. Let
uy,us be the vertices of valence 2 in I'}. By Lemma 6.6(1), u; is incident to fewer
than 8 positive edges, hence there are three negative edges in I', incident to wu,
having the same label j at u;. On I'y this implies that the vertex v; is incident to
at least three positive edges with label 1 at v;; since v; is a boundary vertex, it is
incident to at least 9 positive edges. Since a loop at v; must have labels of different
parity on its two endpoints, we see that val(vj,l“;) is even. If val(vj,l“;) =12
then by Lemma 6.4(4) I, is kleinian. Hence we may assume that val(v;,I'}) = 10.
By Lemma 6.4(1) we may assume that each family of positive edges at v; has at
most 3 edges. This implies that v; is incident to 2 or 3 loops. Examining the
labels we see that the two outermost loops form a Scharlemann bigon, with 1 as a
label. For the same reason, 2 is a label of a Scharlemann bigon in I'y. If there is
no (12)-Scharlemann bigon then there must be (14)- and (23)-Scharlemann bigon,
so I'y is kleinian and we are done. Therefore we may assume that I';, contains a
(12)-Scharlemann bigon.

The (12)-Scharlemann bigon and I} cuts F, into faces. There is now only
one edge class in these faces which connects u; to w4, hence by Lemma 2.2(5) T’
contains no (14)-Scharlemann bigon. Similarly there is no (23)-Scharlemann bigon.
It follows that all Scharlemann bigons of T'y, have label pair (12). In particular, the
two outermost loops at v; must form a (12)-Scharlemann bigon.

We have shown above that the vertex v; has 2 or 3 loops. If it has 2 loops
then the weights of the positive families at v; are (2,3,3,2), and the middle label
of a family of 3 is a label of Scharlemann bigon, which implies that both 3 and 4
are labels of Scharlemann bigons, which is a contradiction. Hence v; has exactly 3
loops e1, €2, e3, and 4 non-loop edges divided to 2 non-Scharlemann bigons e4 U es
and eg U er.

As shown above, e; U eg is a (12)-Scharlemann bigon, so up to symmetry we
may assume that the edges ey, e5 have labels 4 and 1 at v;. Since these edges do
not form a Scharlemann bigon, the labels at their other endpoints must be 3 and
2 respectively, so e5 is a (12)-edge, which must be parallel on I', to one of the
two (12)-loops e1,es because T'y, has only two families connecting u; to ue. This
is a contradiction because by Lemma 2.3(5) a loop and a non-loop edge cannot be
parallel on I',. ([

LEMMA 10.3. Suppose n1 = ng = 4, and both T'y and T's are non-positive. Then
all components of T'T and T'J are of type (3), and T'y and T'y are subgraphs of the
graph shown in Figure 10.1.
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ProOOF. By Lemma 10.1 we may assume that f‘j{ has a component C' of type
(3). Let u; be the valence 2 vertex in C. If u; is incident to at most 4 families of
parallel edges then each family contains exactly 4 edges, but since the two positive
families are adjacent, this would be a contradiction to Lemma 6.6(1). Therefore uq
is incident to at least 5 families of edges. Note that if the other component C’ of
fj is not of type (3), or if it is of type (3) but the loop of C’ separates u; from the
valence 2 vertex us of C’ then u; would have only two families of negative edges,
which is a contradiction. It follows that C” is also of type (3), so the graph I, is a
subgraph of that in Figure 10.1.

For the same reason if some component of f‘;r is of type (3) then [y is a
subgraph of that in Figure 10.1 and we are done. Therefore we may assume that
no component of f;r is of type (3). By Lemma 10.2 T', is kleinian.

Consider the edges €y, ..., ég of I', incident to uz. See Figure 10.1. Let p; be
the weight of é;. By Lemmas 6.2(2) and 2.3(1), p; is even and at most 4. Note that
p1, P2, p3 are non-zero, so by Lemma 6.6(1) we know that p; + p2 and p; + p3 are
between 4 and 6. If p, = 0 then us would have valence 4 in f‘a, which would lead
to a contradiction as above. Hence ps > 0. If p5 + pg = 0 then val(us, fj) =5, s0
either p1 = 4 or pa = p3 = py = 4; either case contradicts Lemma 6.6(1). Therefore
Ps + P = 2.

One can now check, from the labeling around the boundary of us, that if p, = 2
then both labels at the edge endpoints of é4 at usg are jumping labels at ug, and if
p4 = 4 then all labels at the endpoints of é5 U ég at us are jumping labels. This
is a contradiction because all vertices of f‘;r are boundary vertices and hence by
Lemma 6.8 u3 should have no jumping label. (Il

Figure 10.1

By Lemma 10.3 we may assume that both f‘l, ', are subgraphs of that in Figure
10.1. Label the edges of I', as in Figure 10.1, and let p; be the weight of é;. Label
I’y similarly using é;.

LEMMA 10.4. A =4, ps +p3s =6, ps = ps = 2, and py = pg = 4. Moreover,
edges in €4 U ég are co-loops, while those in é7 U ég are not.

PROOF. If ps 4+ p3 > 6 then one of the és,és contains 4 edges, so by Lemma
6.4(1) T, is kleinian. By Lemma 6.2(2) the p; are even, so ps + p3 > 6 implies
that po = ps = 4, which is a contradiction to Lemma 6.6(2). Therefore we have
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p2 + p3 < 6. Since each p; < 4, by counting edges at u; we have A = 4, and
pr+ps+py > 10.

Recall that if a pair of negative edges of I', incident to u; are parallel in T’
then they form a Scharlemann bigon in I'y, hence must have the same label pair
in Ty, so they are incident to the same pair of vertices in I';. Therefore no edge
in é7 or ég is parallel in I'y to an edge in ég. Since IA“EL has at most 6 edges, we
have max{p7,p9} + ps < 6. Since p; < 4, this gives p7 + ps + p9 < 10, hence
p2 + p3 = Any — (p7 + ps + pg) > 6. Together with the inequalities above, we have
p2 + p3 = 6, p7 + ps + p9 = 10. Since max{p7,po} + ps < 6 and p; < 4, this holds
only if pg = 2 and p; = pg = 4. Similarly py = 2.

We have shown that edges in é;7 U ég belong to distinct families in f‘;r Since
f‘gL has at most 6 edges, é7 U ég represent all edges in f‘gL If some edge in é; is a
co-loop then all of them are. Therefore the edges in é7 cannot be co-loops because
IA“EL has only two loops. It follows that the edges in ég must be co-loops. Similarly,
edges of é4 are co-loops, and those in ég are not. (|

PropoSITION 10.5. Suppose both T'y and T's are non-positive, and n, = 4.
Then ny < 4.

PRrROOF. By Proposition 9.7 we have np, < 4. Assume to the contrary that
np = 4. Since the two edges in ég are co-loops, they have labels 3,4 at u;. Consider
the three negative edges ez, es, eg such that e; € é;, and they all have label 3 at u;.
In T, these are 1-edges at vs. Since eg is a loop, it belongs to é}. The other two
edges are non-loop positive edges on I'p, so they belong to é5Ué%. Applying Lemma
10.4 to T'p, we see that é, U é4 U &) contains 8 edges, so the two edges ez, eg are
adjacent among the four edges labeled 1 at vz in I'y. Since they are not adjacent
among the four edges labeled 3 at uy in I'y, this is a contradiction to the Jumping
Lemma 2.18. ]

11. The case n, =4, and I'y, positive

In this section we assume that n, = 4 and I'y, is positive. We will determine all
the possible graphs for this case. Recall from Lemma 6.4(2) that in this case Ty is
kleinian, so the weights of edges of I'y are all even.

LEMMA 11.1. Suppose n, = 4 and 'y, is positive.

(1) Two families of 4 parallel edges with the same label sequence at a given
vertex v; of I'y connect v; to the same vertez vy.

(2) There are at most three families of 4 parallel edges with the same label
sequence at any vertex vj, and if ny, > 2 then there are at most two such.

(3) if A =4 then val(v;,Ty) > 5 for all j;

(4) if A =5 then val(v;,T3) > 6 for all j;

(5) two weight 4 edges é1,é2 of Iy adjacent at a vertex v; form an essential
loop on Fy.

PROOF. (1) If there are two families of 4 parallel edges with the same label
sequence 1,2, 3,4 at v; then by Lemma 6.5 the initial edges eq, €] of the two families
are parallel in ', with the same label j at the vertex u;, hence the other endpoints
of e; and e} must also have the same label k, which implies that in I', the two
families have the same endpoints.
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(2) If there were four then the leading edges of the (12) Scharlemann bigons
in these families are parallel in I',, so they belong to a family of at least 3n, + 1
parallel edges connecting uq to ue. Since I', has at most 3n, edges by Lemma 2.5,
two of these edges would be parallel on both graphs, which is a contradiction to
Lemma 2.2(2).

If ny > 2 and there are three families of 4 parallel edges with the same label
sequence at v; then as above there would be a family of 2n; 4 1 parallel edges in
T's, which contradicts Lemma 2.22(3).

(3) and (4) follow immediately from (2).

(5) By (1) these two edges have their other endpoints at the same vertex vy,
hence form a loop C = é; Ués on Fb. If C is not essential then we can choose C' to
be an innermost such cycle. C' bounds a disk D on F}, which must contain some
vertex because f‘b is reduced. If some vertex in the interior of D has valence 5 then
it is incident to two adjacent weight 4 edges, which would form another inessential
loop, contradicting the choice of C. Hence all vertices in the interior of D have
valence at least 6. By Lemma 2.9 in this case there should be at least three vertices
on dD, which is a contradiction. O

F, separates M(r,) = M UV, into the black and white sides Xp and Xy .
Since T’y is kleinian (Lemma 6.4(2)), the black side Xp is a twisted I-bundle over
the Klein bottle. A face of I'y is white if it lies in the white region Xy, otherwise
it is black. In the next two lemmas we assume that 'y, contains a white bigon and
a white 3-gon as in Figure 11.1.

(a) (b)

Figure 11.1

LEMMA 11.2. Suppose n, = 4 and 'y is positive. Suppose I'y contains a white
bigon A and a white 3-gon B as in Figure 11.1. Then up to homeomorphism of F,,
the edges of A and B appear on F, as shown in Figure 11.2.

PROOF. Let Vo3 and Vj; be the components of VN Xy, that run between us, ug
and uy, uy, respectively. Let Y be a regular neighborhood of Fa UVas UV UAUB.
Then 9Y = 13',1 U T, where T is a torus in M, and hence either Xy =Y, or Xy is
the union of Y and a solid torus along T'.

Take a regular neighborhood D of e; Ues U f3 as “base point” for wl(ﬁa) o
Z x Z and for w1 (Xw). (See Figure 11.2). The cores of the 1-handles V23 and
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V41 represents elements x, y respectively of m (X ), and 71 (Xw) is generated by
IT = 71 (F,) together with = and y. Note that since F, is essential in M (r,), II is
a proper subgroup of m (Xw).

Figure 11.2

The bigon A gives the relation xy = 1, so the 23-corners and the 41-corner
of OB represent x and ! respectively. The 32-edge on OB lies in D and hence

represents 1. If one of the other two edges f1, fa of B represents 1 € 71 (F,), then
B gives a relation of the form 2 = ~ for some v € 71 (F,), hence m (Xw) = 1I, a
contradiction. Therefore the edge f; is as shown in Figure 11.2, and represents a
nontrivial element o € m (Fa), when oriented from u; to us. Similarly, the edge
fo2 represents a non-trivial element ~y, say, of m; (Fa), when oriented from us to ug4.
Since e; U f; and ey U fo are disjoint, we must have ¥ = a or a~!. The union
Vas U Vi1 U N(A) is a single 1-handle attached to F‘a, and OB is a simple closed
curve on F, UOH. One can see that az?a~'z~! cannot be realized by a simple

closed curve. It follows that v = «, so fo appears on F, asin Figure 11.2. ]

(a) (b)

Figure 11.3
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If we orient an edge e of I', then the corresponding oriented edge of I', represents
an element «y of 7y (Fa), and we will label the edge e with . Thus the edge labels of
the bigon A are both 1, and the edge labels of the 3-gon B are as in Figure 11.3(a).
Note that any 12-edge, oriented from 1 to 2, or any 34-edge, oriented from 3 to 4,
has label 1 or a. Also wl(ﬁa) has a basis {«, 8}, where (3 is represented by an arc
joining uy and u4, disjoint from 0A and 0B, as shown in Figure 11.4.

Figure 11.4

LEMMA 11.3. Suppose n, = 4 and 'y is positive. Suppose I'y contains a white
bigon A and a white 3-gon B as in Figure 11.1.

(1) All edges of white bigons have label 1.

(2) B can be chosen so that any 3-gon must have edge labels as shown in Figure
11.3(a) or (b).

PROOF. (1) Since the edges e1 U f1 and eaU fo on 9A and 9B form two parallel
essential circles on Fa, any 12-edge of I', must be parallel to either e; or f1, and
any 34-edge of I'y, must be parallel to either e or fa.

Let A’ be another white bigon. Applying Lemma 11.2 to A’ and B gives that
the 12-edge of A’ and the 12-edge f1 of B are not parallel, and similarly the 34-edge
of A’ and the 34-edge f5 of B are not parallel. Hence both edges of A’ are labeled
1 since they must be parallel to e; and es, respectively.

(2) Since I'y, has no extended Scharlemann cycle, each triangle face B’ has either
one or two 23-corners. If B’ has two 23-corners then applying Lemma 11.2 to A
and B’ shows that the 12-edge of B’ is not parallel to e, so it must be parallel to
f1 and hence is labeled «, as in Figure 11.3(a). Similarly the 34-edge of B’ is also
labeled «. If the 32-edge of B’ is labeled « then B and B’ together give the relation
v=1,s0~v =1, as in Figure 11.3(a).

If B’ has only one 23-corner, let fi, f4, f5 be the 12-) 34- and 14-edges of B,
respectively. Applying Lemma 11.2 to A and B’ gives that f] is not parallel to ey,
so by the above it must be parallel to f; and hence is labeled «. Similarly f} is
parallel to f and is also labeled a.. The two loops e; U f1 and ea U f5 cut Fa into two
annuli A, and Ag, where Ar contains f3; see Figure 11.4. If the 14-edge f4§ of B’
lies in Ag then it is labeled o, and B’ gives the relation 2~ 'araxr~'a = 1. It is easy
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2 1

to see that, together with the relation z°ax™ a = 1 coming from B, this implies
a = 22, so 2 = 1, and hence o® = 1, which is a contradiction to the fact that a®
is a nontrivial element in m (E,) and hence is nontrivial in 71 (X ). Therefore f}
lies in Ay, as shown in Figure 11.4. Let 8 be the corresponding element of mq (Fa);
then the edge labels of B’ are as in Figure 11.3(b). If B” is any other 3-gon with
one 23-corner then the argument above in the case of 3-gons with two 23-corners,
using A and the present B’, shows that the edge labels of B” are also as shown in

Figure 11.3(b). O

Figure 11.5

COROLLARY 11.4. Suppose ng =4 and 'y is positive.

(1) Let G be the subgraph of Ty consisting of edges of white bigons and white
3-gons on I'y. Then the reduced graph Gisa subgraph of that in Figure 11.5.

(2) If Ty contains a white bigon then it cannot contain a (black) Scharlemann
bigon which is flanked on each side by a (white) 3-gon.

(8) If Ty contains a white bigon then it cannot contain three 3-gons occurring
as consecutive white faces at a vertez.

PROOF. (1) This follows immediately from Lemma 11.3.

(2) The edges of a (black) Scharlemann bigon are either (12)- or (34)-edges, so
by Lemma 11.3(2) both edges of the Scharlemann bigon are labeled o and hence
are parallel on T'y, contradicting Lemma 2.2(2).

(3) By (2) the two black bigons between the white 3-gons are (12, 34)-bigons,
as shown in Figure 11.6. But then the middle 3-gon would be a white Scharlemann
cycle, contradicting Lemma 6.2(3). O
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Figure 11.6

Let G be a reduced graph on a torus 7" with disk faces. One can endow T" with
a singular Euclidean structure by letting each edge have length 1 and each n-gon
face a regular Euclidean n-gon. The cone angle 6(v) at a vertex v of G is the sum
of the angles of the corners incident to v. Such a structure is hyperbolic if 0(v) > 2w
for all v, and #(v) > 27 for some v. The following lemma says that no singular
Euclidean structure on 7" is hyperbolic.

LEMMA 11.5. Let G and 6(v) be defined as above. Then either 0(v) < 27 for
some v, or 8(v) = 2m for all v.

PROOF. Denote by V, E, F the numbers of vertices, edges and faces of G, re-
spectively. Let 6(c) be the angle at a corner ¢ of the graph. If o is a face of G,
denote by |o| the number of edges of . Since o is a regular |o|-gon, for each corner
¢ € o we have 0(c) = m(1 —2/|o]). In the following, the first sum is over all vertices
v of G, and the second is over all corners ¢. Grouping corners by faces o, we get

S 6(0) S0 =, Ty 00 = 5y Yoo 71— )
(5, ol = X Tocs ) = M(2E — 2F) = 2n(E = F) = 2nV.
Therefore ), (2m — 6(v)) = 0, and the result follows. O

LEMMA 11.6. Let G be a reduced graph on a torus T such that val(v) > 5 for
all v. Then either

(1) there exists a vertez of valence 5 with at least four 3-gons incident; or

(2) there exists a vertex of valence 6 and all vertices of valence 6 have all
incident faces 8 gons; or

(8) all faces of G are 3-gons or 4-gons, and every vertex has valence 5 and has
exactly three 3-gons incident.

PRrROOF. We have §(v) > 27 if val(v) > 6, 0(v) > 6 x 7/3 = 27 if val(v) = 6.
Assuming (1) is not true, then we also have

T T
> — —_ =
9(1})_3><3+2><4 27

if val(v) = 5. Thus there is no vertex with cone angle 6(v) < 2, so by Lemma 11.5
we see that @(v) = 27 for all v € G, hence there is no vertex of valence more than
6, all faces incident to vertices of valence 6 are 3-gons, and exactly 3 faces incident
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to a vertex of valence 5 are 3-gons and the other two are 4-gons. Therefore either
(2) or (3) holds. O

Figure 11.7

LEMMA 11.7. Suppose ng = 4, ny > 2, and I'y is positive. Then no verter v,
of 'y with val(vj) =5 has four corners belonging to 3-gons.

PROOF. Let v; be a vertex of I'y with val(v;) = 5. By Lemma 11.1(4) we must
have A = 4. The weights of the edges at v; are 4,4,4,2,2. By Lemma 11.1(2) the
three weight 4 edges are not consecutive, hence the order around v; is (4,4, 2,4, 2).
Label these edges by é1, ..., €5, respectively, where €3, és have weight 2. By Lemma
11.1(5) the two edges é1, é2 form an essential cycle on the torus Fy, hence the graph
looks like that in Figure 11.7.

Let ¢ be the corner at v between these two edges é1, é2, as shown in Figure
11.7. We claim that ¢ contains no other edge endpoint. Let e and e’ be the edges
in é; and é; with label 1 at v;. Let P,@Q be the endpoints of e, e’ at v;, and let
R, S be the endpoints of e, e’ at vy, respectively. By Lemma 6.5 these edges are
parallel on T',, so they connect the same pair of vertices uy, u, for some r. On T’
this means that P, @ have the same label 1, and R, S have the same label 7.

Since e, e’ are parallel negative edges on 'y, we have d,, (P,Q) = d,.(R,S),
therefore the four points P, @, R, S satisfy the assumptions of Lemma 2.16(1), hence
by the lemma we have d,, (P, Q) = d,, (R, S). Without loss of generality assume
that the orientations on Ovj, Quy are counterclockwise on Figure 11.7. Then one
can see that d,, (P, Q) = 4, hence d,, (R, S) = 4, which implies that there are only
3 edge endpoints from the endpoint of e to that of €’ on duvy, so there is no edge
endpoint in the corner ¢ in Figure 11.7. This proves the claim.

Label the corners at v; as shown in Figure 11.7. The above implies that the
corners p and s belong to the same face o, so if v; is incident to at least four 3-gons
then o must be a 3-gon, hence é3 = €5 is a loop. Now the corners ¢ and r belong
to the same face o', which cannot be a 3-gon, hence the result follows. O

LEMMA 11.8. Suppose ng, =4, ny > 2, and T'y is positive. Suppose A = 4.

(1) All faces of I, are 3-gons or 4-gons, every vertex has valence 5 and has
exactly three 3-gons incident, and the weight sequence of the edges incident to the
vertex is (4,4,2,4,2). In particular, ny is even.

(2) The two weight 2 edges at any vertex form a loop, which is incident to a
3-gon whose other two edges are of weight 4.

(8) Each edge in a weight 2 family of Ty has label pair (23) or (14).
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PROOF. (1) By Lemma 11.1(3) and Lemma 11.6, T, is one of the three types
stated in Lemma 11.6. Lemma 11.7 shows that I', cannot be of type (1). If Ty
has a vertex of valence 6 then the weights are 4,4,2,2,2,2, hence there are two
consecutive edges of weight 2. By Corollary 11.4(3) the three faces incident to
these two edges cannot all be 3-gons, hence ', cannot be of type (2) in Lemma
11.6. It follows that ' is of type (3) in Lemma 11.6, so the weights of the edges
at every vertex of I, are 4,4,4,2,2. Thus the number of weight 4 edge endpoints
in f‘b is 3np, which must be even, hence n; is even. By Lemma 11.1(2) the three
weight 4 edges cannot all have the same label sequence, hence the weight sequence
is (4,4,2,4,2) at each vertex.

(2) By Lemma 11.1(5) the two adjacent weight 4 edges at v; connects v; to a
vertex v, and form an essential loop on F,. The other weight 4 edge at v; connect
to some vertex v,, whose two other weight 4 edges connect to another vertex vs
and form an essential loop. These five weight 4 edges cut off a 6-gon containing
the four weight 2 edges at v; and v,. The 6-gon cannot contain any vertex in its
interior because each vertex is incident to two weight 4 edges forming an essential
cycle on Fy. Therefore the four weight 2 edges at v; and v, form two loops.

(3) The loop é of Iy at v; cuts off a 3-gon in the 6-gon above. Let e; be the
edge of é which is on the boundary of a 3-gon face o of I'y. Then the other two
edges of o belong to families of 4 edges and hence must have label pair (12) and
(34) respectively, so the labels on 9o are as shown in Figure 11.3, and e; has label
pair (23) or (14). Since the other loop edge of é is parallel to eq, it has label pair
(14) or (23), respectively. O

(a) (b)

Figure 11.8
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Figure 11.9
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Figure 11.10

(b)

ProproOSITION 11.9. Suppose ng, = 4 and 'y is positive.
(1) If A = 4 then ny = 2, and the graphs are as shown in Figure 11.9.
(2) If A =5 then ny = 1, and the graphs are as shown in Figure 11.10.
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PROOF. (1) Put n = ny. If n =1 then the assumption A = 4 implies that the
weights of the edges of T, are either (4,4,0) or (4,2,2). In either case a family of
four edges form an extended Scharlemann cycle, which is impossible.

Now assume n > 2. Let C' = é; Ués be the two edges in f‘a connecting uq to us.
Since [, contains both (12)- and (34)-Scharlemann cocycles, any edge of T', with
label pair (12) is parallel to an edge of C on I',. By Lemma 11.8(1) each vertex of
I', has valence 5 and hence is incident to 3 weight 4 edges, so I', has 3n/2 weight 4
edges. Each weight 4 edge contributes 2 edges to C, one for each é;, and by Lemma
11.8(3) no weight 2 edge of I'y contributes to C. Thus each é; represents exactly
3n/2 edges, and each label j appears exactly three times among the edge endpoints
of é1 Uéy at uy. Hence if the edge endpoints of é; at u; are labeled 1,...,n,1,...,7,
then the labels of those in é must be r+1,...,n,1,...,n, where r = n/2. It follows
that the n edge endpoints at u; that do not belong to C' must be on one side of
C, so up to relabeling we may assume that the labels at u; are as shown in Figure
11.8(a). Let ¢ be the involution on E, given by Lemma 6.2(4). Then ¢ maps é; to
é2 and is label preserving, so the labels at ug must be as shown in Figure 11.8(b).
Now the transition function of é; maps 1 to r 4 1, which has period 2. Since n > 2,
this function is not transitive, contradicting Lemma 2.3(1).

We have shown that n = 2. The graph ', is now a subgraph of that in Figure
13.1, with vertices labeled vy, vo instead of u1,us. Let w; be the weight of ;. By
Lemma 6.4(2) T, is kleinian, and by Lemma 6.2(2) the w; are all even. By Lemma
11.1(3) we have ws > 0. If ws = 4 then é5 containing no extended Scharlemann
bigon implies that either wy + we = 6 or ws + wy = 6, so w; = 4 for some ¢ < 4, in
which case é; contains a (12)-Scharlemann bigon, whose edges, by the above, must
be parallel in T, to the (12)-edges of é;, which is a contradiction to Lemma 2.3(5).
Therefore we must have ws = 2. For the same reason, the two loops in é5; cannot
be a Scharlemann bigon, so we must have wy = ws = 4 and w3 + wy = 4 up to
symmetry. Let e; U...Ueyq and e} U... U e be the edges in é1, é2 respectively, such
that e;, e} have label ¢ at v1. By Lemma 6.5 e;, €} are parallel on 'y, with the same
label 1 at w;. Therefore there is another edge between them, which must belong
to é3 U é4. If wy = wy = 2 then one can check that these edges would have label
pairs (14) and (23), which is a contradiction. Therefore we may assume wsz = 4
and wy = 0. The graph T’y is now as shown in Figure 11.9(b).

As shown above, there are 12 edges on I', with label pair (12) or (34), divided
into 4 families of 3 edges each on I',. Label the edges of I'y as in the figure. Up to
symmetry we may assume the edge A is as shown in Figure 11.9(a). Since A = 4,
we may assume that the jumping number J = 1. The 1-edges around v; appear in
the order A, E, G, P. By Lemma 6.5 G, P are parallel on I';. This determines the
position of these edges as well as the orientation of u;. The 2-edges at vo appear in
the order F, R,G, P, and E on I'; has already been determined above, hence the
position of R, G, P must appear around Ous are shown in the figure. Other edges
on I', can be determined similarly.

(2) The proof for A =5 is similar but simpler. In this case by Lemma 11.1(4)
each vertex v; of I', has valence 6, and the edges at v; have weights 4,4,4,4,2,2.
Thus all white faces are bigons and 3-gons, so by Corollary 11.4(1) [, isa subgraph
of that in Figure 11.5. By Lemma 11.1(2) the two weight 2 edges at any vertex are
non-adjacent, thus any edge e in a weight 2 family is on the boundary of a 3-gon
whose other two edges have label pairs (12) and (34), so the label pair of e must be
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(14) or (23) and hence e is not a vertical edge in Figure 11.5. On the other hand,
each weight 4 edge of I, contributes one edge to each vertical family in Figure 11.5,
hence each vertical edge has weight exactly 2n;,. As above, one can show that the
transition function defined by a family of vertical edges is the identity function,
which by Lemma 2.3(1) implies that n, = 1, so the graph ', must be as shown in
Figure 11.10(b). By the above discussion, I, is as shown in Figure 11.10(a). Label
edges as in Figure 11.10(b). By Lemma 6.5 the edges A, H are parallel on T',
hence we may assume the jumping number J = 1. One can now easily determine

the labels of the edges of T',. O
PROPOSITION 11.10. Suppose ng < ny. Then ng < 2.

PrOOF. By Proposition 5.11 we have n, < 4. Assume n, = 4 < ny. Then by
Proposition 11.9, T'y is non-positive. Therefore, by Proposition 9.7, n, = ny = 4,
and, by Proposition 11.9 again, I', is also non-positive, contradicting Proposition
10.5.

Suppose n, = 3. Then F, is non-separating. If I, is non-positive then some
vertex uy, say, has different sign to the other two vertices us, us. One of the vertices
has valence at most two in f‘;‘, so it is incident to at most 2n; positive edges,
and hence at least 2n;, negative edges. By Lemma 2.8 this implies that 'y has a
Scharlemann cycle, so by Lemma 2.2(4) E, is separating, which is a contradiction.
If T, is positive then by Lemma 3.1 we have n, < 4. By Lemma 2.23 nj, ny cannot
both be odd, hence n, = 3 implies that n; is even, so we must have n, = 4.
Now applying Proposition 11.9 with ng,n, reversed, we get n, < 2, which is a
contradiction. (]

12. The case n, =2, n > 3, and I'y, positive

The next few sections deal with the case that n, = 2 and n, > 3. The main
result of this part is Proposition 16.8, which shows that there are only a few possi-
bilities for the graphs I'y, I'y.

Throughout this section we will assume that n, = 2, n, > 3 and I'}, is positive.
We will show that this case is impossible. To simplify notation, denote n; by
n. Note that f‘a has at most four edges €1, ..., €4, all connecting u; to us. We will
always assume that the first edge of é; has label 1 at uy. Write T'y, = (a1, as, as, aq),
where a; is the weight of é;. Let s; = s(é;) be the transition number of é; from u;
to ug. In the following lemma the subscripts are integers mod 4.

LEMMA 12.1. (1) sit1 = s; — a; — a;+1 mod n;
(2) Sit2 = 8; — i1 + ai43 mod n. In particular, s; = s;yo if and only if
Gi+1 = ajy3 mod n.

PROOF. (1) Orient edges from u; to ug, and denote by e(h), e(t) the head and
tail of an edge e. Let e, ¢’ be the first edge of é;,é;41, respectively. Let x be the
label of e(t), and y the label of €’'(h). Then traveling from e(t) to e’(¢) on du;y then
to €'(h) through e’ gives y = x + a; + s;4+1 mod n, while traveling through e to e(h)
then along dus to €'(h) gives y = x + s; — a;41 mod n. Hence $;41 = 8; — a; — a1
mod n.

(2) Applylng (1) twice giVGS Si42 =8, —Q; — Qi1 — Qi1 — Aj+2 = S; — Q41 +ai+3
mod n. O
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LEMMA 12.2. Let e, e’ be edges of Ty, joining a pair of distinct vertices, such
that e U €' is null-homotopic in F,. If e belongs to a family of at least n parallel
edges in Ty, then e and e’ are parallel on Ty,

PROOF. Let D be the disk in £}, bounded by e U e’. The family of n parallel
edges of I', containing e gives a set of essential loops on F, corresponding to the
orbits of the associated permutation. It follows that D contains no vertices in its
interior, and hence e and ¢’ are parallel on T',. O

LEMMA 12.3. Suppose T, contains bigons e1 U ey and e} U ehy, such that eq, €}
have label i at uy and j at uz, and es, el have label i + 1 at uy and j + 1 at us.
Suppose either

(i) j#i+1, or

(ii) Ty contains a pair of edges es, el with the same label pair (r,s), such that
rys & {i,i+1,5,7+ 1} and C3 = ez U e} form an essential loop on B,

Then C1 = ex Ue) and Cy = ea U e}, are inessential on Fy.

PRrROOF. (i) Note that i # j by the 2-Cycle Lemma 2.14(3). If j # ¢ + 1 then
C1NCy = 0, so they cannot be essential and yet non-homotopic on Fb, hence by
Lemma 2.20 they must be inessential.

(ii) In this case Cp,Csy lie in the interior of the annulus obtained from F, by
cutting along C3, which again implies that C7,Cs cannot be essential and yet non-
homotopic on F,. (I

An edge is a border edge if it is the first or last edge in a family of parallel
edges.

LEMMA 12.4. Suppose sy, # +1. Then

(1) ap <n+1, and

(2) if ay, =n+1 and €' is an edge of é; which has the same label pair as that
of a border edge ey of é, then €' is a border edge.

PROOF. (1) Assume a, > n + 2. Label the first n + 2 edges of é; successively
as €1,€2, ..., €n, €nt1,€nta. Let € = eny;. Since s # *1, ey, eq,el, ey satisfy
Condition (i) in Lemma 12.3, so e; U €} is an inessential loop on Fj. By Lemma
12.2 this implies that e; and e} are parallel on T, and hence parallel on both
graphs, which is a contradiction.

(2) If € is not a border edge then the bigon e; U ey and one of the two bigons
containing e’ satisfy the assumption of Lemma 12.3(i), hence ¢’ is parallel to e; on
[p. Similarly, using the bigon between e,,e,+1 and the other bigon containing e’
one can show that e’ is also parallel to e, 1 on I'y, hence ey, e,11 are parallel on
both T', and I'y, which is again a contradiction. O

LEMMA 12.5. Let é,& be families of at least n parallel edges in Ty, and let
i,7,k,l € Zy, be distinct. Then I'y cannot contain both

(i) ij-edges e1,ea, €3 with e1,ea € é and es non-equidistant with ey, ea; and

(ii) kl-edges e}, e € €.

PROOF. The edges eq, ez, e3 are pairwise non-parallel in I'y. Since ej,es € €,
no pair of ey, es, e3 cobounds a disk in £, by Lemma 12.2. Hence e}, e5 cobound a
disk in F},. Since ¢} € &, ¢}, ¢} are parallel on T', by Lemma 12.2. This contradicts
Lemma 2.2(2). O
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Two families é,¢é" of T, are A-conjugate it there are e € é and e’ € é’ such
that they are anti-parallel on I', when oriented on I'y, from w; to ug. They are P-
conjugate if the e, e’ above are parallel on I'y, as oriented edges. They are conjugate
if they are either A-conjugate or P-conjugate.

LEMMA 12.6. (1) There exist é;,¢é; on I, which are A-congugate. Moreover, if
a; < (A —=3)n or a; < (A —3)n then there is another such pair. (The two pairs
may have one family in common.)

(2) If é;,é; are A-conjugate then s; = —s; mod n; moreover, if a; > n or
a; > n then s; # s; mod n.

PROOF. (1) Since there are An edges while T, has at most 3n edges, I', has at
least (A—3)n bigons. The two edges of a bigon in 'y, belong to a pair of A-conjugate
families é;,é; on I'y. If a; < (A = 3)n or a; < (A — 3)n then these families cannot
contain all the bigons on I'y, hence there must be another A-conjugate pair.

(2) If é;,é; are A-conjugate then by definition there exist e € é; and €' € é;
which are anti-parallel on T'y, hence the label of €’ at us is the same as that of e at

u1, and vice versa. Therefore s; = —s; mod n.
If we also have s; = s; mod n then s; = 0 or n/2, which is a contradiction to
the 2-Cycle Lemma 2.14(3). O

LEMMA 12.7. Let é = e; U...Ue, and ¢ = ey U...Ue; be two families of Ty,
where p < q.

(1) If é and €' are conjugate then p = q mod 2.

(2) If é and €' are conjugate and q > p then each edge e, is parallel to the edge
€., where ¢ = (q —p)/2; hence the set of edges in & which are parallel to those
i € lie exactly in the middle of é'.

(8) If p+ q = 0 mod 2n and é,é" are adjacent on Iy then they are not A-
conjugate.

(4) If p+q = 0 mod 2n, é,é" are adjacent on Ty, and J # +1 then they are
not conjugate.

PROOF. (1) By definition there are edges e;, € which are parallel in T'.

First consider the case that é,é’ are adjacent. Denote by e(k) the endpoints of
e at up. We may assume that the first edge e} of ¢’ is adjacent to the last edge e,
of ¢ on Ju;. Then the distance from e;(1) to e/(1) is

(5) dul(‘iue;) =j+p—t
On Juy €;(2) is adjacent to e1(2), so we have
(6) duy(€f, €5) =i+ q—j

Since e, e} are parallel positive edges on I'y, they are equidistant, hence by Lemma
2.17 we have d, (e, €}) = du, (€], e;), which gives

(7) 20 —i)=q-p
and
(8) 2d=p+q

where d = d, (€, €}) = du, (€}, e;). Equation (7) gives ¢ —p = 0 mod 2.
Now suppose é, ¢’ are not adjacent. Let ¢’ be the family whose endpoints on
Ouy are between e, (1) and €] (1). Then on Jus the endpoints of é” are also exactly
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the ones between e (2) and e;(2). Thus if ¢” has k edges then the equations (5)
and (6) above become d =j+ k+p—iand d =i+ k+ g — j. Therefore again we
have 2(j — i) = ¢ — p, and the result follows.

(2) From equation (7) we have j = i+ (q—p)/2. If i > 1 then the above and the
condition ¢ > p imply that j > 1. Since e; is parallel to e; on I'y, by Lemma 2.20
applied to the bigons e; 1 Ue; and €);_; Ue’;, the loop e;—; Ue);_, is null-homotopic
on F}, hence by Lemma 12.2 e;_; is parallel to 6;—71 on I'y. Similarly, if ¢ < p then
the edge e;41 is parallel to e;- 41 on I'p. By induction it follows that every edge ey
in € is parallel to the edge e;€+(q_p)/2.
(3) Assume without loss of generality that é = é; and é = éy. If they are
A-conjugate then the label of e; at uy is the same as the label of e; at us, so
d = dy, (ei, €};) = s1 mod n. Hence equation (8) and the assumption p +¢ = 0 mod
2n gives s1 = d = 0 mod n. Similarly s = 0 mod n. Since n > 3 and one of p, q is
at least n, this is a contradiction to Lemma 2.14(2).

(4) By (3) é,é’ are not A-conjugate. Assume they are P-conjugate.

If p+ ¢ = 4n then by Lemma 2.22(3) we have p = ¢ = 2n, and by (2) each
e; of é; is parallel to the corresponding edge e} of és on T, for i = 1,...,2n. Since
é,¢" are not A-conjugate, e;, e, are parallel as oriented edges, with orientation from
u1 to ug. Hence there is another edge e between them, which cannot belong to
éUé’ as otherwise there would be two edges parallel on both graphs, contradicting
Lemma 2.2(2). This gives at least 6n edges on I'y, which is a contradiction.

Now assume p + ¢ = 2n. Let e, e’ be the edges of é,é’ which are parallel on T’
as oriented edges, so they have the same label k at u; for some k. The condition
p + ¢ = 2n implies that e, e’ are adjacent among edges labeled k at u;. Since
J # =£1, they are non-adjacent on I'y among edges labeled 1 at vy, hence they
belong to a family of at least 5 parallel edges, which is a contradiction to Lemma

2.2(2) because I', has at most 4 edges. O

LEMMA 12.8. If the jumping number J = £1 (in particular if A = 4), then T,
has at most n + 1 parallel edges.

PROOF. Suppose for contradiction that €;, say, contains edges ey, ..., e,42. By
Lemma 12.4(1) we may assume that s; = 1, so the label sequences of these edges
are (1,2,...,n,1,2) at uy, and (2,3, ...,n,1,2,3) at uz. By Lemma 2.22(1) we may
assume that the subgraph of I', consisting of these edges is as shown in Figure 2.3.
Up to symmetry we may assume that the orientation of dv; is counterclockwise on
Figure 2.3.

Orient edges from w1 to us. Denote by h;, t; the head and tail of e;, respectively.
For ¢ > 1, h;—1 and t; both have label i on I',, so they are on dv;. Define d; =
dy,(ti, hi—1), where ¢ = 2,...,n + 2. Note that d; = 1 implies that the corner from
t; to h;—1 on Jv; contains no edge endpoint.

CLAIM 1. d; =dj for2<i,j <n+2.

PrOOF. Isotoping on Ty along the positive direction of Qu; moves hy to he and
to to t3, so the distance on dvy from hi to to should be the same as that on dvs
from ho to ts, i.e., do = d3. (Alternatively one may apply Lemma 2.16 to obtain
the result.) Similarly we have d; = d;11 for 2 <i<n+1. O

CLAIM 2. d; =1 for2<i<n+2.
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PROOF. By assumption we have J = =£1, so either dy,(h1, hny1) = 2 (when
J =1),0r dy, (tn+1,t1) = 2 (when J = —1). In the first case, from Figure 2.3 we see
that the tail of e, 12 is the only edge endpoint at the corner from h; to h,1, hence
dp42 = 1. Similarly in the second case the head of e,, is the only edge endpoint on
vy from t,41 to t1, hence dpy1 = dy, (bnt1, hn) = 1. In either case by Claim 1 we
have d; = 1 for all i between 2 and n + 2. O

Let D be the disk face indicated in Figure 2.3. Claim 2 shows that all corners
of D except c¢1, co, c3 shown in the figure contain no edge endpoints.

When J = 1, we have d,, (t1,tn+1) = 2, so there is one edge endpoint in ¢;.
Similarly there is one edge endpoint in c3. Since d, (t,t2,t2) = 2A — 2 > 6, there
are at least 4 edge endpoints in co. Thus there would be some trivial loops based
at vg, contradicting the assumption that I'y has no trivial loops.

When J = —1, d'ul (tlathrl) = dvg (hg, thrQ) =2A -2 Z 67 and dv2 (thrQ, tz) =
2, so there are at least 5 edge endpoints in each of ¢; and c3, and no edge endpoints
in ¢co. It follows that D contains at least 5 interior edges, all parallel to each
other, two of which would then be parallel on both graphs, contradicting Lemma
2.2(2). O

LEMMA 12.9. T'y has at most n + 2 parallel edges.

PROOF. Assume to the contrary that é; D e; U...Uep+3. By Lemma 12.4(1)
we may assume without loss of generality that s; = 1. By Lemma 2.22(1) the first
n + 2 edges appear in I'y as shown in Figure 2.3

First assume n > 4. Orient edges of ', from u; to uz, and denote by e(h), e(t)
the head and tail of an edge e, respectively. From Figure 2.3 we see that the
triple (e2(h),ent2(h),es(t)) is positive, hence the triple (es(h),ents(h),eq(t)) is
also positive by Lemma 2.21(2), so the head of e,y3 lies on the inner circle in
Figure 2.3. Note that e, o shields this edge endpoint from the outside circle of the
annulus in Figure 2.3, hence the tail of e, 13 also lies in the inner circle in the figure,
therefore e, 3 is parallel to es on I'y, which is a contradiction as they cannot be
parallel on both graphs.

Now consider the case n = 3. By Lemma 2.22(3) we may assume a; < 6, and
a1 = n+3 = 6. By Lemma 12.8 we may assume that A = 5 and the jumping
number J # £1. Also, a; # 5, otherwise by Lemma 12.7(1) the 11 edges in é; U é;
would be mutually non-parallel on I'y, contradicting the fact that ', has at most
3n = 9 edges (Lemma 2.5). One can now check that the following are the only
possible values of (a1, az,as,as) up to symmetry, where * indicates any possible
value. Let s = s1. Then the other s; can be calculated using Lemma 12.1. The
second quadruple in the following list indicates the values of (s1, s2, $3, 84)-

S, 8, * *)
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s, s—1,s s+1)
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In case (1) by Lemma 12.7(4) the 12 edges in é; U éz are mutually non-parallel
on I'y, which is impossible because I', contains at most 3n = 9 edges. Case (8)
is impossible by Lemma 12.6. Also, Lemma 2.14(3) implies that s; # 0 mod 3 if
a; > 2, which can be applied to exclude cases (2), (4) and (5).

In case (6) and (7), by Lemma 12.7(1) és is not conjugate to é1,€és or é4, so
€1 U é5 represents all 9 edges in f‘b, hence each of és and é4 must be conjugate to
é1. By Lemma 12.7(2) the two middle edges of é; are parallel to the middle edges
in each of é3 and é4, so é3,é,4 are conjugate. Since ag + a4 = 6 = 2n and J # +£1,
this is a contradiction to Lemma 12.7(4).

In case (3), by Lemma 2.14(3) we have s = 1. Since a1 + a3 = a1 + a4 = 10
while I', has at most 9 edges, each of €3, €4 must have an edge parallel to some edge
of é; on T'y. By Lemma 12.7(2) this implies that each edge of é3 U é4 is parallel to
one of the 4 middle edges in é;. Note that the edge ¢’ in és is a loop based at vy
in I'y, which cannot be parallel to any other edge on I',. Therefore I'y, has exactly
7 families. Moreover, if we let e1, es be the first and last edges in €; then each of
e1,eq, €' forms a single family.

Now consider the graph in Figure 2.4. Clearly there is only one possible position
for €/, which has exactly one endpoint on the corner from the tail of e; to the head
of eg. By the above there are no other edge endpoints in this corner, which is a
contradiction because the label of the tail of ey is 1 while the label of the head of
eg is 2, so the number of edge endpoints between them must be even. O

LEMMA 12.10. Suppose n > 4. Then A =4 and ', has at most n + 1 parallel
edges.

PRrROOF. We need only show that A = 4. The second statement will then follow
from Lemma 12.8.

Suppose to the contrary that A = 5. First assume that a; < n + 2 for all 3.
Then An = 5n < 4(n+1),s0n =4, and T, = (5,5,5,5). By Lemma 2.3(1) s;
is coprime with n = 4, so we may assume without loss of generality that s; = 1.
Thus the label sequences of é; are (1,2,3,4,1) at u; and (2,3,4,1,2) at uz. One
can check that the label sequences of és are (3,4,1,2,3) at u1, and (4,1,2,3,4) at
ug. This contradicts Lemma 12.5 with ej, eo the two 12-edges in €1, e3 the 12-edge
in é3, and e/, e}, the two 34-edges in é;.

We may now assume without loss of generality that a3 > n + 1. By Lemma
12.9 we must have a3 = n + 2. By Lemma 12.4(1) we have s; = £1.

CLAIM 1. as,a4 <n+1.

PROOF. Suppose az = n + 2. Then sy = +1 by Lemma 12.4(1). Also by
Lemma 12.1 we have

S1—S3=a1t+ax=4 mod n

Hence either n = 4 and s; = s (= 1 say), or n =6, s = —1 and so = 1. In either
case one can check that there is a pair of parallel 12-edges e, e5 in €1, a 12-edge es
in éo which is not equidistant to e1, e2, and a pair of parallel 34-edges €], €5 in és.
This is a contradiction to Lemma 12.5.

Hence as < n+ 1. A symmetric argument shows that a4y < n + 1. O

We now have 5n < 2(n + 2) + 2(n + 1), giving n < 6. Also if n = 6 then
r,=(8,7,8,7).
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CLAIM 2. n =5.

PROOF. Otherwise we have n = 4 or 6. If as = n + 1 then Lemma 12.1 gives
so=81—a1—ay==21—(n+1)— (n+2) =0 mod 2, which is a contradiction
to the fact that the transition function of a family of more than n edges must be
transitive (Lemma 2.3(1)). Therefore we have ay < n. Similarly for a4. This rules
out the case n = 6.

When n = 4 we must have I';, = (6,4,6,4). Assume without loss of generality
that s; = 1. We now apply Lemma 12.5 with ej,es the 12-edges in é1, es the
12-edge in é3, and €], € the 34-edges in és. O

CLAIM 3. If n = 5 then a3 # 7.

PROOF. Otherwise by Claim 1 we have (a2, a4) = (6,5) or (5,6), so ag — az =
+1. We may assume that s; = 1. By Lemma 12.1 we have

s3=81—as+as=1F1= 0Oor2mod5
which contradicts the fact that s3 = £1 mod n (Lemma 12.4(1)). O

The only possibility left is that n = 5 and I';, = (7,6,6,6). We may assume
s1 = 1. Then this can be ruled out by applying Lemma 12.5 with ey, e5 the 12-edges
in é1, eg the 12-edge in és, and €], €} the 45-edges in és. O

LEMMA 12.11. (a) Ty has at most n + 1 parallel edges.
(b) A =4.

PRrROOF. (a) This follows from Lemmas 12.8 and 12.10 if either J = +1, or
A =4, or n > 4. Hence we may assume that A =5, J # +1, and n = 3. By
Lemma 12.9 we have a; < n+2 = 5. Thus the possible values of (a1, as,as, aq) are
given below. The second quadruple gives (s1, $2, 83, 84), calculated as functions of
s = 81, using Lemma 12.1.

(1) (5,5,5,0) (s, s—1,s+1, —)
(2) (5,5,4,1) (s, s—1,s—1, s)

(3) (5,3,2,5) (s, s+1,s—1,s+1)
(4) (5,4,5,1) (s, s, s, s)

(5) (5,4,4,2) (s, s, s+1, s+1)

(6) (5,4,3,3) (s, 8, s—1,s—1)

(7) (5,4,2,4) (s, s, 8, 8)

(8) (5,3,5,2) (s, s+1,s—1, s+1)
(9) (5,3,4,3) (s, s+1,s, s—1)

Cases (1), (3), (8) and (9) are impossible because there is an i such that a; > 2
and s; = 0, contradicting Lemma 2.14(3). Cases (4) and (7) contradict Lemma
12.6.

In case (2), by Lemma 12.7(1) the edges in é3 are not parallel to those in é; Ué,
on 'y, and by Lemma 12.7(4) the edge in é4 is not parallel to those in é;. Thus
the 10 edges in é; U é3 U é4 are mutually non-parallel on I'y, contradicting the fact
that I, has at most 3n edges (Lemma 2.5). Similarly, in case (5) the edges in
é1Ués Ué, are mutually non-parallel on I'y, and in case (6) the edges in é2 UésUéy
are mutually non-parallel on I'y, which lead to the same contradiction.

(b) Assume A = 5. By Lemma 12.10 we have n = 3, and by (a) we have
a; < 4, hence the weights of é; must be (4,4, 4, 3) up to symmetry, and the transition
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numbers are (s,s+1,s—1,s+1). This is a contradiction to Lemma 2.14(2) because
one of the families has s; = 0 and hence is a set of co-loops. O

LEMMA 12.12. Suppose A = 4. Let e, e’ be edges of T, with label i at vertex
uy and j at us, 1 # j, where the i-labels of e, e’ at uy are not adjacent among all
i-labels at ui. Suppose also that e belongs to a family of at least n parallel edges of
Ta. Then eUe' forms an essential loop on the torus Fb.

PRrROOF. Note that in this case the jumping number J = £1, so the assumption
that the i-labels of e, e’ at uy are not adjacent implies that the 1-labels of ey, e} at
the vertex v; in I'y are not adjacent among all 1-labels. By assumption e belongs
to a family of at least n parallel edges of ', so if e U ¢’ is inessential on F}, then
by Lemma 12.2 e; and €} are parallel on T'y, which gives rise to at least 5 parallel
edges in Ty, contradicting Lemma 2.2(2) because I', has at most 4 edges. O

Up to symmetry we may assume that a; > as, as > a4, and a1 + az > a2 + a4.
Since a; < n + 1, the possibilities for I', are listed below. The second quadruple
indicates the values of s;, calculated in terms of s = s; using Lemma 12.1.

(1) (n+1,n+1, n+1, n—23) (s, s—2,s—4, s—2)
(2) (n+1,n+1,n n—2) (s, s—2,8—3,s—1)
(3) (n+1l,n+1l,n—1,n-1) (s, s—2,5—2,5)
(4) (n+1,n,n+1, n-2) (s, s—1,s—2,s—1)
(5) (n+1,n,n, n—1) (s, s—1,s—1, s)
(6) (n+1,n,n—1, n) (s, s—1, s, s+1)
(7) (n+1,n—1,n+1, n-1) (s, s, 8, 5)

(8) (n, n, n, n) (s, s, s, 8)

LEMMA 12.13. Cases (4), (5), (6), (7), (8) are impossible.

PROOF. In case (4) é1,é3 are not A-conjugate to éa,é4 by Lemma 12.7(1).
Since a4 < m, by Lemma 12.6(1) és, é4 cannot be the only A-conjugate pair, hence
é; must be A-conjugate to és. Since they have the same number of edges, by
Lemma 12.7(2) the first edge e of é; is parallel to the first edge €’ of é3. Since e, €’
have labels 1,2 at u1, respectively, the label of e at us is 2, hence s = 1. Now é5 is
a family of at least 3 co-loops, contradicting Lemma 2.14(2).

In case (5), by Lemma 12.7(1) é; can only be conjugate to é4 and é; to és, but
since a4 < n, by Lemma 12.6(1) é; must be A-conjugate to és. Since as + a3 = 2n,
this is a contradiction to Lemma 12.7(3).

For the same reason, in case (6) é; must be A-conjugate to é;. By Lemma
12.7(2) the first edge ey of é; must be parallel to the first edge e} of ;. Examining
the labeling we see that they have labels 2 and 1 at w1, respectively, so the label of

e1 at ug is 1, hence so = —1. It follows that s; = s = 0, which is a contradiction to
Lemma 2.3(1).
Cases (7) and (8) are impossible by Lemma 12.6. O

LEMMA 12.14. Case (1) is impossible.

PROOF. Since a4 < n, by Lemma 12.6(1) two of the first three families are
A-conjugate. Up to symmetry we may assume that és is A-conjugate to és or é;.
By Lemma 12.7(2) the first edges of the above conjugate pair must have the same
label pair. Examining the labels of these edges on u; we see that s = 3 if é3 is
A-conjugate to é3, and s = 2 if é3 is A-conjugate to é;. The second case cannot
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happen because then é; would be a set of at least 3 co-loops, contradicting Lemma
2.14(2).

The graph I'y is now shown in Figure 12.1. If n > 5 then there are bigons
e1Ueq in é9 and e, ) in é4 with labels 4,5 at uq and 5,6 at us (6 = 1 when n = 5).
Note also that there is a pair of parallel 23-edges e3 U e in é2. By Lemma 12.3(ii),
these conditions imply that e; U e} is inessential on Fb, which contradicts Lemma
12.12.

When n = 4, there is a pair of 14-edges e, ez in €1, a 14-edge es in é4, and
a pair of 23-edges in é5. Note that es is not equidistant to ey, es. This leads to a
contradiction to Lemma 12.5.

When n = 3, s; = 0 for some ¢ = 1,2,3, so one of the first three families
contains 4 co-loop edges, which is a contradiction to the 3-Cycle Lemma. ]

234. .23 456.....

XX

345 4

Figure 12.1

LEMMA 12.15. Case (2) is impossible.

PROOF. In this case a1 = az # a3 = a4 mod 2, so by Lemma 12.7(1) no edge
in é;1 U és is parallel to an edge in é3 U é4. Since I'y contains at least n bigons while
€3 U é4 contributes at most a4y = n — 2 bigons on I'y, it follows that some edge in
é2 is parallel to an edge in é; on I'y. Since a3 = az, by Lemma 12.7(2) this implies
that the first edge e; of é; is parallel to the first edge €/ of é; on T'y. In particular,
they must have the same label pair. Since e; has label 1 at u; and e} has label 2
at uy, we see that ey has label 2 at uo, hence s = 1. Since s4, = s—1 =0, thisis a
contradiction to Lemma 2.14(3) unless ag =n — 2 < 2, i.e. n < 3.

Now suppose n = 3. Let ej,es be the two 12-edges in é;. Note that there
is a 12-edge e3 in é3, which by the above is not parallel to any edge in é;, hence
e1, €z, e3 cut F‘b into a disk. Now é,4 is a loop based at vz in I'y, so it must be a
trivial loop. This is a contradiction because I'y, contains no trivial loop. |

LEMMA 12.16. Case (3) is impossible.

PrROOF. We claim that s = 1. By Lemma 12.6(1) one of é1, é; is A-conjugate
to some other é;. Because of symmetry we may assume that é; is conjugate to
some é;. If j = 2 then by Lemma 12.7(2) the first edge ey of é; is parallel on T,
to the first edge €} of é2, which has label 2 at uj, hence e; has label 2 at ug, so
s = s1 = 1. Similarly, if j = 3 then by Lemma 12.7(2), a1 =n+ 1 and a3 =n — 1
implies that the second edge e? of é; is parallel on I'y to the first edge of é3, which
has label 3 at u1, hence e? has label pair (23), which again implies that s = 1. The
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case j = 4 is impossible by Lemma 12.6(2). The graph ', is now shown in Figure
12.2.

\///X .....
LA

There are four edges €/, ..., ej with label pair (23), where ¢/ € é;. One can check
on Figure 12.2 that they are all equidistant to each other. We claim that they are
all parallel in T'.

The first n edges of é; form a loop C on Fb. Let a1, a2,a3 be the first three
edges of é;, oriented from w; to wg, and let a;(t),a;(h) be the tail and head
of a;, respectively. Then as in the proof of Lemma 2.22(1), one can show that
dy,(a1(h),az(t)) = dys(aza(h),az(t)). In other words, the corners at vz, v3 on one
side of the above loop contain the same number of edge endpoints. Since e} is
equidistant to €} = aq, we have d,,(az2(t), e5(h)) = dy, (€5(t), az(h)), hence the two
endpoints of €} lie on the same side of the loop C. It follows that e}, is parallel to
e}. Similarly, ef, e} are also parallel to e}. This proves the claim above.

Figure 12.3

Among the four parallel edges €], ..., €}, at least one of e}, e}y is adjacent to e}
or e}, on I'y. Because of symmetry we may assume without loss of generality that
eh is adjacent to e} or e5. Relabel it as es.
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Note that eg is a border edge. There is a face D of I, with 9D = e;UeaUeszUey,
see Figure 12.3. Let a be the arc in D connecting the middle points of ea, e4. Since
es = e is parallel and adjacent to e} or e and e}, e are non-border edges in Iy, the
face D has a bigon as a coupling face. (See Section 2 for definition.) It follows from
Lemma 2.15 that the surface F,, can be isotoped rel 0 so that the new intersection
graph I is obtained from T, by deleting ez, e4 and replacing them with two edges
parallel to eq, es respectively. The first family of I/, has n + 2 edges, which is a
contradiction to Lemma 12.8. ]

ProroSITION 12.17. The case that ng = 2, n = ny > 3 and I'y positive, is
impossible.

Proor. We have shown that I', has 8 possibilities. These have been ruled out
in Lemmas 12.13 — 12.16. g

13. The case n, = 2, ny > 4, I'y,I's non-positive, and
max(w; + wa, w3+ wq) = 2np — 2

It has been shown in Section 12 that if n, < 2 and ny, > 4 then I'y cannot be
positive. In Sections 13-16 we will discuss the case that I', is non-positive. The
results will be given in Propositions 14.7 and 16.8.

As before, we will use n to denote ny.

LEMMA 13.1. Suppose n, =2, n >4, and I'1, T’y are non-positive.

(1) The reduced graph I, isa subgraph of the graph shown in Figure 13.1.

(2) Let w; be the weight of é;. Then up to relabeling we may assume ws 4wy <
wy + wa, and wy + ws = 2n — 2 or 2n.

A
A A €4
€s €6

A
€

A A A

€3 € €3

u, u,
A
N
€, 8,
A A
Cs €6
Figure 13.1

PROOF. (1) First note that the number of loops in I', at u; is the same as that
at ug, because they have the same valence and the same number of non-loop edges.
If I', has two loops based at u; then they cut the torus into a disk, so there is no
loop at usz, which would be a contradiction to the above. Therefore f‘a has at most
one loop edge at each vertex. If there is no loop at u; then I', has at most four
edges connecting u1 to us. If there is one loop of f‘a at each u; then these cut the
torus into two annuli, each containing at most two edges of I',. In either case I'y is
a subgraph of that in Figure 13.1.
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(2) Up to relabeling we may assume that w; + we > ws + wy. Since Ty is
non-positive, by Lemma 2.3(1) we have w; < n, hence wy + wy < 2n.

Assume wy +we = 2n —k and k > 0. Then ws > (4n — (w1 + ... + wq))/2 > k.
Note that the set of k edges e; U ... U e of é5 adjacent to é; U é; has the same set
of labels at each of its two ends. Hence by Lemma 2.4 é5 contains a Scharlemann
bigon, so by Lemma 2.2(4) and the parity rule k¥ must be even. If k¥ > 4 then
e1 U ... U e contains an extended Scharlemann bigon, which is a contradiction to
Lemma 2.2(6). Hence k = 2. O

If T', has a Scharlemann cycle then by Lemma 2.2(4) the surface F, is separat-
ing, cutting M(r,) into a black region and a white region. Two Scharlemann cycles
of T', have the same color if the disks they bound lie in the same region.

LEMMA 13.2. Suppose ng, =2 andn > 1.

(1) If e1 Ues and €} U el are two Scharlemann bigons of Ty of the same color,
then either (i) up to relabeling e; is parallel to e, on Ty fori = 1,2, or (ii) Ty is
kleinian, and the four edges ey, ez, €y, €, are mutually non-parallel on T,

(2) If Ty, has four parallel positive edges then T'y is kleinian.

PRrROOF. (1) If the four edges are in two families of I', then (i) holds. If they
are in three families, i.e., ey is parallel to €] but ey is not parallel to e}, then the
nontrivial loop e3Ue) on F,, is homotopic in M (r,) to the trivial loop e; Ue}, which
contradicts the incompressibility of E,.

Now assume that they are mutually non-parallel. Let G be the subgraph of
T’y consisting of these four edges and the two vertices of I',. Let B be the side of
F, which contains the two Scharlemann bigons. Shrinking the Dehn filling solid
torus V, to its core K, and cutting B along the two Scharlemann bigons, we obtain
a manifold whose boundary consists of the two disk faces of G and two copies of
the two Scharlemann bigons, which is a sphere, so by the irreducibility of M (r,) it
bounds a 3-ball. It follows that B is a twisted I-bundle over a Klein bottle K, and
K intersects K, at a single point. Therefore by Lemma 2.12 T';, is kleinian.

(2) If T', has four parallel positive edges then they form two Scharlemann bigons
of the same color. By Lemma 2.2(2) no two of these edges are parallel on T, hence
by (1) Ty is kleinian. O

In the remainder of this section we assume that I, I'y are non-positive, n, = 2,
n =ny > 4, and max(w; +we, w3 +wy) = 2n — 2. We may assume without loss of
generality that w3 + wy < w1 +wg = 2n — 2. Since wy + ... + wy + 2ws = An > 4n,
we have ws = wg > 2. Let oy Uag (resp. 51 U B2) be the two edges of é5 (resp. ég)
adjacent to é; Ués. Note that these are Scharlemann bigons, hence Fy is separating,
and n is even. Without loss of generality we may assume that a; U ag is a (12)-
Scharlemann bigon. Assume that 57 U (32 is a (k, k 4+ 1)-Scharlemann bigon.

LEMMA 13.3. (1) k is even if and only if we =n — 1.
(2) {1,2yn{k,k+1} =0.

PROOF. (1) This follows from the parity rule. Orient u; counterclockwise and
ug clockwise in Figure 13.1. If wy = n — 1 then the first edge of é5 has label 2 at
w1 and k + 2 at uo, so by the parity rule & must be even. Similarly if ws = n or
n — 2 then k is odd.

(2) If k =1 then by (1) we have we = n or n — 2. In the first case the edges of
€1 would be co-loops, while in the second case the edges of é2 would be co-loops.
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If K =2 then w; = wy = n — 1 and the edges of é; are co-loops. Similarly if k =n
then the edges of é; are co-loops. Since n — 2 > 2, all cases contradict Lemma
2.14(2) because the above would imply that there are at least three parallel co-loop
edges. [l

LEMMA 13.4. Suppose w1 = we =n — 1. Then for i = 1,2, the edges of é&; on
Ty form a cycle C; and a chain C| disjoint from C;. Moreover, the vertices of Cy
(C%) are the set of v; with j odd, while the vertices of Co (C1) are the set of v; with
j even. The cycles Cq,Cs are essential on Iy

PRrROOF. Let ¢; be the transition function of é;. Let h be the number of orbits
of ¢;. Since é; has n — 1 edges, all but one component of the subgraph of T’
consisting of edges of é; are cycles. Therefore h — 1 < 2 by Lemma 2.14(2). Note
also that each orbit contains the same number (n/h) of vertices. Since I', has a
Scharlemann bigon, Fyis separating and the number of positive vertices of 'y is the
same as that of negative vertices, hence the number of orbits h is even, so we must
have h = 2. Hence é; forms exactly one cycle component C; and one non-cycle
component C! on I'p. Since each odd number appears twice at the endpoints of éy,
C contains v; with j odd, and C] contains those with j even. For the same reason
the edges of é; form a cycle Cy and a chain C4. Since n/2 edges of é; have even
labels at w1, Co must contain v; with j even, while C} contains v; with j odd. It
follows that C; N Cy = 0. ]

When w; = n — 2 and we = n, the edges of é; form exactly two cycles Cy
and Cy on I'y, essential on Fb, where the vertices of Cy (C3) are the v; with j odd
(even). This is because by Lemma 2.14(2) they cannot form more than two cycles,
while I'y, being non-positive implies that és cannot form only one cycle. When
w; = we = n — 1, let Cqp,C5 be the cycles given in Lemma 13.4. In either case,
let Ay, As be the annuli obtained by cutting F, along C7 U Cy. Consider the cycles
a=a;Uagy and B = B1 UGy on I'y. Note that either o and 3 are in different A;,
or each of them has exactly one edge in each A;. We say that «, § are transverse
to C; in the second case.

LEMMA 13.5. The cycles a, 8 are disjoint, and transverse to C;.

PROOF. The first statement follows from Lemma 13.3(2), so we need only show
that «, 8 are transverse to C;.

First assume A = 5. Then ws = 1(An — (w1 + ... + wy)) > 2 + 2. By Lemma
2.3(3) we also have ws < § 42, hence ws = § + 2, in which case the two outermost
bigons of the family é5 are Scharlemann bigons, with label pair (12) and (r+1,r+2),
respectively, where r = n/2. By Lemma 2.3(4) the label pair of 51 U 32 must be
either (1,2) or (r+1,r+2), and by Lemma 13.3 it cannot be the former. Therefore
it must be (r + 1,7+ 2).

If « is not transverse to C;, then it is an essential cycle in one of the annuli,
say A;, obtained by cutting F}, along C; U Cs, so 3 must be an essential cycle in
the other annulus As. The two cycles a and § separate the vertices of C from Cs,
except vy, Vg, Urq1 and v,4o which lie on aU 8. On the other hand, the edge e in é5
adjacent to ae has label pair (3,n), so there is an edge on ', connecting vz to vy,.
Since n is even, the vertices vs, v, belong to different C;, but since n > 4, neither
3 nor n belongs to the set {1,2,r+ 1,r 4+ 2}, which is a contradiction.
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Now assume A = 4. In this case the jumping number J(r,,r5) = £1. Consider
the two negative edges ¢/, ¢’ of ', with label 2 at u;. Note that their endpoints at
uy are separated by the label 2 endpoints of a1, as, hence by the Jumping Lemma,
on I'y, the endpoints of €/, e’ at vy are separated by those of «; in other words, €', e’
are on different sides of the cycle a. Assume that ve € Cy is positive. If « is not
transverse to Cy then all positive edges at vo must be on one side of a because the
other side is shielded by the cycle C;, which contains only negative vertices. This
is a contradiction. Therefore «, and hence 3, must be transverse to Cj;. (I

LEMMA 13.6. Each edge of é1 U é5 is either on C1 U Co or parallel to an edge
ofC'1 U CQ on Fb.

PRrROOF. Let C1,C5 and «, 3 be as above. By definition C5 consists of the
edges in é; with even labels. Let C{ be the edges of é; with even labels. Because
of symmetry it suffices to show that each edge of C] is parallel to an edge in Cs.

Note that « N Cy = ve. Let vy = BN Ce. (Thus t is the even label of the
Scharlemann bigon 1 U 82 in T'y.) Since wi + we = 2n — 2 and the edges adjacent
to é1Uéz on Iy are the (12)-Scharlemann bigon «; Uag and the (¢,t41)- or (¢—1,¢)-
Scharlemann bigon (1 U B2, we see that 2,t are the only even labels appear three
times among the endpoints of edges in é; U éa, hence on I'y the edges of C] form
a chain with endpoints at vo,v:, and possibly some cycle components. Therefore
C{ —v2 Uy is disjoint from aU S U C1, hence lies in the interior of the two disks
obtained by cutting £} along v U 6 U C;. By Lemma 2.14(1) this implies that C}
has no cycle component, and hence is a chain. Since C contains all vertices of Co,
this also implies that one component of Cy — vo U v; contains no vertices of I'y; in
other words, the two vertices vo, vy are adjacent on Cs.

Let g, p be the transition number of é;, és, respectively. Since C5 has an edge
connecting vy to v, we have p = +(t — 2) mod n. Since C] is a chain of length
(n/2) — 1 connecting v, v¢, we have ((n/2) —1)q = £(t — 2) mod n. An edge of C]
has even labels on both endpoints, so ¢ is even, hence ((n/2) —1)g = —qg mod n. It
follows that p = +¢ mod n, which implies that each edge e’ of C has its endpoints
on adjacent vertices of Cs. Let e be the edge of Cy connecting these two vertices.
Since €’ has interior disjoint from oo U 8 U C1, it must be parallel to e. |

ProrosITION 13.7. The case that 'y, Ty are non-positive, ng = 2, n = ny > 4,
and ws + wy < wy + we = 2n — 2, 1s 1impossible.

PROOF. First assume that w; =n — 2 and wy = n. By Lemma 13.3, the label
pair of 8 is (k,k + 1), where k is odd and k # 1. If k = n — 1 then the edges of és
are co-loops, which contradicts Lemma 2.14(2). Therefore n —3 > k > 3.

Since the label sequence of é; at us is k+2,...,n,1, ...,k — 1, the above implies
that there are adjacent edges e},el, € é; with labels 1 and n at ug, respectively.
By Lemma 13.6 each edge of é; is parallel to some edge of é; on I'j, hence the
transition function 1; of é; is either equal to 1, of &3, or ¥5 ! but since the two
edges of é; Ués with label n at w; have labels £+ 1 and k& — 1 respectively at us, the
first case is impossible, hence 1, = w;l. Let é; = e1 U... Ue,, where e; has label
i at uy. Since e is the only edge of é; with label 1 at w1, it must be the one that
is parallel to e} on T'y. Similarly, e, is parallel to e/, on I',. This is a contradiction
to Lemma 2.19.

Now assume that wy = we = n — 1. As above, let és = es U ... U e,, where ¢e;
has label ¢ at u;. The label sequence of é; at us isk+1,k+2,...,n,1,....,k—1. By



78 CAMERON McA. GORDON AND YING-QING WU

Lemma 13.3, k is even, and {1,2}N{k,k+1} =0, son—2 > k > 4. Tt follows that
there are three consecutive edges e/, €}, e, of é; such that e} has label i at ug. For
the same reason as above, €} is parallel to e3 and e/, is parallel to e, on T'y. Since
the number of edges between e}, and e} is 1 while the number of edges between ey
and e, isn —3 > 1 on I'y, this is a contradiction to Lemma 2.19. O

14. The case n, = 2, ny > 4, I'1,I's non-positive, and w; = wy =ny

In this section we consider the case that n, = 2, n = n, > 4, I'y,I's non-
positive, and w; = we = n. We will also assume without loss of generality that
ws > wy. Let ég =e; U...Ue,, é2 =€f U...Uel, and assume that e;, e, have label
7 at Uui.

Let r be such that the label of the endpoint of e; on dus is 7 + 1. One can
check that both e;, ¢} have label 7 + i at dus.

Since I’y is non-positive, the vertices of I'y, cannot all be parallel, so the edges of
é1 form at least two cycles on I'y. By Lemma 2.14(2) they form exactly two cycles
Cl U CQ on Fb.

LEMMA 14.1. T, is not kleinian. In particular, Ty cannot contain four parallel
positive edges.

ProoOF. If T', is kleinian then by Lemma 6.2(4) there is a free orientation
reversing involution ¢ of (Fa, I',), which maps u; to ue, and is label preserving.
If there is no loop on T', (i.e. w5 = wg = 0), then A = 4 and w; = n for all
i, so the label sequences of é; at u; are all the same. The above implies that
the label sequences of é; at us are also the same as those at uq, so the transition
function ¢ defined by é; is the identity map and hence all edges of I', are co-loops,
contradicting the 3-Cycle Lemma 2.14(2).

Now assume ws = wg > 0. Then ¢ maps é; U é; to either é; U és or é3 U é4.
In the first case since ¢ is label preserving and orientation reversing on the torus,
the label sequence of é; at us is the same as that of é; at w1, hence all edges of
é1 are co-loops and we have a contradiction to Lemma 2.14(2). In the second case
wg =wg = w1 =wy =n,s0A=5and ws = wg =n/2. We have assumed that é;
has label sequence 1,2, ...,n at u1, so é3 has the same label sequence at uy. Since
ws = n/2, the label sequence of é; at ug is k+1,k+2,..n,1,..., k, where k = n/2.
Therefore ¢ is of period 2, so it has n/2 > 2 orbits, which again contradicts Lemma
2.14(2).

The second statement follows from the above and Lemma 13.2(2). O

LEMMA 14.2. The edges e;, €, are parallel on T'y.

ProOOF. The cycles C; U Cy defined at the beginning of the section cut the
torus Fb into two annuli Ay, A;. Each ¢} lies in one of the A; and has the same
endpoints as e;, so if it is not parallel to e; and e; C C7 then it is parallel to C7 —e;.
There are at most two such e} for Cy, one in each A;. Since n > 4, C; contains at
least three edges, hence there exists some e’ parallel to e; C C1.

Assume e; is not parallel to ej, and let e;, e/ be parallel on F},, which exist by
the above. Let D (resp. D’) be the disk on Fy, that realizes the parallelism between
ei,ej (resp. ej,e), and let D" be the disk between e; and €/ on Fy. Shrinking V,
to its core K3, B = DUD"U D" becomes a disk in M (ry) with 0B = e; Ue}, which
contradicts the fact that £} is incompressible in M (). O
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LEMMA 14.3. w3 + wq # n.

PROOF. Assume to the contrary that ws+ws = n. We have A = 4 as otherwise
there would be n parallel positive edges in é5, contradicting Lemma 2.3(3). Now
ws = we = n/2, so the graph T', is as shown in Figure 14.1, where k = n/2. Since
A =4, we may assume that the jumping number is 1.

Let i be a label such that 1 < i < k, so it appears on the top of the vertex u;
in Figure 14.1. Consider the vertex v; of I'y, see Figure 14.2. By Lemma 14.2 e; of
é1 is parallel to e} of é;. Since e; and e} have the same label 1 at v;, there is an
edge of é3 U é4 between them. Similarly there are parallel edges e;;, e;- with label 2
at v;, and there is another edge between them. See Figure 14.2. From the labeling
we see that the two negative edges at v; (corresponding to loops in T';) must be
adjacent to each other.
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Figure 14.2

On Qu; the i-labels appear on endpoints of edges in the order of A, B,C, D,
where A € e;, B € €}, C'isaloop in é5, and D € é3Ué,. Since the jumping number
is 1, the 1-labels at v; also appear in the same order. In Figure 14.2 this implies
that the negative edge C' appears on the top of the vertex.

Now consider the four edges labeled 2 at v;, denoted by E, F,G, H, where E
is the negative edge, which is uniquely determined. Since F, G are parallel positive
edges on I'y, they are the ej,e;- given above, belonging to é; U é3. On Ousg this
implies that the endpoint of the loop E labeled i appears on the top of dus in
Figure 14.1. Since ¢ is any label between 1 and n/2, it follows that the labels on
the top of Qus must be 1,2,....k, so the integer r in the figure satisfies r = k.
However, in this case the edges of é; would form cycles of length 2 in I'y, which is
a contradiction to Lemma 2.14(2). O

LEMMA 14.4. w3 = n, and 0 < wy < n. Moreover, an edge e” of é3 with label
J at ua is parallel to the edges e; and e;- .

PrROOF. We have assumed wy < ws < n. If wy = n then the argument of
Lemma 14.2 applied to €3, €4 shows that each edge of é3 is parallel to exactly one
edge of é4. On the other hand, since the two parallel edges e;, e; in the proof of
Lemma 14.2 have the same label 1 at the vertex v;, there must be another edge
el in é3 U é4 between e; and e}. Together with the other edge in é3 U é4 which is
parallel to e, we get four parallel positive edges in T'y, which contradicts Lemma
14.1. Therefore wy < n.

Recall from Lemma 14.2 that the edges e; and e} are parallel in Ty, with the
same label 1 at wu;, so there must be another edge e/ € é3 U é4 between them.
Note also that if e; has label i + r at ug then e/ has the property that it has label
i at ug and i + r at uy. This is true for all 7, so either é3 and €4 have the same
transition function, or these e/ all belong to the same family. The first case happens
only if ws + wy = 0 mod n, which is impossible because by Lemma 14.3 we have
w3 + wyq # n, while ws < n and by the above we have wy < n. Therefore all the
el belong to és. Since ws < n, this implies that ws = n. Again by Lemma 14.3 we
have wy # 0. O
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LEMMA 14.5. The label sequence of €3 is 1,2, ...,n at us, and 141,247, ...,n, 1, ...
at uy. The labels of Ty are as shown in Figure 14.3.

PROOF. First assume that the label sequence of é3 at us is not 1,2, ...,n. Then
there is a pair of adjacent parallel edges e/, ¢} with label n and 1 at ug, respectively.
By Lemma 14.4 e Uef and e, Ue! are parallel pairs on I',. Since ef, e}/ are adjacent
on I', while e, e, are not, this is a contradiction to Lemma 2.19. Therefore the
label sequence of €3 at us must be 1,2, ..., n.

Since by Lemma 14.4 the edge e/ connects v; to v;4, with label 2 at v; and 1 at
Vitr, we see that on I', it has label ¢ at us and i+ at u;, hence the label sequence
of ésat u; isr+1,...,n,1,...,7. The labels of é;, é5, €5 determine those of the loops,
and hence those of é5. Therefore I', must be as shown in Figure 14.3. O

LEMMA 14.6. (1) The jumping number J = +1.
(2) Orient the negative edges of T'y from uy to ua. Then on Ty the edges of é;
form two essential cycles of opposite orientation on Fy.

PROOF. (1) Since A = 4 or 5, the jumping number is either +1 or +2. Let
ei, e, be the edges of é1, éz, respectively, with label ¢ at w;. If J = £2 then these
edges are not adjacent among the 1-edges at v; in I',. Since by Lemma 14.2 they
are parallel in I'y, there would be more than 2n, = 4 parallel edges in I'y, which
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contradicts Lemma 2.2(2). Therefore J = 1. Changing the orientation of F} if
necessary, we may assume that J = 1.

(2) Now let Cy,C5 be the cycles on T’y consisting of edges of é;. We need to
show that they are of opposite orientation.

Let a1, a9, a,as be the edges with label 1 at u;, where a; € é; for i = 1,2, 3,
and a € é;5. Note that they appear in this order on duy. Since J = 1, they also
appear in this order on dv; in T'y, see Figure 14.4. By the proof of Lemma 14.3 we
see that ag is in the middle of a pair of parallel positive edges incident to vy, which
is not parallel to a1, as, hence the orientation of C; must be as shown in Figure
14.4, where C is represented by the lower level chain.

Figure 14.4

Now consider the edges labeled n at u;. There are 5 of them if A = 5, but
we only consider @ and the edges a}, ab, a%, where a; € é;. The order of the label
n endpoints of these edges on duy is af,a,a},al, while the orientation of v, is
opposite to that of v;. Therefore these edges appear on Jv,, as shown in Figure
14.4. We see that C,Cy are of opposite orientation on Fb. O

PROPOSITION 14.7. Suppose ng = 2, n > 4, [y, 'y are non-positive, and w; =
w2 = MN.

(1) On Ty each edge of é4 connects a pair of adjacent vertices of some C;, but
is not parallel to an edge of C;.

(2) Two adjacent edges of é4 lie in different annuli of Fy, — UG,

(8) wy =ws =wg =2, A=4, and n =6.

(4) The graphs Ty, Ty and their edge correspondence are as shown in Figure
14.5, where e; (resp. €}) is the edge in é1 (resp. é2) with label i at uy, and the edge
between e;, €} is the edge of és with label i at us.

PROOF. (1) From Figure 14.3 we see that an edge e of é4 with label i at u; has
label i +r at us. Since the transition function of é; also maps i to i +r, v; and v;,
are connected by the edge e; of é;, and hence are adjacent on one of the cycles C;.
This proves the first part of (1). By Lemmas 14.2 and 14.4 each edge e; of Cj is
parallel to an edge €} in é; and an edge e in és, so if e is parallel to e; then there
would be four parallel positive edges in I'y, which would contradict Lemma 14.1.
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(2) By Lemma 14.6(2) the two cycles Cy, Cy have opposite orientations. With-
out loss of generality we may assume that the orientations of C; are as shown in
Figure 14.5. Recall that C} is the cycle containing the vertex v1. By Lemma 14.6(1)
we may assume without loss of generality that the jumping number of the graphs
is 1. Let e be an edge of é; with label k at uy, and let ey, e}, e} be the edges of
é1, é9, €3 with label k at w;. Then the endpoints of these edges appear at Ju; in
the order ey, e}, €}, e, so on Jui, they appear in the same order. If vy is in Cy then
the orientation of C; points to the left and the orientation of vy is clockwise, so
e is in the annulus below C;. If vg is in Cy then the orientation of Cy points to
the right and the orientation of vy is counterclockwise, so again e is in the annulus
below C5. Since the labels of adjacent edges of é4 belong to different C; in I'y, it
follows from the above that they are in different annuli of F, — UC,.

(3) Since each C; contains n/2 > 2 vertices, there cannot be two edges on
the same side of C; connecting two different pairs of adjacent vertices and yet not
parallel to an edge of C;. Hence by (1) and (2) é4 contains at most two edges. By
Lemma 14.4 wy > 0, and from the labeling in Figure 14.3 we see that wy is even.
Therefore wy = 2.

If A =5 then the loop family of I', at u; contains n—1 edges. This contradicts
Lemma 2.3(3) for n > 4. Hence A = 4.

Let e be an edge of é4 with endpoints on v; and v; in Cy, lying on the annulus
A below Cy. By (1) it is not parallel to the edge on Cy connecting v;, v;, so on A
it separates Cy from other vertices of Cy, hence there is no edge in A connecting
(' to vertices of Cy except possibly v; and v;. By Lemmas 14.2 and 14.4 there are
three parallel edges for each edge of C;. Together with e, they contribute 7 edge
endpoints to each of v; and v;, therefore A = 4 implies that there are at most two
edges in A connecting Cy to Ca, one for each of v;, v;. Note that these correspond
to loop edges in I',. Therefore the two annuli give rise to at most 4 loops in I'y, so
ws = we < 2. Since n > 4 and 2ws + wy = (A —3)n = n, it follows that n = 6, and
Wy = Wg = 2.

(4) By Lemma 14.5 T', is the graph in Figure 14.3. We have wy = ws = wg = 2
and w; = wy = w3 = n = 6, hence I, is as shown in Figure 14.5(a).

The edges in és, és are parallel to those in €1, as shown in Lemmas 14.2 and
14.5, therefore they form families of three parallel edges, as shown in Figure 14.5(b).
Orientations are from u; to us on I'y, so the tails of these edges are labeled 1 and
the heads labeled 2 on I'y. The two edges in é4 connect vy, vg and vs, v5 respectively,
and by (1) and (2) they are not parallel to edges in C; and lie in different annuli
of F, — C} U Cs, hence we may assume that they look like that in Figure 14.5(b).
The four edges in é5 and ég are now determined by the labeling of the edges and
the vertices on I',. The labeling of the weight 3 families in 'y, are determined by
the single edges and the assumption that the jumping number is 1. O
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Figure 14.5
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15. I', with n, <2

The next few sections deal with the case that n, < 2 and n, < 4. In this
section we set up notation and give some preliminary results.

We use G = (b1, b2, b3) to denote a graph G on a torus with one vertex and
three families of edges weighted b1, b, b3. Similarly, denote by G = (p; a1, ...,a4) a
graph G on a torus which has two vertices, two families of loops of weight p, and
four families of edges é; with weight sequence aq, ..., a4 around the vertices. It is
possible that p and some of the a; may be zero. When p = 0 we will simply write
G = (a1,...,a4). Note that the weight sequence is defined up to cyclic rotation
and reversal of order. When p = 0, any weight 0 can be moved around without
changing the graph, hence (2,2,0,0) is equivalent to (2,0,2,0), but (1;2,0,2,0)
is different from (1;2,2,0,0) and (3,1,3,1) is different from (3,3,1,1). When it
is necessary to indicate whether the vertices of G are parallel or antiparallel, we
write G = +(p; a1, ..., aq) if the vertices of G are parallel, and G = —(p; ay, ..., a4)
otherwise.

Suppose n, = 2 and ny, is even. Then T, is of the form (p;aq, ..., a4). Let e be
an edge of é;. Define ¢; = 0 if the two labels at Je have the same parity, and €; = 1
otherwise. The assumption that n; is even implies that this is independent of the
choice of e € é;. If ny, = 2 then ¢; = 0 if and only if one (and hence all) of the edges
in é; is a co-loop edge, in which case we say that é; is co-loop.

LEMMA 15.1. (The Congruence Lemma.) Suppose n, =2, and ny is even.
Let é;,¢; be non-loop edges in Ly. Let ay, be the weight of éx.

(1) Iffa has no loops and a;,a; # 0 then a; +¢; = aj+¢€; mod 2. In particular,
if ny, = 2 then a; = a; mod 2 if and only if é; and é; are both co-loop or both non
co-loop.

(2) Suppose I', has loops, and T'y has the property that v; is parallel to v; if
and only if i, j have the same parity. If either a;,a; # 0 or the endpoints of é;,é;
at uy are on the same side of the loop at w1, then a; = a; mod 2.

PROOF. (1) Delete edges of I', with zero weight. We need only prove the
statement for adjacent edges é1, és of f‘a with non-zero weight. Let ey, ...,eq, and
e, ...,e,, be the edges in é; and é, respectively, so that e} is adjacent to e,, on
Ouy. Then e}, is adjacent to e; on Juz. Without loss of generality assume that the
label of e; at u; is i. Let t; be the transition number of é; from u; to us. Then the
label of e1 at ug is 1+¢;. On the other hand, the label of €| at uy is a; + 1, so the
label of efh at uy is ay + as, and the label of efw at us is a1 + ag + to. See Figure
15.1. Since 6:12 is adjacent to e; on usg, the label of e; on us is a; +as +t2+ 1. By
definition €; = t; mod 2, therefore these two equations give

l+e1=a1+as+e+1 mod 2

It follows that a; = a9 if and only if €, = €2 mod 2.
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(2) We need only prove the statement for adjacent non-loop edges é1, é; of I',.
By assumption v, v, are parallel if and only p = ¢ mod 2, so the parity rule gives
€1 = €2 mod 2. Also, a loop edge in I', must have labels of different parity at its
two endpoints, so if the endpoints of é1,és at u; are on the same side of the loop
then a1 + a2 = 0 mod 2.

It remains to prove the case that the endpoints of €1, é2 at u; are on different
side of the loop at uy, a1, as # 0, and é1, é3 are adjacent among nonempty non-loop
edges. Note that the endpoints of é1,és are on different sides of the loop at wu;
if and only if their other endpoints are on different sides of the loop at us. Since
the number of loops at the two vertices are the same, the distance between the
endpoints of e,, and €| on Juy is the same as that of e, and e; on Juz, hence
the argument in case (1) can be modified to show that if a1, as # 0 then a1 = as
mod 2. More explicitly, if there are k& loops between them then the endpoints
of 6;2 are labeled a1 + as + k at wy, and a7 + as + k + t5 at uy, and we have
a1 +as+k+to+k+1=14t1, hence the result follows because t; = ¢; and €1 = €3
mod 2. O

LEMMA 15.2. Suppose 'y is positive, and contains a black bigon ey Ues and a
white bigon e} Ueh. Then on Ty the four edges ey, ez, €, e, cannot be contained in
two families of parallel edges.

PROOF. Recall that no two edges are parallel on both graphs, so if the lemma
is not true then we may assume that e; is parallel to e; on I',. Let B; be the disk
on F), realizing the parallelism, and let D, D’ be the bigon on F}, bounded by e; Ues
and e} U ej, respectively. Then A = D U D’ U By U By is either a Mébius band
or an annulus. The first case contradicts the fact that a hyperbolic manifold M
contains no Mobius bands. In the second case A contains a single white bigon and
hence each of its boundary components intersects a curve of slope r, transversely
at a single point. Since e; is an essential arc on both F, and A, A cannot be
boundary parallel, and hence is essential in M, which is again a contradiction to
the hyperbolicity of M. O

16. The case n, =2, ny, = 3 or 4, and I';,I's non-positive

Throughout this section we assume that n, = 2, n, = 3 or 4, and both I'1,T'y
are non-positive. We will show that in this case there are only three possibilities for
the pair (I'y,T%), given in Figures 16.6, 16.8 and 16.9. The following lemma rules
out the possibility that n, = 3.

LEMMA 16.1. The case ng = 2, ny, = 3 and Iy, 'y, non-positive, is impossible.
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PROOF. The graph I', contains at most one loop at each vertex as otherwise
it would contain a Scharlemann bigon, which contradicts Lemma 2.2(4) because
np = 3 implies that Fy is non-separating. There are at most four families of edges
on I', connecting u; to us, containing a total of at least An, —2 > 10 edges, hence
there is a family containing 3 edges e; Ues Ues. These are positive edges in I'y, and
we may assume that e; has label ¢ at u;. Since one of the vertices of I'y, say vy, is
anti-parallel to the other two vertices, the edge ey is a loop on I, so its label on
ug is also 1. Since uq,us are antiparallel, we see that the label of e; at ug is i for
i = 1,2,3, hence they are all co-loop edges on I',. This is a contradiction to the
3-Cycle Lemma 2.14(2). O

We will assume in the remainder of this section that n, = 4. By Lemma 13.1
the graph I', is as shown in Figure 13.1. Note that é;,é5 are on the same side of
the loop at each u;. Denote by w; the weight of é;, and put A = w5 = wg. Then we
can denote 'y, by (A; wi,ws,ws,wy), and by Lemma 13.1(2) we may assume that
w3 + wg < wy + we = 6 or 8. By Lemmas 2.3(1) and 2.3(3) we have A\, w; < 4.
Also, counting the number of edges incident to u; gives

4
D wi+2x=4A

i=1

LEMMA 16.2. (1) If w; > 3 then s; = 2, where s; is the transition number of

(2) vy is parallel to vs and antiparallel to ve and vy.
(8) (w1, ws2) and (w3, ws) cannot be (3,2), (3,3) or (3,4).

PROOF. (1) Let s; be the transition number of é;. By the 3-Cycle Lemma
(2.14(2)) we have s; # 0. If s; = %1 then all vertices of I', would be parallel, which
is a contradiction to the assumption that I', is non-positive. Since n, = 4, the only
remaining possibility is that s; = 2.

(2) If A > 3 then I', contains a Scharlemann cycle among the loops, so Fy is
separating and the result follows. If A < 2 then the equation Y w; + 2\ = 4A gives
w; > 3 for some i. By (1) and the parity rule, v; is parallel to v,12, hence the result
follows because I'j, is non-positive.

(3) Assume wy = 3. By the equation above, A > 0, hence by Lemma 15.1(2)
wg is odd. The transition function of é; is given by (1), and it will determine that
of és. If we = 3 then one can check that the transition function of é5 would map j
to j, which would be a contradiction to (1). O

LEMMA 16.3. A > 2.

PRrROOF. First assume A = 0. Then I';, = (0;4,4,4,4). By Lemma 16.2(1) all
edges of T', have label pair (1, 3) or (2,4), see Figure 16.1. Thus Ty, is a union of two
cycles, hence all edges from v; to vs in 'y are equidistant. Since two of these edges

are in é; and are not equidistant on I',, this is a contradiction to the Equidistance
Lemma 2.17.
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If X\ =1, then w; > 2 for i = 1,...,4, so w; # 3 by Lemma 16.2(3). Hence
Ty = (1;4,4,4,2). One can check that the one of the families of weight 4 would
have the same label on the two endpoints of any of its edges, which is a contradiction
to Lemma 16.2(1). O

LEMMA 16.4. Suppose w; =w; =4 and é; =e1 U...Ueq and é; =€} U...Ue}
satisfy (i) they have the same label sequence at uy, and (ii) ey is equidistant to e} on
T'y. Then there exist at least 4 non co-loop edges in the other two non-loop families

of I'y.

PROOF. The graph I', is as shown in Figure 16.2 for the case (i,j) = (1,2).
(The proof works in all cases.) Note that e; being equidistant to e} implies that
ey is equidistant to e}, for k = 1,2,3,4. We may assume that the label sequence of
é; and é; is 1,2,3,4 at u;. By Lemma 16.2(1) the four edges e; U ... U eyq form two
essential cycles on I'y, so any edge on I'y, with endpoints vy, vs must be parallel to
e1 or ez. In particular, the edge e} has label pair (1,3) and hence must be parallel
to either e; or e3. Note that two parallel positive edges are equidistant. Since e}
is equidistant to e; and e; is not equidistant to ez on I'y, it follows that €] is not
equidistant to ez on I'y, therefore by the Equidistance Lemma and the above we
see that e} must be parallel to e; on I'y. Similarly each e}, is parallel to eg on I's.
Since e}, and e; have the same label k at u; on I'y, they have the same label 1 at
vy in Ty, so there must be another edge e}, between them. By the above e} cannot
be in é; U é;, hence they belong to the other two families of non-loop edges in I',,
and the result follows. O

1234 1234

3412 3412

Figure 16.2
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LEMMA 16.5. A = 3 s impossible.

PROOF. Suppose A = 3. Using Lemma 16.2(2)—(3) and the Congruence Lemma
15.1(2) one can show that I', has the following possibilities.

(1) A=5,(3;4,4,4,2);

(2) A =4, (3;4,4,2,0);

(3) A =4, (3;4,2,4,0);

(4) A =4, (3;4,2,2,2).

In each case, the family of é; has weight 4. We assume that its label sequence
at uy is 1,2,3,4. Then by Lemma 16.2(1) its label sequence at us is 3,4, 1,2, which
then completely determines the labels of I',. One can check that in case (1) and
(3) the family é3 gives 4 parallel co-loops, which is a contradiction to the 3-Cycle
Lemma (Lemma 2.14(2)). Case (2) is impossible by Lemma 16.4.

It remains to consider case (4). The graph T, is shown in Figure 16.3. The
third edge A of é; and the second edge B of é3 in the figure both have label pair
(1,3). As in the proof of Lemma 16.4, this implies that they are parallel on T'.
Since I', has at most 4 negative edges and at most 2 positive edges, by Lemma
2.2(2) Ty cannot have more than 2n, = 4 parallel edges, so the endpoints of A and
B at vs are adjacent among the four edge endpoints labeled 1 at vsz. Since A = 4,
the jumping number is 41, so the endpoints of A, B at u; in I, are also adjacent
among the four edge endpoints labeled 3 at u;. This is a contradiction because this
is not the case in Figure 16.3. (|
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Figure 16.3

LEMMA 16.6. If A =4, then T, = (4;4,2,4,2), and the graphs Ty, T}, and their
edge correspondence are as shown in Figure 16.6.

PROOF. Since I';, does not contain an extended Scharlemann cycle, by consid-
ering the labels at the endpoints of the four loops at u; we see that w; + we =
w3 + wg = 2 (mod 4). This, together with Lemmas 16.2(2)—(3) and 15.1(2), give
the following possibilities for I',.

(1) A=5,T, = (4;4,2,4,2);

(2) A=5,T, =(4;4,2,2,4);

(3) A=4,T, =(4;4,2,2,0).

We shall show that (2) and (3) are impossible, and (1) gives the example in
Figure 16.6.

Case (2) can be excluded by Lemma 16.4. The graph T', is shown in Figure
16.4. Note that the corresponding edges of the two non-loop families of weight 4
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are equidistant in I',, and they have the same label sequence at u;. Since the other

two non-loop families of I'; consist of co-loops, this is a contradiction to Lemma
16.4.
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Figure 16.4

The graph for case (3) is shown in Figure 16.5. Note that there is a loop in
T’y based at each vertex v;, so two edges connecting v; to different vertices must be
on different sides of the loop. Consider the four edges with label 3 at u;, indicated
by A, B,C,D in Figure 16.5. Note that they appear in this order on du;. Since
A = 4, the jumping number is +1, so they must also appear in such an order on
Ovs in T'.

On the other hand, since A connects v3 to v; while B, D connect vz to v4, A
must be on a different side of the loop C at v than B, D. Hence when traveling
around OJvs in a certain direction the four edges appear in the order A, C, B, D or
A,C, D, B. This is a contradiction. Therefore Case (3) is impossible.

1234 12 3412 34 1234

\\ &&é %ﬁ
771N

12 3412 3412 34 1234

Figure 16.5

In case (1), the graph T', is shown in Figure 16.6(a). By the same argument
as above, we see that the edges B U E and A U C must be on different sides of the
loop D in I'y. Therefore B, E are adjacent among the 5 edges labeled 1 at v3. Since
they are not adjacent among the 3-edges at u1, the jumping number must be +2.
This completely determines the edges around the vertex vs up to symmetry, which
in turn determine the edges at adjacent vertices vy, vs and then the edges at vs.
The graph Ty, is shown in Figure 16.6(b). (|
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LEMMA 16.7. If A = 2, then either A =5 and Ty = (2;4,4,4,4), or A =4 and
T, =(2;4,4,4,0). The graphs T'y, Ty are as shown in Figures 16.8 and 16.9.

PROOF. Here the possibilities for I', are

(1) A=5,T, = (2;4,4,4,4);
(2) A=4,T, = (2;4,4,4,0);
(3) A=4,T, = (2;4,4,2,2);
(4) A=4,T, = (2;4,2,4,2);
(5) A =4, T, = (2:4.2,2,4).

The graphs in cases (3) — (5) are shown in Figure 16.7 (a) — (c). In cases (3)
and (4) the corresponding edges in the two weight 4 families are equidistant, and
the other two non-loop families are co-loops. Therefore these cases are impossible
by Lemma 16.4. In case (5) there are loops at v; and vs in I'y, and there is a (34)-
Scharlemann bigon in I', which forms another essential cycle C' in I',. Consider the
two edges of I', with label 3 at w; and label 1 at us. On I'y, these edges connect
vz and v1, and therefore must lie on the same side of C'. Hence they are adjacent
among the four edges labeled 1 at vs because the other two edges connect v3 to
vg. Since A = 4, the jumping number must be £1, so these edges are also adjacent
among the four edges with label 3 at u;, which is a contradiction because on Figure
16.7(c) the two edges with label 3 at u; and 1 at ug are not adjacent among the
four edges labeled 3 at u;. Therefore (5) is also impossible.
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In case (1) the graph T, is shown in Figure 16.8(a). Label the edges as in the
figure, and orient non-loop edges of ', from u; to us. As in the proof of Lemma
16.4, the i-th edge e; in é; must be parallel to the i-th edge €} in é2 on I, and there
is an edge of é3 U é4 between them because e;, ¢; both have label 1 at v;. For the
same reason the i-th edge of é3 is parallel to the i-th edge of é4, hence the positive
edges of T', form four families of weight 4. The two edges e;, €} are adjacent among
the five edges labeled 1 at v; in I'p, hence the jumping number J = +1. Reversing
the orientation of the vertices of I'y if necessary we may assume J = 1. We may also
assume that the vertices vy, v3 are oriented counterclockwise and v, v4 clockwise,
otherwise we may look at F, from the other side.

Since T, contains 4 parallel positive edges, by Lemma 13.2(2) T', is kleinian,
so the weight of edges of I, are all even. There are only two (14)-edges K, W
in Ty, so they must be parallel in I',. They may appear in the order (K, W) or
(W, K) on dvy, but there is a homeomorphism of (F,, T) which is label preserving,
interchanging w1, us and mapping K to W, hence up to symmetry we may assume
that the order is (K, W). Thus up to symmetry we may assume that K and W
appear in I'y as shown in Figure 16.8(b). This, together with the orientation of the
vertices and the fact that J = 1, completely determines the edges around v; and
vg, and then the edges around vy and v3. See Figure 16.8(b).
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The graph I', in case (2) is shown in Figure 16.9(a). As above, one can show
that each edge e; in é; is parallel to e} € é2 and el € é3, where ¢;, €] have label i at
uy and e has label i at ug. Orient v; as above. Up to symmetry we may assume
J=1,and A, FE on I'y are as shown in Figure 16.9(b). This determines P and the
position of K at dvi, and hence the labels of the 2-edges at v;. The 4-labels at
u1 appear in the order K, D, H, N, so on I'y they appear in this order around vy,
clockwise, hence D, H must be to the right of vy in the figure. This also determines
the 2-edges at vy. In particular, the edges K and S must be non-parallel. The
remaining two edges R and L can be determined similarly, using labels at vy and
v3. See Figure 16.9(b). O

PROPOSITION 16.8. Suppose ng < 2 and ny, > 3. Then 'y, T’y and their edge
correspondence are given in Figure 11.9, 11.10, 14.5, 16.6, 16.8 or 16.9.

PROOF. First assume that 'y is positive. Then n, < 4 by Lemma 3.2. By
Lemma 2.23 np, must be even, hence our assumption implies that n, = 4. By
Proposition 11.9 the graphs are as shown in Figure 11.9 or 11.10.

Now assume I', is non-positive. Then we have n, = 2. The case that I’
is positive has been ruled out by Proposition 12.17. Hence T',,I'y, are both non-
positive. By Lemma 16.1 n; cannot be 3. By Proposition 14.7 if ny, > 4 then 'y, T
are given in Figure 14.5. Finally if n, = 4. Then Lemma 16.3 and 16.5 says that
A =4 or 2, which are covered by Lemmas 16.6 and 16.7, respectively, showing that
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if A = 4 then the graphs are in Figure 16.6, and if A = 2 then the graphs are the

pair in Figure 16.8 or 16.9. O
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Figure 16.9

17. Equidistance classes

The next few sections deal with the case that n; < 2 for ¢ = 1, 2. In this section
we introduce the concept of equidistance classes. The main properties are given in
Lemmas 17.1 and 17.2, which will be used extensively in the next few sections.

Define a relation on the set of edges F, of I, such that e; ~ ey if and only if
(i) they have the same label pair, (ii) they have the same endpoint vertices, and
(iil) they are equidistant.

LEMMA 17.1. This is an equivalence relation.

ProOOF. We need only show that condition (iii) is transitive, i.e. if ey, es, eg are
edges on a graph I' such that eq,es and es, es are equidistant pairs, then eq, es are
equidistant.

By definition we have d, (e1,e2) = dy,(e2,e1), and dy, (e2,e3) = dy,(e3,€2),
hence d,, (e1, e3) = du, (€1, €2) +du, (€2, e3) = du, (€2, e1) +dy, (€3, €2) = dy,(e3,€1).
This completes the proof. (|

We will call this equivalence relation the ED relation. An equivalence class is
then called an ED class, and the number of ED classes is called the ED number of
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Iy, denoted by 7, = n(I'y). We can then define D, = D(T'y) = (c1, ..., ¢y, ), Where
¢; are the number of edges of the equivalence classes, ordered lexicographically.

LEMMA 17.2. Let T'y, Ty be intersection graphs. Then the edge correspondence
between the graphs induces a one to one correspondence between the ED classes of
Lo and Ty; in particular n(T,) = n(Ty), and D(T,) = D(T).

PRrROOF. Note that e, es satisfy (i) on T', if and only if they satisfy (ii) on T'.
The Equidistance Lemma 2.17 now says that a pair of edges are equivalent on I,
if and only if they are equivalent on I'. O

121 212 1

21 212 1 121
-

(a) (b)

Figure 17.1

Example 17.3 (1) Consider a graph T';, = 4(3,3,1,1) and assume n, = 2, see
Figure 17.1(a). In general if n, = 2 then all parallel positive edges are in the same
ED class because they have the same label pairs and they are equidistant. One
can check that non-parallel edges are not equidistant. (For example, let u; be the
top vertex, us the bottom vertex, and let ey, es be as shown in the figure; then
dy,(e1,e3) =4 # 2 =d,,(ea,e1).) Hence D(T,) = (3,3,1,1). Compare this with
I, = +(3,1,3,1), in which case the two families of 3 edges are equidistant, and the
other two families of weight 1 are equidistant, hence D(+(3,1,3,1)) = (6, 2).

(2) Consider I', = —(3,3,1,1) or —(3,1,3,1), and suppose that the edges of T',,
are not co-loops (hence conditions (i) and (ii) in the definition of ED equivalence
are satisfied), see Figure 17.1(b) and (c). Equidistant edges are indicated in the
figure by different kind of lines. We can see that D(—(3,3,1,1)) = D(—(3,1,3,1) =
(4,2,2).

(3) When I'y, = —(4,2,2,0), each of the middle edges of the family of 4 is
equidistant to one edge in each of the two weight 2 families, and the other two
edges of the weight 4 families are not equidistant to any other edges. Hence
D(—(4,2,2,0)) = (3,3,1,1)

(4) Suppose I'y = +(4,2,2,0) and all edges have label pair (12). Then one can
check that each family of parallel edges forms an ED class, hence D(T',) = (4,2, 2).

(5) Suppose I'y = +(2,2,2,2) and all edges have label pair (12). Then one can
show that the first family is equidistant to the third family, but not to the adjacent
families. Hence D(T',) = (4,4).

(6) Similarly if Ty, = +(4,4,0,0) and all edges have the same label pair then
D(T,) = (8).



96 CAMERON McA. GORDON AND YING-QING WU

18. The case n, =1 and n, = 2

LEMMA 18.1. Suppose ng =2 and ny, = 1. Then one of the following holds.
(1) T, =-—(1,1,1,1) and Ty, = (4,0,0).

(2) To=—(2,2,0,0) and Ty, = (2,2,0).

(8) Ta = —(2,1,1,1) and Ty, = (3,1,1). The graphs Ty, Ty and their edge

correspondence are given in Figure 18.2.

PROOF. In this case [, has a single vertex, and I', has two vertices of opposite
orientation and has no loops. Hence we have I', = (ay, ..., a4), and Ty, = (b1, ba, b3).
We have by + by + b3 = A. If b;,b; are non-zero and b; + b; is odd then one can
check that one of the é;,¢é; is a family of co-loops, which is a contradiction to the
parity rule. Hence b; = b; mod 2 for all b;,b; non-zero. Thus if A = 5 then up
to symmetry we have I'y, = (3,1,1) or (5,0,0), and if A = 4 then I', = (4,0,0),
(2,2,0) or (3,1,0). The case (5,0,0) is impossible because two of the edges would
be parallel on both graphs, contradicting Lemma 2.2(2). The case (3,1,0) can be
ruled out by the parity rule, since in this case a loop would have the same label at
its two endpoints.

If Ty, = (4,0,0) then the four parallel edges are mutually non-parallel on T,
hence I';, = —(1,1,1,1).

If Ty, = (2,2,0), one can check that edges in different families are not equidis-
tant, hence D(I';) = (2,2). Since each pair of parallel edges contributes one
edge to each of two families in Ty, we have I'; = —(2,2,0,0), —(2,1,1,0) or
—(1,1,1,1). When 'y, = —(2,1,1,0) the two single edges are equidistant, while
each of the two parallel edges form an ED class, so D(T'y) = (2,1,1) # D(T).
Also, when T';, = —(1,1,1,1) we have D(T';) = (4). Therefore in this case we have
I, =-(2,2,0,0).

No suppose I'y, = (3,1, 1). In this case the three parallel edges are equidistant,
and each of the other two edges is not equidistant to any other edges. Hence
D(Ty) = (3,1,1). Since the three parallel edges in I'y, are mutually non-parallel on
Iy, I'y has at least three edges. One can show that D(—(2,2,1,0)) = (2,2,1) #
D(T), hence I, # —(2,2,1,0). Therefore ', = —(3,1,1,0) or —(2,1,1,1).

In the case that T, = —(3,1,1,0) and T, = (3,1, 1), the graphs are as shown in
Figure 18.1. The three parallel edges B, C, E are equidistant, hence they represent
the two weight 1 edges éa,é3 and the middle edge of the weight 3 edge é;1, so the
other two edges A, D must be as shown in Figure 18.1(a) up to symmetry. Since
they are non-adjacent at u; and their label 1 endpoints are non-adjacent among
the five label 1 edge endpoints at v in 'y, the jumping number must be +1. This
determines the edge correspondence between I', and I'y, as shown in Figure 18.1.

The torus F, cuts M (rq) into two components. Let W be the one containing
the bigon a on Fj bounded by B U E and the 3-gon 3 bounded by AUC U D. It
can be constructed by attaching a 1-handle representing part of the Dehn filling
solid torus, then two 2-handles represented by «, 8, then a 3-cell. The fundamental
group of W is generated by the horizontal circle z and the vertical circle y shown in
the figure, and the 1-handle z from w3 to u;. On the boundary of o, 3, A, B,C, D, E
represent 1,x,xy, 1,1, respectively, and each corner represents z, hence «, 8 give
the relations zzx = 1 and zxyzz = 1, respectively. Solving these in x and y shows
that 71 (W) = Z, generated by z. It follows that F, is not m-injective in W, and
hence is compressible. This is a contradiction.
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We now have I';, = —(2,1,1,1) and T, = (3,1,1). The three parallel edges
B,C, E are equidistant, hence on I', they are the single edges because they are
equidistant to each other but not to the edges in the weight 2 family. Since the
edge endpoints of these are consecutive on dv; while the 1-label endpoint of E at
v1 is not adjacent to that of either B or C, the jumping number must be +2. This
determines the correspondence of the edges up to symmetry, see Figure 18.2. [
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Figure 18.2

19. The case n; = ne =2 and I', positive

In this section we assume that n; = no = 2 and I'y is positive. Then no edge
of I', is a loop, hence I'y = —(a1,...aq), and Ty = +(p; b1, ..., by).

When p # 0 we may rearrange the a; to write 'y = —(r1,...,7p |81, ..., 5¢),
where r; are the weights of the co-loop edges, and s; are the weights of the non
co-loop edges.

LEMMA 19.1. Suppose ny = ny = 2 and 'y is positive.

(1) All non-zero b; are of the same parity. All non-zero r; are of the same
parity, all non-zero s are of the same parity, and the non-zero r; and s, are of
opposite parity.

(2) r; <2,8; <4, and p+ b < 4.

(3) 2p+ > b; =2A, and > r; + > s; = 2A.

PROOF. (1) The follows from the Congruence Lemma 15.1.

(2) Since I', has at most two loops, each co-loop family of ', contains at most
two edges, hence r; < 2. Similarly, since I', has at most four non-loop edges,
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5; < 4. OnI'y, p is the number of edges in a loop family, which is no more than p,
the number of co-loop edges in I,. Similarly, by is no more than ¢, the number of
non co-loop edges in fa. Since f‘a has at most 4 edges, we have p 4 by, < 4.

(3) This follows from the fact that each vertex of 'y, or I', has valence 2A. O

LEMMA 19.2. Suppose n1 = ng = 2 and 'y is positive. If p = 4 then I'y =
—(2,2,2,2), and Ty, = +(4;0,0,0,0).

PROOF. Since p + b; < 4 (Lemma 19.1(2)), we have b; = 0 for all ¢, hence
from Lemma 19.1(3) we have A = 4. Thus I, is a union of two disjoint loops, each
representing a family of four edges. Since each family of four parallel edges in I
contributes one edge to each family in I',, we have I', = —(2,2,2,2). O

LEMMA 19.3. Suppose n1 = ny = 2 and 'y is positive. Then p # 3.

PROOF. Suppose p = 3. The three loops in a family represent different classes
on f‘a, so I, has at least three co-loop edges. Since I', has some non-loop edges,
I, has at least one non co-loop edge. It follows that ', has exactly three co-loop
edges, so I'y, = —(2,2,2]s1). Since Y. 7; +>.s; = 2A is even, s; is even, which
contradicts Lemma 19.1(1). O

LEMMA 19.4. Suppose ny = ny = 2 and 'y is positive. Then p # 2.

PROOF. On I', there are non co-loop edges, so there are at most three co-loop
edges, but since r; < 2 and Y r; = 4 and the r;’s are of the same parity, there
must be exactly two co-loop edges. Hence I'y = —(2,2] 51, $2). By the Congruence
Lemma, the s; are odd, hence either A =5 and 'y = —(2,2]3,3), or A =4 and
I, =-(2,2]3,1).

If A =4and T, = —(2,2|3,1), then from Lemma 19.1 we have b; < 2,
> b; =4, and b; = b; mod 2 if b;, b; # 0. These conditions give I', = +(2;1,1,1,1),
+(2;2,2,0,0) or +(2;2,0,2,0). One can check that in the first two cases the
four non-loop edges of I'y, form two equidistance classes of 2 edges each, so Dy =
(2,2,2,2), and in the third case the four non-loop edges are all equidistant to each
other, so Dy = (4,2,2). On the other hand, the three parallel edges of I';, belong to
distinct classes, and there are at least two co-loop classes, hence n(T';) > 5. This
is a contradiction to Lemma 17.2.

IfA=5and T, =—(2,2]3,3), then from Lemma 19.1 we have b; < 4—p =2,
> b; = 6, and b; = b; mod 2 if b;,b; # 0, so we must have I', = +(2;2,2,2,0).
Depending on the weight sequence of the edges of I'y, we have I'y = —(3,2,3,2)
or —(3,3,2,2). If 'y, = —(3,2,3,2) then from the labeling one can see that the
two edges with both endpoints labeled 1 are not equidistant. Since these are par-
allel loops at vy of I'y, they are equidistant on I'y, which is a contradiction to the
Equidistance Lemma 2.17. Therefore T, # (-3, 2, 3, 2).

Now suppose I'y, = —(3,3,2,2), and T', = +(2;2,2,2,0). Then the graphs are
as shown in Figure 19.1. Consider the edges A, B, C, D, E with label 1 at u; of T',.
These correspond to the 5 edges with label 1 at vy of I',. Note that on 'y, D, E are
co-loop edges, hence on I'y, they are the two loops at v1. Since their endpoints with
label 1 are not adjacent among the 1-edges at v; in I'p, the jumping number must
be +2, so among these edges in I'y, the edge B is the one in I'y, which is adjacent to
both D and E at v, as shown in the Figure. Now consider the five edges labeled
2 at ug. Note that they appear in the order CABFG. Using the same argument
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as above we see that the edge A is the one adjacent to both F' and G, so we would

have A = B, which is a contradiction. 0
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LEMMA 19.5. Suppose ny = ngy = 2 and Ty is positive. Then p # 1.

PROOF. Suppose p = 1. Then I', has two co-loop edges, hence 'y = — (1,1 s1, $2)
or —(2]s1, s2, 83)-

If A = 5 then the second case does not happen since by the Congruence Lemma
s; would be 0 or odd and Y s; = 8, which would give s; > 4 for some %, contra-
dicting Lemma 19.1(2). Therefore I'; = —(1,1|4,4). Since each weight 4 family
contributes one edge to each non-loop family of Iy, we have T'y, = +(1;2,2,2,2).
Now the graph I'y, contains both black and white bigons, whose edges all belong to
the two weight 4 families on I',. This is a contradiction to Lemma 15.2.

If A=4thenT, = —(1,1]4,2) or —(2]3,3,0). The first case cannot happen
because the é; of weight 4 contributes one edge to each family in Iy, while the edge
of weight 2 contributes one edge to each of two families, so T'y, = +(1;2,2,1,1) or
+(1;2,1,2,1), which contradicts the Congruence Lemma. In the second case for
the same reason above we must have I'y, = +(1;2,2,2,0). Again there are black
and white bigons, which contradicts Lemma 15.2 because on I', the edges of these
bigons all belong to the two weight 3 families. O

LEMMA 19.6. Suppose ny = ny = 2 and 'y is positive. If p =0 then A = 5.

PROOF. In this case there is no loop on either graph, hence by Lemma 19.1(1)
all non-zero a; have the same parity, and all non-zero b; have the same parity. Any
two edges connect the same pair of vertices and have the same pair of labels on
their two endpoints, hence by definition they are ED equivalent if and only if they
are equidistant.

Assume A = 4. By the Congruence Lemma each of ', and T’y is of type
(4,4,0,0), (2,2,2,2), (4,2,2,0), (3,1,3,1), or (3,3,1,1). Let e; Uez be a bigon
on I',. Then e; and es are equidistant on I'y, so by Lemma 2.17 they form an
equidistant pair on I',. Note that since e; and ey are not loops on I'y, on T’y
they have different labels on u;. On the other hand, one can check that if I'y =
—(4,4,0,0) or —(2,2,2,2) then an equidistant pair e, e3 on I'; must have the same
label on wj, which is a contradiction. Therefore I', = —(4,2,2,0), —(3,3,1,1) or
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—(3,1,3,1). (Note that the above argument does not apply to I';, since a pair of
parallel edges on I',, is not an equidistant pair.) We will rule these out one by one.

CLAIM 1. The case T’y = —(4,2,2,0) is impossible.

IfT, =—(4,2,2,0) then b; # 0 for all ¢, hence I', = +(2,2,2,2) or +(3,1,3,1),
or +(3,3,1,1). In the first case all black (say) faces of T'y are bigons, so by Lemma
13.2(1) the 8 edges form either 2 or at least 4 families of edges in T',, contradicting
the fact that T, = —(4,2,2,0). Also, by Example 17.3 we have D(—(4,2,2,0)) =
(3,3,1,1), and D(+(3,1,3,1)) = (6,2), hence Ty, # +(3,1,3,1). It follows that
'y = +(3,3,1,1). The graphs are shown in Figure 19.2. Each of A, D on I', forms
an equidistance class, hence they are the single edges on I',. Up to symmetry
we may assume that A, D are as shown in Figure 19.2(b). This and the jumping
number J determine the edge correspondence of the graphs. The case that J =1
is shown in the figure. When J = —1 the edges G, F would be equidistant on T',
but not on I'y, which is impossible.

Figure 19.2

Let Py, P> be the bigon disks on Fy, bounded by AU B and C'U D, respectively.
Then the union of P, P, and two disks on T form an annulus @. More explicitly,
let ay (resp. b1) be the arc on duy (resp. duz) from the endpoint of A to that of
B, as (resp. b2) the arc on duy (resp. dug) from the endpoint of C to that of D,
a3 (resp. bg) on Ovy (resp. dva) from A to C, and a4 (resp. by) on Jvs (resp. dvy)
from B to D. Then aj U ... Uay (resp. by U ... Uby) bounds a disk Ps (resp. Py) on
the boundary torus Tp. Now @@ = P U ... U Py is an annulus in M. Note that 0Q
consists of two simple closed curves 07 = AUC UazUbs and 0, = BUD Uay Uby.

Orient A, B to point from w1 to us on I',. This determines the orientation of
0;. Note that they are parallel on the annulus Q. On I', the orientations of A, B
are from label 1 to label 2, as shown in the figure. This determines the orientations
of C, D. It is important to see that d;, 8> are parallel as oriented curves on F}. Let
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Q' be an annulus on Fy, with Q' = &, Ud,. Then Q U Q' is a non-separating torus
(not a Klein bottle!) in M(rp) intersecting the Dehn filling solid torus at a single
meridian disk, which contradicts the choice of Fj,. Therefore this case is impossible.

CLAIM 2. The case Ty = —(3,1,3,1) is impossible. If T, = —(3,3,1,1) then
Ty = +(4,2,2,0).
Now suppose ', = —(3,3,1,1) or —(3,1,3,1) and T'y, = +(4,4,0,0), +(4, 2, 2,0),
+(2,2,2,2),+(3,3,1,1) or +(3,1,3,1). By Example 17.3 we have D(—(3,3,1,1)) =
—(3,1,3,1) = (4,2,2). On the other hand, by Example 17.3 we also have D(+(4, 4
(8), D(+(4,2,2,0)) = (4,2,2), D(+(2,2,2,2)) = (4,4), D(+(3,3,1,1)) = (3,3, 1, 1),
and D(+ (3, 1,3,1)) = (6,2). Therefore by Lemma 17.2 in this case we must have
Ty = +(4,2, 2,0). IfT'y, = —(3,1,3,1) then the four edges in the same ED class all
have label 2 (say) at u1, which means that on T'y they all have label 1 at va, so they
cannot be the four parallel edges in +(4,2,2,0). Therefore I';, # —(3,1,3,1).

CLAIM 3. The case I';, = —(3,3,1,1) is impossible.

By Claim 2 we have I'y, = +(4,2,2,0). The graphs are as shown in Figure 19.3.
While the graphs are similar to those in Figure 19.2, the argument is necessarily
different because the orientations of the vertices of I'y, here are parallel while those
of T', in Figure 19.2 are antiparallel. One can check that up to symmetry the edge
correspondence must be as shown in the figure.

We would like to apply Lemma 2.15 to get a contradiction. To do that, let @) be
the face of ', bounded by AUBUEUH. The edge B is parallel to C on I'y, and C
is a non-border edge on I',, hence one of the bigons CUH or CUF is a coupling face
Q' of @ along the edge B. By Lemma, 2.15 there is a rel 0 isotopy of F, such that the
new intersection graph I'/, is obtained from I', by deleting A and F and adding two
edges parallel to B and H, respectively. It follows that I/, = —(4,2,2,0). This is
impossible by Claim 1. Therefore the case I', = —(3,3,1, 1) is also impossible. [J

Figure 19.3

,0,0)) =
)
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LEMMA 19.7. Suppose n1 = ng = 2 and 'y is positive. If p = 0 then I'y, =
—(3,3,3,1) and T, = +(3,3,3,1). The graphs T'y,Ty and their edge correspondence
are shown in Figure 19.4.

Proor. By Lemma 15.1 all non-zero a; have the same parity, and all non-zero
b; have the same parity. By Lemma 19.6 we have A = 5, so each of I'; and I'y is of
type (4,4,2,0), (4,2,2,2) or (3,3,3,1). If some b; = 4 then by Lemma 13.2(2) T, is
kleinian, but since each of the above type has an edge whose weight is non-zero and
different from the others, it must be mapped to itself by the involution in Lemma
6.2(4), which is a contradiction because it is supposed to be a free involution on E,.
It follows that T'y, = +(3, 3,3, 1). Direct calculation gives D(+(3,3,3,1)) = (4, 3,3),
D(—(4,4,2,0)) = (3,3,2,2), D(—(4,2,2,2)) = (4,4,1,1), and D(—(3,3,3,1)) =
(4,3,3). Hence by Lemma 17.2 we have I';, = — (3,3, 3,1).

Figure 19.4

The graphs I'y, [y are as shown in Figure 19.4. Label the edges of I, as in the
figure. Relabeling the vertices of I'y if necessary, we may assume that the labels
of edges of ', at u; are as shown. Since I'y has no loops, each edge of I', has
different labels on its two endpoints, which determines the labels at us. One can
check that T, has three equidistance classes ¢; = {B, E,G,I}, co = {A,D,H} and
cs = {C,F,J}. Since T} is positive, each family belongs to an equidistance class;
moreover, one can check that the single edge is equidistant to the non-adjacent
family of weight 3, which we will denote é;. Therefore these must belong to c;.
On I'y, B has label 1 at ug, so on I'y, B has label 2 at v;. It follows that B is the
middle edge in é;. This determines the labels on v; and vs. Now the endpoints of
E G, I € ¢; are adjacent on du; among edge endpoints labeled 1 (in the sense that
one of them is adjacent to both of the other two), but they are not adjacent on duvy
because the single edge is not adjacent to those in é; among edges with label 1 at
vy in I'y. Therefore the jumping number J cannot be £1, so J = £2. Reversing the
orientations of vy, vy if necessary we may assume that J = 2. Thus the edges E, G, I
in I', must be as shown. The other edges are now determined by this information.
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For example, the edges with label 2 at w; appear in the order B, D, F, H, J, so on
T’y the edges with label 1 at vy appear in the order B, H, D, J, F. |

20. The case ny =ne =2 and both I';,I's non-positive

In this section we assume that n; = ny = 2 and both I'y, 'y are non-positive.
Let T'y = (pa; a1, .-y aq), and T'y = (pp; b1, ..., bs). Without loss of generality we may
assume that pp > pq.

LEMMA 20.1. Suppose ny = ny = 2, and I'1, T’y are non-positive.
(1) A/2 < pp < 4.

(2) 2pq + > a; = 2A, and 2pp, + Y b; = 2A.

(3) Qs , bi S 2.

PRrOOF. (1) Since a loop in T, corresponds to a non-loop in T’y and vice versa,
we have p, + pp = A. We have assumed py > pa, S0 pp > A/2. Since no two edges
are parallel on both graphs and I', has at most four non-loop edges, we also have
oy < 4.

(2) This follows from the fact that the valence of a vertex in I', or T’y is 2A.

(3) Since T, and T, are non-positive, a non-loop edge in T, is a loop in Ty, hence
there are at most two edges in each non-loop family of 'y, i.e. a; < 2. Similarly for
b;. O

Figure 20.1

LEMMA 20.2. Suppose n1 =ns =2, A =5, and I'1, Ty are non-positive. Then
Ty =—(2;2,2,2,0) and Tp, = —(3;1,1,1,1) or —(3;2,2,0,0).

PrOOF. By Lemma 20.1(1) we have p, = 3 or 4. If p;, = 4 then each loop family
contributes one edge to each non-loop family of T, hence T', = —(1;2,2,2,2). The
four loops ey, ea, €3, e4 at vy are equidistant to each other; on the other hand, from
Figure 20.1 one can see that e; is equidistant to e; on I'y if and only if e; and e;
are on the same side of the loop at u;. This is a contradiction. Therefore this case
cannot happen.

Now assume p, = 3. Then by the Congruence Lemma we have I', = —(3;2,0, 2,0),
—(3;2,2,0,0)or —(3;1,1,1,1). Since p, = A—pp = 2, we have Y a; = 10—2p, = 6.
By Lemma 20.1 we have a; < 2, therefore by the Congruence Lemma we must have
Ty = —(2;2,2,2,0). The first case for I', above cannot happen because the two
non-loop 1-edges are not equidistant in ', while as parallel loops on I', they are
equidistant on I',. Therefore T'y, = —(3;2,2,0,0) or —(3;1,1,1,1). O
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Figure 20.2

LEMMA 20.3. Suppose n1 =ns =2, A =4, and I'1, Ty are non-positive. Then
one of the following holds.

(1) T, =—(2,2,2,2) and T, = —(4;0,0,0,0).

(2) Both Ty and Ty are of type —(2;1,1,1,1)

(8) Both Ty and T's are of type —(2;2,0,2,0

(4) Both Ty and Ty are of type —(2;2,2,0,0

).
).

PROOF. If p, = 4 then T, = —(4;0,0,0,0) and each loop family contributes
one edge to each family of T'y, hence T'y, = —(2,2,2,2).

If p, = 3, then by the Congruence Lemma 15.1(2) we have T', = —(1;2,2,2,0).
Let eq, ea, e3 be the three loops at v1. As parallel positive edges, they are equidistant
on I'y. On I’y they are as shown in Figure 20.2. One can check that e; is equidistant
to ez but not ez, which is a contradiction to Lemma 2.17. Therefore p;, # 3.

When pp = p, = 2, by the Congruence Lemma each of I'; and Iy is of type
—(2;1,1,1,1) or —(2;2,2,0,0) or —(2;2,0,2,0). We are done if both T',, T, are of
the same type.

If T, = —(2;2,2,0,0) then the two non-loop edges with label 1 at both end-
points are adjacent among the four edges labeled 1 at w1, hence on I'y, the two loops
at uy are adjacent among the four edges with label 1 at vy, which implies that I'y
cannot be —(2;2,0,2,0) or —(2;1,1,1,1).

It remains to rule out the possibility that I’y = —(2;1,1,1,1) and T =
—(2;2,0,2,0). In this case the graphs are as shown in Figure 20.3.

Label the edges of ', as in the figure. We want to show that this determines the
labels of the edges of I', up to symmetry. Since A = 4, by changing the orientation
of Fy if necessary we may assume that the jumping number is 1. The 1-edges at u;
are in the order A, B,C, D, so these labels appear in this order at v; on I',. The
order of the 1-edges at us is A, X, C,Y, so the 2-edges at v; are also in this order,
which determines the edges X,Y on I',. Finally, the order of the 2-edges at wu;
determines the edges E, F' in I',. Hence the labels of the graphs are as shown in
Figure 20.3.

One way to see that these graphs are not realizable is to consider the annulus
A from Jv; to Juy along the positive orientation, draw the segments of duy, Qus
on this annulus and check that these arcs must intersect on A, which contradicts
the fact that Oui,us are parallel curves on the torus Ty. Here is another way.
Consider the endpoints of the edges D, X, labeled a, b, ¢, d on the two graphs. We
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have
dy, (a,¢) = dy, (b,d) =1
so by Lemma 2.16 (applied with w;, u;, vk, v; replaced by v1, ve, u1, us and P, Q, R, S
replaced by a, ¢, b, d), we should have
dy, (a,b) = dy,(c,d)

However, on 'y, we have d,, (a,b) = 5 while d,, (c,d) = 3, which is a contradiction.
(]

Figure 20.3

PROPOSITION 20.4. Suppose ng,ny < 2. Then up to symmetry Iy, and Ty are
one of the following pairs.

(1) —(1,1,1,1) (4,0,0)

(2) —(2,2,0,0) (2,2,0)

(3) —(2,1,1,1) (3,1,1)

(4) —(2,2,2,2) +(4;0,0,0,0)
(5) —(3,3,3,1) +(3,3,3,1)
(6) —(2;2,2,2,0) —(3;1,1,1,1)
(7) —(2;2,2,2,0) —(3;2,2,0,0)
(8) —(2,2,2,2) —(4;0,0,0,0)
(9) —(2;1,1,1,1) —(2;1,1,1,1)
(10) —(2;2,0,2,0) —(2;2,0,2,0)
(11) —(2;2,2,0,0) —(2;2,2,0,0)

PRrROOF. This follows from the lemmas in Sections 18-20. More precisely, the
case np = 1 is done in Lemma 18.1, which gives (1)—(3) above; the case n, = np = 2
and I'y positive is discussed in Lemmas 19.2-19.7 according to different numbers of
loops on T'y, which gives (4)—(5); the case n, = ny = 2 with both graphs non-positive
is discussed in Lemmas 20.2-20.3, with the possibilities listed in (6)—(11). O

PROPOSITION 20.5. For each of the cases (3), (5), (6), (9) and (10) of Propo-
sition 20.4, the correspondence between edges of I'y, 'y is unique up to symmetry,
and is shown in Figures 18.2, 19.4, 20.4, 20.5 and 20.6, respectively.

PRrROOF. For cases (3) and (5) this follows from Lemmas 18.1 and 19.7.

In case (6) we have 'y, = —(2;2,2,2,0) and T', = —(3;1,1,1,1). The graphs
'y, Iy are as shown in Figure 20.4. Label the edges of ', as shown in the figure.
By symmetry we may assume that the labels on the edge endpoints of I'y are as
in the figure. Also up to symmetry of I'y on the torus F} we may assume that the
labels on v; are as in the figure.
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The label 1 endpoints of A, B,C are non-adjacent (in the sense that one of
them is not adjacent to either of the other two) among the 1-labels on dv;. These
are non-loops on I'y, and one in each family, hence their endpoints at u; are also
non-adjacent among endpoints labeled 1. This forces the jumping number J to be
+1. Now on I', the edge A must be as shown. It is easy to see that this determines
the labels on the other edges in I',.

In case (9) we have T', = —(2;1,1,1,1), ', = —(2;1,1,1,1), and A =4, so we
may assume J = 1. Label edge endpoints and edges of ', as in the figure. Using
symmetry we may assume A to be any one of the two non-loop edges labeled 1 at
v1. Then this determines the labels on the other edges. See Figure 20.5.

The determination of the edge correspondence for case (10) is similar. The
graphs are shown in Figure 20.6. O

Figure 20.4
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Figure 20.5

Figure 20.6
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21. The main theorems

Suppose M is a hyperbolic manifold admitting two toroidal Dehn fillings M (r1),
M (r2). Let Fy, be essential punctured tori in M such that OF,, consists of a minimal
number of copies of r,, and F} intersects F» minimally. Let X (F}, F3) be obtained
from N(FyUF>UT)) by capping off its 2-sphere boundary components with 3-balls.
We will use X (r1,72) to denote any X (Fy, F») above with 0F, of slope r,, and call
it a core of M with respect to the toroidal slopes r1,r2. Note that X (r1,r2) may
not, be unique.

LEMMA 21.1. Suppose M is a hyperbolic manifold admitting two toroidal Dehn
fillings M (r1), M (re) of distance 4 or 5. Then each of 0X(r1,72) and OM is a
union of tori.

PROOF. By the result of the previous sections we see that I',, ', are either the
graphs in Figures 11.9, 11.10, 14.5, 16.6, 16.8, 16.9, or one of the pairs given in
Proposition 20.4.

In all figures except 11.9 and 11.10, I', has two vertices and they have opposite
signs. Now X (F, Fy) can be constructed by adding thickened faces of T'y to N (F,U
Tp), which has two boundary components of genus 2. It is easy to check that in
all cases I'y, has at least one disk face on each side of F,. The boundary of a disk
face of I'y is always an essential curve on F, UTy. Adding a 2-handle corresponding
to a disk face will change a genus 2 boundary component to one or two tori. It
follows that the boundary of X (F1, F») is a union of tori. Since M is irreducible and
atoroidal, each torus boundary component of X (Fy, F3) either is boundary parallel,
or bounds a solid torus. Therefore M is also a union of tori.

The proof for Figures 11.9 and 11.10 is similar. In these cases I', has 4 vertices,
so N(F, UTp) has two boundary components S; of genus 3. It suffices to find two
faces on each side of F,, whose boundary curves give rise to non-parallel and non-
separating curves on S;. For 11.9 one can check that the bigons on Fj bounded
by the edges K U J and H U G are on the same side of F}, and give non-parallel
boundary curves on Sy, say, while the bigon bounded by the edges J U H and the
3-gon bounded by the edges K U L U R give non-parallel non-separating curves on
So. Hence the result follows. For 11.10, use the bigons bounded by E U F' and
G U H on one side, and the bigon F'U G and the 3-gon F U K U A on the other
side. (]

Consider the three manifolds M;, Mo, M3 in [GW1, Theorem 1.1]. More ex-
plicitly, M is the exterior of the Whitehead link, M5 is the exterior of the 2-bridge
link associated to the rational number 3/10, and M3 is the exterior of the (—2, 3, 8)
pretzel link, also known as the Whitehead sister link. Each of these manifolds ad-
mits two Dehn fillings M;(r1) and M;(r2), both toroidal and annular, with A =4
for i = 1,2, and A =5 for i = 3. Let Ty be the Dehn filling component of 0M;,
and let T7 be the other component of 0M;. Then for all except a few slopes s on
Ty, M’ = M;(s) is a hyperbolic manifold, and it admits two toroidal Dehn fillings
M'(r1), M'(r2) of distance 4 or 5. The following lemma shows that several of the
cases in Proposition 20.4 can only be realized by these manifolds.

LEMMA 21.2. Suppose Ty has a non-disk face. Then M = M; or M;(s) for
some i =1,2,3 and slope s on T, and the toroidal slopes r1,ro are the same as the
toroidal/annular slopes given in [GW1, Theorem 1.1].
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PrOOF. Let K be a curve on F, which is essential on ﬁ'a and disjoint from
F, N F,. Consider the manifold X = M — IntN(K). If X is hyperbolic then
A=F, - IntN(K) is an essential annulus in X (r,) and F} is an essential torus in
X (rp), so by [GW1, Theorem 1.1] X = M, for some ¢ = 1,2,3, and we are done.
Hence we may assume that X is non-hyperbolic. X is irreducible as otherwise there
would be an essential sphere S in X bounding a 3-ball in M containing K, which
would be a contradiction to the fact that K is an essential curve on Fa. Also X
cannot be a Seifert fibered manifold as otherwise M = X U N(K) would be non-
hyperbolic. Since by Lemma 21.1 0M is a union of tori, the above implies that X
must be toroidal.

Since M is atoroidal, an essential torus 7" in X must be separating. Let T be
the Dehn filling torus component of M, and let Ty = ON(K). Recall that M|T
denotes the manifold obtained by cutting M along T. Let V =V and W = Wy
be the components of M|T, where W is the component containing Tp. Among all
essential tori in X, choose T so that (a) if there is some T in X such that Ty C Wrp,
choose T' so that Vp contains no essential torus; (b) if every essential torus in X
separates Ty from 77, choose T such that Wp contains no essential torus.

Since M is atoroidal, T is inessential in M, hence V is either (i) a solid torus,
or (ii) T? x I, or (iii) a 3-ball with a knotted hole. Note that in the first two cases
V must contain the curve K. Let N = V — IntN(K) in the first two cases, and
N =V in the last case. Let C' =T N F,. Using a standard cut and past argument
we may assume that each component of C' is essential on both T" and F,. In case
(iil) let D be a compressing disk of T in W.

Claim 1. C # (.

Proor. If C = ) then F, lies in W, which is impossible in cases (i) or (ii)
because the curve K on F, lies in V. In case (iii) D N F, is a set of circles and one
can use the incompressibility of F, in W to isotope F, so that it is disjoint from
D. But then D is disjoint from K, so T" would be compressible in X, which is a
contradiction. O

Claim 2. C is a set of essential curves on F, parallel to K.

PROOF. Since C is disjoint from K, we need only show that each component
o of C'is an essential curve on F,. Assume to the contrary that o bounds a disk
E on F, and is innermost on F,. Then E must contain some boundary component
of F,, hence E C W(r,). In case (i) VU N(FE) is either a 3-ball, or a punctured
lens space or S! x $2, containing the curve K, contradicting the fact that ), is
incompressible and M (r,) irreducible. In case (ii) V U N(E) is a punctured solid
torus, so the irreducibility of M(r,) implies that M (r,) is a solid torus, which is
absurd because it is supposed to be toroidal. In case (iii), for homological reasons
OF and 9D must be homotopic on T', hence OF is null-homotopic in M, which
contradicts the facts that C' is essential on F, and F, is incompressible in M. [

Claim 3. Case (iii) cannot happen, i.e. V is not a 3-ball with a knotted hole.

PRrROOF. We have shown that all components of C' are essential curves on E,
parallel to K, and C # (). Let o be a component of C. Then K is isotopic to
a in M(rg), but since a C T lies in the 3-ball V U N(D), «, and hence K, is
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null-homotopic in M(r,), which contradicts the fact that F, is incompressible in
M(rg). O

Claim 4. W is hyperbolic.

PROOF. Clearly W is irreducible (since X is) and not a Seifert fibered space
(since M is hyperbolic). Suppose W contains an essential torus 7”. By Claim 3 we
see that T" cannot be of type (iii), so it must be of type (i) or (ii), which, by our
choice of T', implies that every essential torus in X separates Ty from 7y. By the
choice of T', W must be atoroidal. O

We now continue with the proof of Lemma 21.2. Let A be a component of
F, N W which contains some boundary components of F,. By Claims 1 and 2,
the corresponding component A of F, N W (r,) is an annulus in W (r,), which is
incompressible because F, is incompressible, and not boundary parallel because
otherwise F, would be isotopic to a torus with fewer intersections with the Dehn
filling solid torus. Therefore W (r,) is annular.

Let P be the component of F, NV containing K, and let § be a component of
PNT. Note that P is an annulus. Since F} is disjoint from K, it can be isotoped to
be disjoint from P, hence after isotopy we may assume that F, N7 and F, NT are
all parallel to 8 and hence mutually disjoint. If F, N T = () then F}, is an essential
torus in W(ry), and if F, N'T # () then as above, a component of F, N W (r3) which
intersects the Dehn filling solid torus is an essential annulus in W (ry), hence W (ry)
is either toroidal or annular. Using Theorem 1.1 of [GW1] in the first case and
Theorem 1.1 of [GW3] in the second case, we see that W = M, for i =1, 2, or 3.

By Claim 3 V is either a solid torus or 72 x I. In the first case M = M;(s) for

some s on T} = 0V, and in the second case M = M;. O
DEFINITION 21.3. (1) Define a set of triples (M, r.,r}) as follows. For i =
1,2,3, (M;,r},r!) are the manifolds and the toroidal/annular slopes given in The-

orem 1.1 of [GW1]. My, ..., M4 are the manifolds X (F1, Fs) corresponding to the
intersection graphs given in Figures 11.9, 11.10, 14.5, 16.6, 16.8, 16.9, 18.2, 19.4,
20.4, 20.5 and 20.6, and v}, r! are the boundary slopes of the corresponding surfaces
Fy, F.

(2) Two triples (M, r',v") and (N, s',s") are equivalent, denoted by (M,r' r") =
(N, s',s"), if there is a homeomorphism from the 3-manifold M to N which sends
the boundary slopes (r',r"") to (s',s") or (s",s').

The following theorem shows that if a hyperbolic manifold M admits two
toroidal Dehn fillings along slopes r1,75 of distance 4 or 5 then (M, rq,rs) is ei-
ther one of these triples, or obtained from such an M; by Dehn filling on OM; — T.

THEOREM 21.4. Let M be a hyperbolic 3-manifold admitting two toroidal Dehn
fillings M(r1), M (r2) with A(r1,72) = 4 or 5. Let n, be the minimal number
of intersections between essential tori and the Dehn filling solid torus in M (ry).
Assume ng < ny. Let (M;, 7}, ") be the manifolds defined above, and let Ty be the

sy lgsl g
boundary component of M; containing v, vi. Then
(1) Na S 2; ny S 6;
(2) either (M,r1,7m2) = (M;,rl,r!) for some i = 1,..,14, or (M,r1,13) =

(M;(s),r,rl), where i € {1,2,3,14} and s is a slope on Ty = OM,; — Tp; and

2he) T

(3)i€{1,2,4,6,9,13,14} if A =4, and i € {3,5,7,8,10,11,12} if A = 5.
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ProOF. This is a summary of the results in the previous sections. Assume
ng < ny. Then by Proposition 11.10 we have n, < 2. By Proposition 16.8 if n, > 3
then X is one of those in Figure 11.9, 11.10, 14.5, 16.6, 16.8 or 16.9.

We may now assume ng,np < 2. Then by Proposition 20.4 'y, T, is one of
the 11 pairs listed there. One can check that all but cases (3), (5), (6), (9), (10)
have the property that one of Fa, F}, contains a non-disk face, so by Lemma 21.2
the triple (M, r1,re) is (M;, 7}, r)) or (M;(s),r;,r}) for some i = 1,2, 3. Finally, by
Proposition 20.5 the graphs of the above cases are given in Figures 18.2, 19.4, 20.4,
20.5 and 20.6.

(3) follows by counting A for the graph pairs of each of the manifolds listed in
(2). O

22. The construction of M; as a double branched cover

The first three of the 14 manifolds M; have already been identified as the
exteriors of links in S3. See [GW1]. The links are shown in Figure 24.1. Besides
M, and M5, the other nine manifolds Mg, ..., M14 have the property that T', is a
graph on F, with two vertices of opposite signs. In this section we will construct,
for each i = 6, ..., 14, a tangle Q; = (W;, K;), where W; is a 3-ball for i = 6, ..., 13,
and an S? x I for i = 14, such that M, is the double branched cover of W; with
branch set K;. It is well known that once we have such a presentation then the Dehn
filling M;(r) will be the double branched cover of Q;(r), where Q;(r) is obtained
by attaching a rational tangle of slope r to @;, with coordinates properly chosen.

Here is a sketch of the construction. Assume I', is non-positive and n, = 2,
and suppose there is an orientation-preserving involution «; on F,, which maps 0uy
to Oug and preserves I',. The restriction of oy on 0F, extends to an involution
ag on Ty which has four fixed points, and it preserves the curves dF} on Ty. Thus
a = a3 U ay is an involution on F, U Ty, which has eight fixed points, four on
each of F, and Ty. Since « preserves I', U OFy, it extends over each disk face of
Fy to give an involution on F,. One can now further extend the involution « from
F,UF,UTy to a regular neighborhood Y of F, U F;, UTy. For ¢ > 6, M; is obtained
by capping off spherical boundary components of Y by 3-balls, hence a extends to
an involution of M;. Clearly the quotient of N(F, UTp) is a twice punctured 3-ball
W;. After attaching 2-handles corresponding to faces of F}, and some 3-balls we see
that W; is a punctured 3-ball. From the construction below we will see that W; is
a 3-ball when i = 6,...,13, and an S? x I when i = 14. Denote by K; the branch
set of a in W;. Then @Q; = (W, K;) is the tangle corresponding to the manifold
M;, and M; is the double branched cover of @); in the sense that it is the double
branched cover of W, with branch set K;. Attaching a rational tangle of slope ¢ to
T;, we obtain a new tangle Q;(t) whose double branched cover is M (r) for some
slope r on Tp C OM. This makes it possible to see the essential torus in M;(r,) as
a lifting of some surface in Q;(t).

To illustrate this procedure, we give below a step by step construction of the
tangle Qg = (W, Kg) for the manifold Mg corresponding to the graphs in Figure
14.5. The constructions for the other manifolds are similar.

Denote by N(C) a regular neighborhood of a set C' in a 3-manifold, and by I
the interval [—1,1].

STEP 1. Identify [N(F, UTp)/a] — Da x T with S? x I.
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Recall that « has four branch points on each of Ty and F,, so Ty/a = S is a
2-sphere, and F,/a = Dy is a disk. Let Do be a small disk in the interior of Dy,
disjoint from I'y/a and the branch points of a. Then Ay = Dy — Int(Dz) is a collar
of D;. Therefore N((F, UTp)/«) can be written as

(SxIT)U(A1 x I)U(Dg x I)

Note that A; x I is a collar of the attaching annulus 0D; x I, hence X = (S x 1)U
(A; x I) is homeomorphic to S2 x I.

One boundary component of X = S? x [ is _-X = (Ty x {—1})/a, and the
other boundary component 04X can be written as D, U D_ U A, where the two
disks Dy UD_ =9X N (S x 1) lift to two annuli on Ty x 1, and A is the annulus
OX N (A1 xI). We identify X with (R?U{oo}) x I, so that the disks D are identified
with the squares I x [4-2, £4] on the plane P = R? x 1 on X, the annulus A is the
closure of P — D1 U D_, and the core ¢y of A is identified with the closure of the
x-axis of P. See Figure 22.1. (Not drawn to scale.)

v

Figure 22.1

The branch set of o now consists of eight arcs. Four of them come from the
fixed points of @ on Ty x I, and are of type p; x I in X, where p1,p2 € Dy,
and ps,pgs € D_. These will be represented by four dots pi,...,ps on P, two in
each of Dy, as shown in Figure 22.1. The other four branch arcs of a are of type
a; = q; X I C Ax I, where q1, ..., g4 are the branch points of « in A = Dy —Int(D>).
Note that a; has both endpoints on S2 x 1. We may assume that these project
to four vertical arcs on the annulus A in P above, and we may arrange so that
the endpoints of these arcs have y-coordinates +1 on the plane P. See Figure
22.1. Denote by a;(1) and a;(—1) the endpoints of a; with y coordinates 1 and —1,
respectively.

STEP 2. Draw the arcs G' = (I'y x {£1})/a on P, with edges and edge
endpoints labeled.

The graph I', x 1 on F,, x 1 projects to a set of arcs £ on D1 x1. We may choose
the disk D9 above to be disjoint from F. Then F lies in the annulus A, = A x 1.
If a family é; has 2k edges then they project to k edges on A, with endpoints on
0D, each circling around the branch point a;(1). If é; has 2k 4+ 1 edges then the
quotient is a set of k edges as above together with an edge connecting a point on
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0D to a;(1). Up to isotopy we may assume that all edge endpoints of E on 9D
lie on the horizontal line y = 2 on P. Similarly the projection of T'y, x (—1) is a
set of arcs on the annulus A_ = A x (—1), which is the mirror image of the arcs
(Ty X 1)/c along the circle ¢y on P. Denote by G’ the set of arcs above.

For the graph ', in Figure 14.5(a), the edges in G’ are shown in Figure 22.2.
The edges are labeled by the corresponding edges in I',. (We only show a few of
the labels in the figure; the others should be easy to identify.) Each edge in G’
is the image of two edges in T',, hence it has two labels. (Note that if one of the
families has an odd number of edges then the middle one projects to an arc in G’
with a single label.) All arcs appear in the region I x [—2,2]. The top and bottom
lines in the figure represent arcs on dDy. Note that each edge endpoint on 0D
corresponds to one edge endpoint on each of Ju; and duy. The labels on the top
and bottom lines correspond to the labels on du; in Figure 14.5(a).

345 612 3 4 56 123 456 123 456 12

Figure 22.2

STEP 3. Add arcs G" = (0F, x 1)/« on P to obtain G = G' UG".

Recall that the preimage of Dy are two annuli AL on Ty x 1. The curves
G" = (0F, x 1N Ay)/« is now a set of arcs in Dy, with G” the union of 0G’
and possibly some of the branch points p; in D+. We need to determine how the
endpoints of G’ are connected by the edges of G”.

Consider the circle Qvg in Figure 14.5(b). We may assume that the segments
on Jvg from label 1 to label 2 (in the counterclockwise direction) project to arcs in
D while those from label 2 to label 1 project to arcs in D_. Consider the arc 3 on
Ovg from the tail of eg to the head of ef. (Recall that ef is the edge between eg and
e; in Figure 14.5(a)). Note that the tail of eg projects to the endpoint of e; = eg
with label 6 on 0D in Figure 22.2. The other endpoint ¢ of 3 is the head of e,
which lies on Ous. Since the labels in Figure 22.2 are the ones corresponding to
those on Ou; in Figure 14.5(a), we have to find the corresponding point on du; in
order to determine the position of the edge endpoint ¢ on 9D . On Figure 14.5(a)
the involution « restricted to Ous is a vertical translation, which maps the head of
ed (i.e. the edge in é3 labeled 6 at us) to the tail of ef, which has label 3 at u;. It
follows that ¢ is the endpoint of €] = ef in Figure 22.2 with label 3 at 0D,. The
two endpoints of 3 are represented by the two dots on the top line in Figure 22.2.
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Similarly, let 5’ be the arc on Jvs from the head of ef to the tail of ef. Then it is
an arc in D_ with endpoints on the dots at the bottom line in Figure 22.2.

The arcs G” in D4 are parallel to each other, and they are non-trivial in the
sense that none of them cuts off a disk in D4 that does not contain a branch point
of a. Therefore the above information completely determines the arcs G” as well
as the branch points pi,...,ps of @. (Note that if the number of edge endpoints
between the dots is odd then the middle arc will have an endpoint on a branch
point p;.) The graph G = G’ UG" is now shown in Figure 22.3.

Figure 22.3

STEP 4. Construct the tangle Q;.

Each component ¢ # ¢y of G lifts to curves on Fj bounding disk faces o of I'.
The quotient of o x I is either a 2-handle attached to c if ¢ is a circle, or a 3-ball
attached to a neighborhood of ¢ if ¢ is an arc. Examining the branch set of « in
o x I gives the following procedure. We use X to denote the initial manifold at the
beginning of each step below. In particular, X = 52 x I before the first step.

(1) If ¢ is an arc then X U (0 x I)/« is homeomorphic to X. The new branch
set is obtained by adding a trivial arc in (o x I)/« joining the two endpoints of c.
Therefore we can simply modify the branch set of a by pushing ¢ into the interior
of X.

(2) If ¢ # ¢ is a circle component bounding a disk Dy on X containing no
branch point of «, then attaching a 2-handle along ¢ creates a 2-sphere boundary
component, which must bound a 3-ball in M;/o. Thus after attaching the 2-handle
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and the 3-ball the manifold is homeomorphic to X, and the homeomorphism maps
the new branch set to the old one. Therefore in this case we can simply delete the
curve c¢ from G.

(3) If ¢ # ¢g is a circle component bounding a disk D; on dX containing one
branch point of «, then c lifts to a circle on the boundary of a face o of 'y, which
necessarily contains a fixed point of a. Hence the cocore of the corresponding
2-handle is a branch arc of a. The 2-sphere boundary component created after
attaching the 2-handle contains two branch points of «, hence bounds a 3-ball
containing a trivial arc as branch set of a. Thus after attaching the 2-handle and
the 3-ball the manifold is homeomorphic to X, and the branch set of « has not
changed. As in Case (2), we will simply delete the curve ¢ from G in this case.

(4) If a circle component ¢ # ¢ of G bounds a disk D; containing exactly two
branch points of «, then after attaching a 2-handle and a 3-cell, the manifold is
homeomorphic to X, and the branch set of « is obtained by adding a trivial arc in
the 3-cell joining the two branch points of « in D;. Therefore in this case we will
add an arc in D; joining the two branch points of a, push the arc into the interior
of X as branch set of , and then delete the curve c.

(5) If ¢ is a circle component of G bounding a disk D; containing k& > 2 branch
points of «, simply attach a 2-handle along c¢. If k£ is odd, add an arc in the center
of the 2-handle to the branch set of «.

(6) Finally, attach a 2-handle along ¢y, fill each 2-sphere boundary component
containing at most 2 branch points with a 3-ball, and add a trivial arc in the 3-ball
to the branch set if the 2-sphere contains exactly two branch points. If the 2-sphere
contains four branch point, shrink it by an isotopy to a small sphere, which projects
to a small disk on the diagram, with four branch arcs attached. (This happens only
for Q14. See Figure 22.13.) This completes the construction of the tangle Q;.

For Mg, the above procedure produces the tangle Qg = (Ws, Kg) in Figure
22.4(a), where K¢ should be considered as a tangle lying in the half space Qg
(including oo) in front of the blackboard. The four boundary points of K¢ lie on
the blackboard, which is the boundary of W.

b
\0)

Figure 22.4

(b)
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STEP 5. Find the tangles Q;i(ta) = Mi(ra)/cx.

There is one branch point p; in each quadrant of P’ = R2. Let m, [ be curves on
T, that project to the y-axis union oo and the z-axis union co on P’, respectively.
This sets up coordinate systems on Ty and P’. For ¢t = p/q a rational number or
oo, let M;(t) denote the Dehn filling along slope pm + ¢l, and Q;(t) denote the
tangle obtained by attaching a rational tangle of slope ¢ to P’. In other words,
Q:(t) is obtained by attaching a 3-ball to @; on P’, and adding two arcs on P’
connecting the branch points of «, which lift to curves of slope ¢t on Tj. Since the
attached rational tangle lifts to a solid torus with meridional slope ¢ on Ty, M;(t)
is the double branched cover of Q;(t).

By construction 0F, projects to the z-axis, hence M;(r;) = M;(0). The slope
ro can be obtained by connecting the curves G” in Dy by vertical arcs in A =
P’ —UD4. For Mg, one can check that the slope r = 4.

Denote by T'(a1,a2) a Montesinos tangle which is the sum of two rational
tangles of slopes 1/a; and 1/asq, respectively, where ai,as are integers. Denote by
T(ay,by;az,be) the collection of pairs (S3, L) which can be obtained by gluing two
tangles T'(a;, b;) along their boundary. Denote by X (a1, az) the collection of Seifert
fiber spaces with orbifold a disk with two cone points c1, ¢z of index a1 and as, i.e.
the cone angle at ¢; is 27 /a;. Note that the double branched cover of T'(a1, az) is in
X (a1,az). Denote by X(a1,b1;a2,b2) the collection of graph manifolds which are
the union of two manifolds X7, Xo glued along their boundary, where X; € X (a;, b;).

Denote by K/, the two bridge knot or link associated to the rational number
p/q. Denote by C(p1,q1;p2,q2) the link obtained by replacing each component
K; of a Hopf link by its (p;,q;) cable K[, where ¢; is the number of times K
winds around K;. Denote by Y (p1, q1;p2,q2) the double branched cover of S* with
branch set C(p1,q1;p2,92). Denote by C(C;p,q) the link obtained by replacing
one component K7 of a Hopf link by a Whitehead knot in the solid torus N(K3),
and the other component K5 by a (p,q) cable of K5. Let Y (C;p, q) be the double
branched cover of S® with branch set C(C;p, q). Denote by Z the double branched
cover of S3 with branch set the 2-string cable of the trefoil knot shown in Figure
22.13(d).

If Q;(r) = (S3, L) then we will sometimes simply write Q;(r) = L.

LEMMA 22.1. (1) Q¢(0) € T(2,6;2,3), as shown in Figure 22.4(b).
(2) Qs(4) = C(3,1;2,5), as shown in Figure 22.5(b).
(3) Qo(00) = Kazo.

PROOF. (1) The tangle Q¢(0) = (53, L) is shown in Figure 22.4(b). A horizon-
tal line at the middle of the diagram corresponds to a 2-sphere S which cuts the
link L into two Montesinos tangles T'(2,6) and T(2, 3).

(2) The tangle Qg(4) is shown in Figure 22.5(a), which can be isotoped to that
in Figure 22.5(b). One can see that it is the link C(3,1;2,5) in S3.

(3) The tangle Qg(o0) is shown in Figure 22.5(c). One can check that it is
isotopic to the knot Ky /9 in Figure 22.5(d). O
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() (b) (© (d)

Figure 22.5

LEMMA 22.2. (1) For i = 6,...,14, each M; is the double branched cover of a
tangle Q; = (W5, K;), where Q; is shown in Figure 22.4(a) for i = 6, and in Figure
22.i(b) (with dotted lines removed) when i > 6.

(2) Each M; (i = 6,...,13) admits a lens space surgery M;(rs). For each i,
let 71,72 be the slopes 1}, given in Definition 21.3. Then the manifolds M;(r1),

M;(r2) and M;(r3) are given in the following table.

Ms(0) € X(2,6;2,3) Mg(4) =Y (3,1;5,2) Me(c0) = L(9,2)
M7(0) € X(2,3;3,3) M;(=5/2) € X(2,3;2,2)  Mz(oo) = L(20,9)
Ms(0) € X(2,2;2,6) Mg(—=5/4) =Y (3,1;2,5)  Mg(—1) = L(4,1)
My(0) € X(2,4;2,4) Mo(—4/3) =Y (3,1;2,4)  My(—1) = L(8,3)
Mio(0) € X(2,3;2,3)  Mio(—5/2) =Y (C;2,1) Mig(oo) = L(14,3)
Mi1(0) € X(2,4;2,4) M (=5/2) =Y (C;2,1) Mi1(00) = L(24,5)
Mi2(0) € X(2,3;2,3)  M2(5) =Y(3,1;2,3) Mi2(c0) = L(3,1)
M13(0) S X(Q, 3;2, 3) M13(4) =7 M13(OO) = L(47 1)

PROOF. The result for Mg follows from Lemma 22.1 because Mg(r) is a branched
cover of Qg(r). The proof for the other cases are similar. Each M;(r) is the double
branched cover of Q;(r) and the tangle Q;(r) is a link L in S3. More explicitly,
Figure 22.i(a) shows the curves G = G’ UG” in Step 3 of the above construction;
Figure 22.i(b) gives the tangle Q; as well as Q;(r1), which is obtained by attach-
ing a O-tangle (the two horizontal dotted lines) to Q;; Figure 22.i(c) gives Q;(r2),
which is simplified to that in Figure 22.i(d); Q;(rs) is in Figure 22.i(e), which is
simplified to that in Figure 22.i(f) for some ¢. (The figures are numbered so that
Figure 22.i corresponds to the manifold M; for ¢ > 7. Note that there is no Figure
22.6.) The manifold Mi4(r3) is the double branched cover of Q14(r3) = T(2,2) in
Figure 22.14(e), and hence is a twisted I-bundle over the Klein bottle. ]
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Figure 22.14

Recall that a manifold M with a fixed torus Top C OM is large if Ho(M,0M —
To) # 0. Teragaito [T2] proved that there is no large hyperbolic manifold M
admitting two toroidal fillings of distance at least 5. The following result shows
that there is only one such manifold for A = 4.

THEOREM 22.3. Suppose (M,Ty) is a large manifold and M is hyperbolic and
contains two toroidal slopes 1,19 on Ty with A(ry,r2) > 4. Then M is the White-
head link exterior, and A(ri,79) = 4.

PROOF. Let r be a slope on Ty, V,. the Dehn filling solid torus in M(r), and
K, the core of V,.. By duality we have Ho(M,0M — Ty) = HY(M,Ty), which is
isomorphic to the free part of Hy (M, Tp). Also,

Hy (M, To) = Hy(M(r), V) = Hy(M(r))/ Hy(K).-

Put G(M,r) = Hy(M(r))/H1(K,). Then we need only show that G(M;,r) is a
(possibly trivial) torsion group for i = 2, ..., 14 and r some slope on Tj.

For i = 2,3, M; is the exterior of a closed braid K; in a solid torus V. Let r
be the meridian slope of K;. Then G(M;,r) = Z,, where p is the winding number
of K;inV.

For i = 6,...,13, by Lemma 22.2 M; has a lens space filling M;(r3). Therefore
G(M;,rs) is a quotient of the finite cyclic group H;(M;(rs)) and hence is a torsion
group. Similarly for the four manifolds in [Go] with toroidal slopes of distance at
least 6.

For i = 14, take a regular neighborhood of u; Uwus U D on F, as a base point.
See Figure 20.6(a). Then H;(Mi4(rs)) is generated by z, vy, s1, $2, where z is the
element of H,(E,) represented by the edges C on Figure 20.6(a), oriented from
the label 2 endpoint to the label 1 endpoint, y is represented by B, oriented from
u1 to uz, and s; by the part of the core of the Dehn filling solid torus running
from w; to u;y1 with respect to the orientation of dF,. Then the bigons B U D,
C U FE and the 4-gon bounded by CUD U E UY on F;, give relations 2s; — y = 0,
2z = 0, and y + 22 = 0. The other faces of I'y, are parallel to these. To calculate
G(Mi4,7q) = Hi(Mi4(rs))/H1(K,) we further add the relation s; + s3 = 0. One
can now check that G(Mi4,7,) = Za ® Zsa, and the result follows.

For i = 4, choose a regular neighborhood of v; Uwvy U J in Figure 11.9(b) as a
base point. Then H;(My(rp)) is generated by z,y, s1, s2, where x, y are represented
by the edges L, C in Figure 11.9(b), oriented from vy to vq, and s; by the part of
the core of the Dehn filling solid torus from v; to v;+1. The faces bounded by LUC,
CUK and QU K UM U A give the relations y — s1 + x4+ s2 =0, 1 —z — s2 = 0,
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and sy — s1+y = 0. Together with the relation s1 + s3 = 0 from H;(K}) = 0, these
give G(M4, ’I”b) = ZQ.

For i = 5, Hy(Ms5(rp)) is generated by x,y, s, where x,y are represented by
edges E and C on Figure 11.10(b), oriented from label 3 to label 4, and s is
represented by the core of the Dehn filling solid torus. Then the bigon AUH and the
annulus bounded by AUGUCUE on Figure 11.10(a) containing J give the relations
x4y =0and 2z — 2y = 0. Adding the relation s = 0 gives G(Ms,r,) = Zg. d

23. The manifolds M; are hyperbolic

The manifolds M7, My, M3 in Definition 21.3 are known to be hyperbolic, see
[GW1, Theorem 1.1]. In this section we will show that the other 11 manifolds M;
in Definition 21.3 are also hyperbolic. See Theorem 23.14 below.

A knot K in a solid torus V is a (p, ¢) knot if it is isotopic to a (p, ¢) curve on
OV with respect to some longitude-meridian pair on dV. In particular, the winding
number of K in V is p.

LEmMA 23.1. (1) Ifi € {6,..,13} and j = 1 or i € {6,7,8,9,12,13} and
Jj = 2, then M;(r;) contains an essential torus T cutting it into two Seifert fiber
spaces Fq, Fs.

(2) For i = 10,11, M;(r2) contains a non-separating essential torus cutting
M;(r2) into a Seifert fiber space whose orbifold is an annulus with a cone point of
index 2.

(8) Fori=6,...,13 and j = 1,2, M;(r;) is irreducible, and contains no hyper-
bolic submanifold bounded by an incompressible torus.

ProoF. (1) By Lemma 22.2, for i =6, ..., 13, M;(r1) is of type X (a1, b1; az, ba),
which is the union of two Seifert fiber spaces of types X (a1,b,) and X (a2, ba), hence
the result is true for M;(r1). Similarly it is true for M7 (r2).

For i = 13, Q;(r2) = (S3, L), where L is the link in Figure 22.13(d), which
consists of two parallel copies of the trefoil knot. The two components of L bound
an annulus A. Cutting S® along A gives the trefoil knot exterior £, and A becomes
a torus T. The double branched cover of Q13(r2) is obtained by gluing two copies
of E along T'. Hence the result is true because F is a Seifert fiber space and T is
incompressible in F.

Fori = 6,8,9,12, Q;(r2) = (S3, L) is of type C(p1, q1; p2, q2), so there is a torus
T’ cutting S? into two solid tori Vi, Vo, such that each L; = LNVj is a (p;, ¢j) knot
in Vj for some p; > 1. Note also that in these cases at least one of the p; is odd,
which implies that T lifts to a single torus T', cutting M;(r2) into two components
Wy, Wy, such that W; is a double branched cover of (V}, L;). The (p;, ¢;) fibration
of V; now lifts to a Seifert fibration of W, hence the result follows.

(2) For i = 10,11, Q;(r2) = (S3,L), and there is a torus T’ cutting S into
two solid tori Vi, Vs, such that L; = Vi N Lis a (2,1) knot, and Lo = Vo N L is a
Whitehead knot in the solid torus V,. Since both winding numbers of L; are even,
T’ lifts to two tori in M;(r2). Let W; be the lifting of V;. A meridian disk of V; lifts
to an annulus in Wy, hence Wy is a T2 x [ (not a twisted I-bundle over the Klein
bottle because W, has two components). Let T be the core of this 72 x I. Then
it cuts M;(r2) into the manifold W5. We need to show that Ws is Seifert fibered.

Let D be a meridian disk of V5 which intersects Lo at two points. Then
(Va,La) = (B1, L)) U (Bg, L), where By = N(D), By is the closure of Vo — By,
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and L}, = Lo N By. Note that each L, is a trivial tangle in By, hence its double
branched cover V} is a solid torus. One can check that each component of V{ N V3
is a longitudinal annulus on 9VY, and it is an annulus on dVy with winding number
2 in V4. Therefore Wy = V/ U V] is a Seifert fiber space whose orbifold is the
union of a D? and a D?(2) glued along two boundary arcs. Since W5 has two torus
boundary components, the orbifold must be an annulus with a single cone point of
index 2.

(3) Let T be the essential torus in M;(r;) given in the above proof. Then it cuts
M;(r;) into one or two bounded Seifert fiber spaces, which are irreducible. Since T
is incompressible, M;(r;) is also irreducible. The second statement follows from the
fact that the JSJ (Jaco-Shalen-Johannson) decomposition of an irreducible closed
3-manifold is unique. O

A (p/,¢) knot K in a solid torus V is also called a 0-bridge knot. In this case
there is an essential annulus in V — Int N (K) with one boundary component in each
of OV and ON(K). This defines a longitude [ for K, which is unique if K is not the
core of V. A (p, q) cable of a 0-bridge knot K is a knot on N (K) which represents
pl+gm in H{(ON(K)), where m is a meridian of K. We refer the reader to [Gal]
for the definition of a 1-bridge braid in V.

LEMMA 23.2. Suppose X is an irreducible, O-irreducible, compact, orientable
3-manifold with 0X = Ty UTy a pair of tori. Let ri,rq be distinct slopes on Ty such
that X (r1), X (r2) are both O-reducible. Let K, be the core of the Dehn filling solid
torus in X (rq). Then one of the following holds, up to relabeling of r;.

(1) Each X(ro) is a solid torus, K, is a 0- or 1-bridge braid in X(r,), and
A(ry,ro) =1 if it is not a 0-bridge knot.

(2) X (r1) is a solid torus, and X (rg) = (S x D*)#L(p,q) with p > 2. K is
a (p,q) cable of a (p',q") knot in X (r1), and rg is the cabling slope of K1 in X (r1).

/

Moreover, if my is the slope on Ty bounding a disk in X (r,), then A(mqy,mz) = pp’.

PrOOF. If both X (r1), X (r2) are irreducible then they are solid tori and (1)
holds by [Gal, Theorem 1.1] and [Ga2, Lemma 3.2]. Now assume X (r3) is reducible.
Then by [Sch, Theorem 6.1] K; is a (p,q) cable of some knot K’ in X (r1) with
respect to some meridian-longitude pair (m, ) of K’, and r5 is the cabling slope. In
this case X (r3) is a connected sum Wy U L(p, q), where W is obtained by surgery
on the knot K’ in X (r,) along the cabling slope ' = pl + gm. Denote by m’ the
meridian slope of K’. Then A(m/,r") =p > 1.

Denote by K’(s) the manifold obtained by s-surgery on K’ in V. = X (ry).
The assumption on X implies that T} is incompressible in V — K’, and V — K’ is
irreducible. By the above, T} is compressible in both K’'(m’) =V and K'(r') = W1,
and A(m/,r") > 1, hence by [Wu2, Theorem 1.1] and [CGLS, Theorem 2.4.3], either
V — IntN(K') = T? x I, or there is an annulus A in V — IntN(K’) with one
boundary component on 77 and another boundary component a curve of slope r on
T’ = ON(K'), satisfying A(r,m’) = A(r,r’) = 1. In either case K’ is isotopic to a
curve on 77 and hence is a 0-bridge knot. Since V — K is irreducible, this implies
that V' is also irreducible. Therefore V' = X (r1) is a solid torus, K’ is a (p’, ¢’) knot
in V for some (p’,q’), and r is the cabling slope of K’ when p’ > 1.

If p =1,ie. V —IntN(K’) = T? x I, then K is the (p,q) cable of the core
K’ of V, and ry is the cabling slope of K. We have X (rs) = V#L(p,q), and
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the slope mqy on T7 which bounds a disk in X (r9) is the (p, ¢) curve on T3, hence
A(my,mg) =p = pp'.

Now assume p’ > 1. Choose the longitude | of K’ to be the cabling slope r of
K’ given above. Since ' = pr + gm, the equation A(r,r’) = 1 above implies that
g = £1. Reversing the orientation of m’ if necessary we may assume ¢ = 1. Hence
K is a (p,1) cable of a (p/,¢’) knot in V| and ro is the cabling slope. It is easy to
see that the meridian slopes m, of X (r,) satisfy A(mi,ms2) = pp’, and the result
follows. O

LEMMA 23.3. Let i = 6,...,13. Let a be the covering transformation of the
double branched cover M; — @Q;.

(1) M; is irreducible, not Seifert fibered, and contains no non-separating torus.

(2) If M; is not hyperbolic then it contains a separating essential torus T such
that T is a-equivariant, and the component W of M;|T which does not contain Ty
is either Seifert fibered or hyperbolic.

PRrROOF. (1) If M; is reducible then the summand which does not contain Tp is
a summand of M;(r;) for all r;, but since M;(r3) is a lens space while M;(r1) does
not have a lens space summand, this is impossible.

By Lemma 22.2 M;(rs) is a lens space, so if M; is Seifert fibered then the
orbifold of M; is a disk with two cone points, hence M;(r1) is either a connected
sum of two lens spaces or a Seifert fibered space with orbifold a sphere with at
most three cone points. This is impossible because by Lemma 22.2 M;(r1) is of
type X(a1,b1;a2,be) with some a; or b; greater than 2, which is irreducible and
contains a separating essential torus, at least one side of which is not an I-bundle.

If M; contains a non-separating torus then the lens space M;(r3) would contain
a non-separating surface, which is absurd.

(2) If M; is non-hyperbolic then by (1) it has a non-trivial JSJ decomposition.
By [MeS] we may choose the JSJ decomposition surfaces F' to be a-equivariant. If
we define a graph G with the components of M;|F as vertices and the components
of F as edges connecting adjacent components of M;|F, then the fact that M;
contains no non-separating torus implies that G is a tree. Let T be a component of
F corresponding to an arc incident to a vertex v of valence 1 in G. Then T bounds
the manifold W corresponding to v, which by definition of the JSJ decomposition
is either Seifert fibered or hyperbolic. O

LEMMA 23.4. Suppose M; is non-hyperbolic and let T be the essential torus in
M; given in Lemma 23.3(2). Let X, W be the components of M;|T, where X D Tp.
If T is compressible in M;(r,) for some a = 1,2, then both X (r,) and X (rs) are
solid tori, and W is hyperbolic.

PRrROOF. T is compressible in X (r3) because M;(r3) is a lens space. By as-
sumption 7T is also compressible in M;(r,). Since M;(r,) contains no lens space
summand, by Lemma 23.2 either both X (r,) and X (r3) are solid tori, or X (r,) is
a solid torus and X (r3) = (S' x D?)#L(p,q) for some p > 1. We need to show
that the second case is impossible.

Let m; be the slope on T which bounds a disk in X(r;), j = @,3. Then
M;(r3) = W(ms)#L(p, q). Since M;(r3) is a lens space L(p, q), we have W (m3) =
93, so W is the exterior of a knot in S3. If W is Seifert fibered then it is the
exterior of a torus knot, so M;(r,) = W(m,) is obtained by Dehn surgery on a
torus knot in S$® and hence contains no separating essential torus, contradicting
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Lemma 23.1. Since by definition W is Seifert fibered or hyperbolic, this implies
that W is hyperbolic. Note that by Lemma 22.2 p > 3 for all ¢ € {6,...,13}. By
Lemma 23.2(2) we have A(mg,m3) > p > 3. Since W(m,) = M;(r,) is toroidal
and W(m3) = S3, this is a contradiction to [GLul, Theorem 1.1], which shows
that only integral or half integral surgeries on hyperbolic knots in S® can produce
toroidal manifolds. This completes the proof that both X (r,) and X (r3) are solid
tori.

If W is not hyperbolic then by definition W is Seifert fibered. By the above
X (r3) is a solid torus. Let mg be a meridian slope of X (r3). Then M;(r3) = W(ms),
so M;(rs) being a lens space implies that the orbifold of W is a disk with two cone
points, in which case M;(r,) = W(m,) is either a connected sum of two lens spaces
or a Seifert fiber space with orbifold a sphere with at most three cone points. In
the first case M;(r,) contains no essential torus, while in the second case the only
possible essential torus in M;(r,) is a horizontal torus cutting the manifold into
a T? x I, or two twisted I-bundles over the Klein bottle. This is a contradiction
because by Lemma 23.1 M;(r,) contains an essential torus cutting it into either a
Seifert fiber space with orbifold an annulus with a cone point of index 2, or two
Seifert fiber spaces, at least one of which is not a twisted I-bundle over the Klein
bottle. (]

LEMMA 23.5. The torus T in Lemma 23.3(2) is incompressible in both M;(r1)
and M;(rs).

PROOF. First assume that T is compressible in both X (r1) and X (rz). By
Lemma 23.4 X(r;) is a solid torus for j = 1,2,3. Since A(r1,r2) > 1, by Lemma
23.2 we see that X is the exterior of a (p,q) knot in a solid torus. Since T is
not boundary parallel, p > 1. Let r be the cabling slope on Ty. Since X (r;)
is a solid torus, we have r; # r. Therefore by [CGLS, Theorem 2.4.3] we must
have A(r,r;) = 1 for i = 1,2,3. By Lemma 23.2 one can check that A(ry,73) =
1 and A(re,r3) < 2. Since A(ry,r2) > 4, this is a contradiction because any
three slopes r1, 79,73 with distance 1 from a given slope r have the property that
A(rg,m) + A(rp, re) = A(rg, re) for some permutation (a,b,c) of (1,2, 3).

Now assume that T is compressible in M;(r1), say. By Lemma 23.4 W is
hyperbolic. On the other hand, by the above T is incompressible in M;(r2), so W
is a submanifold in M;(r2) bounded by an incompressible torus, hence by Lemma
23.1(3) it is non-hyperbolic, which is a contradiction. 0

LEMMA 23.6. Let T(ay,by;az,b2) = (S3, L), where a;,b; > 2. If at least one
of a1,b1,as,bs is greater than 2 then the exterior of L is atoroidal, and there is no
Mbébius band F in S® with F N L a component of L.

PROOF. Denote by T'(a) a rational tangle with slope 1/a, where a is an integer.
Given a tangle 7 = (B3, 7), denote B3 —IntN(7) by E or E(7), and call it the tangle
space of 7. Since T'(a) is a trivial tangle in the sense that 7 is rel 0 isotopic to arcs on
OB3, the tangle space E(a) is atoroidal, and any incompressible annulus in B3 — 7
is trivial in the sense that it is either parallel to an annulus on 9(B® — 7) or cuts
off a D? x I in B? with 7N (D? x I) a core arc.

The tangle space E(r1, r2) of a Montesinos tangle T'(r1, r2) is obtained by gluing
E(r1), E(r2) along a twice punctured disk P = E(r1) N E(r2). The above implies
that E(ri,r2) is always atoroidal. If A is an essential annulus in E(rq,r2) with
minimal intersection with P, then an innermost circle outermost arc argument
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shows that A intersects P in essential arcs or circles in A. If the intersection is
a set of circles then each component of AN E(r;) is a set of trivial annuli, which
implies that A is also trivial. If each component of A N P is an essential arc then
each component of AN E(r;) is a bigon in the sense that it is a disk intersecting P
in two arcs, which implies that r; = 2 for ¢ = 1,2. Therefore E(r1,72) contains no
essential annulus unless r; =79 = 1/2 mod 1.

By definition T'(a1, b1; ag, bs) is the union of two Montesinos tangles T'(a;, b;).
If the tangle space of T'(a1, b1;a2,bs2) is toroidal then either one of the T'(a;, b;) is
toroidal or they are both annular. By the above neither case is possible if at least
one of ay, by, as, by is greater than 2.

The proof for a Mobius band is similar. If F' is a Mobius band in S$? bounded
by a component of L and has interior disjoint from L then after cutting along the
surface Py = E(a1,b1) N E(az,bs2) it either lies in one of the E(a;,b;) or intersects
each in bigons. One can show that the first case is impossible, and in the second
case a; = b; =2 fori=1,2. O

LEMMA 23.7. M; is hyperbolic for i =6 or 8 <14 < 13.

ProOOF. Let T be the a-equivariant essential torus in M; given in Lemma
23.3(2). By Lemma 23.5 T is incompressible in both M;(r,), a = 1,2. Since T
is a-equivariant, its image F' in @); = M;/« is a 2-dimensional orbifold with zero
orbifold Euler characteristic (see [Sct] for definition), and all the cone points have
indices 2. Hence it is T2, K2, P%(2,2), S?(2,2,2,2), A2, M?, or D?(2,2), where
the surfaces are torus, Klein bottle, projective plane, sphere, annulus, Mobius band
and disk, and the numbers indicate the indices of the cone points. Note that in
the last three cases the boundary of the surface is part of the branch set of a.
Since T is incompressible in M;(r,), F is incompressible in Q;(r,) in the sense that
if some simple loop on F bounds a disk in Q;(r,) intersecting the branch set at
most once then it bounds such a disk on F'. We need to show that for each type of
surface above there is some a = 1, 2 such that no such incompressible 2-dimensional
orbifold exists in Q;(rg).

We have Q; = (B3, K;), where B3> = M;/«a is a 3-ball and K; is the branch set
of a. Since F lies in B3, it cannot be K2 or P2. For all i one can check that the
branch set K; of a in @; contains at most one closed circle, hence the case A? is
also impossible.

By Lemma 22.2, Q;(r1) = T(a1,b1; a2, bs) for some aj,b; > 2, and (a;,b;) #
(2,2) for some j. Therefore by Lemma 23.6 we have F # T2 M? for i = 6,...,13
because there are no such surfaces in Q;(r1). It remains to show that F' # D?(2,2)
or S$?(2,2,2,2).

For i = 13, Q:(r2) = (S3, L), where L consists of two parallel copies of a trefoil
knot K. Since each component of L is non-trivial in S3, F' # D?(2,2) in this case.
Suppose F = 5%(2,2,2,2), and let V be a regular neighborhood of the trefoil knot
containing L, intersecting F' minimally. Then FNV # (), and F is not contained in
V' as otherwise one can show that F' — L would be compressible. Therefore F NV
is a union of two meridian disks, and F N S% — IntV is an essential annulus in
S3 — IntV. Since S — IntV contains no essential annulus with the meridian of V/
as boundary slope, this is a contradiction.

The proofs for the cases i € {6,8,9,10,11,12} are similar. In these cases
Qi(r2) = (S3,L), and there is a torus T’ cutting S* into two solid tori Vi, Va, each
containing some components of L. One can check that no component L’ of L bounds
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a disk intersecting L — L’ at two points, so F' # D?(2,2). If F = S?(2,2,2,2) then
either F' lies in one of the Vj, or it intersects one of the Vj in two meridional disks
and the other Vi in an essential annulus with boundary slope the meridional slope
of V;. Neither case is possible for the Q;(r2) listed in Lemma 22.2. O

LEMMA 23.8. My is hyperbolic.

PrOOF. By Lemma 22.2 we have M7(r1) € X (3,3;2,3) and M7(r2) € X(2,2;2,3).
Consider the tangle decomposition sphere P, of the orbifold Q7(r,), @ = 1,2, which
corresponds to a horizontal plane in Figure 22.7(b), (d) respectively. It lifts to an
essential torus T, in M7(r,).

Each side of P, is a Montesinos tangle of type T'(r1,72), which is the sum of two
rational tangles over a disk D. The boundary of D determines the fibration of the
double branched cover X (r1,r3) of T(r1,r2), which has a unique Seifert fibration
unless 1 = o = 2, in which case the closed circle in the tangle is isotopic (without
crossing the arcs) to a curve on the punctured sphere, which lifts to a fiber in the
other fibration of X (r1,r2). It is easy to check from Figures 22.7(b) and (d) that
the fiber curves from the two sides of P, do not match, so M7(r,) is not a Seifert
fiber space. Since each side of T, is a small Seifert fiber space with orbifold a disk
with two cone points, it follows that M7(r,) contains no other essential torus.

Suppose M7 is non-hyperbolic and let T" be the essential torus in M7 given
by Lemma 23.3. By Lemma 23.5 it is incompressible in both M7(r,), therefore
by the uniqueness of T, above we see that T' = T, in M7(r,) up to isotopy. As
before, denote by W and X the components of M7|T, with X D Ty. Then W is
the manifold on one side of T, in M7(r,). Therefore we must have W = X (2, 3),
so X(r1) = X(3,3) and X (r2) = X(2,2). We will show that this is impossible.

Let Y be the component of the JSJ decomposition of X that contains T". Then
Y is either hyperbolic or Seifert fibered. There are three cases.

Case 1. Ty C 9Y and Y is Seifert fibered. By Lemma 23.5 T is incompressible
in Y(ry) for a = 1,2, so r, is not the fiber slope on Ty. Hence the Seifert fibration
extends over Y (1) and Y (r2). In this case 9Y —Tj is incompressible in Y (r,). Since
X (rg) is atoroidal, either Y (r1) 2 Y(ro) 2 T? x I, or Y = X. In the first case we
have X (r1) = X (r2), which is a contradiction because X (r1) = X(3,3) % X(2,2) =
X (r2). In the second case, Since X (r1) has orbifold D?(3,3), the orbifold of X
must be 4%(3,3) or A%(3). On the other hand, since X (r3) has orbifold D?(2,2),
the orbifold of X must be 4%(2,2) or A?(2), which contradicts the fact that Seifert
fibrations for these manifolds are unique.

Case 2. Ty C Y and Y is hyperbolic. If 0Y has more than two boundary
components then the fact that X(r,) is atoroidal implies that Y'(ry) is either 0-
reducible, or a T2 x I. If Y = T U T, then Y = X and by assumption both
Y (r,) = X(r,) are annular and atoroidal. In either case Y (r,) is either d-reducible
or annular and atoroidal. Since A(ri,r2) = 5 and Y is hyperbolic, this is a con-
tradiction to [Wu2, Theorem 1.1] if both Y (r,) are d-reducible, to [GW2] if one
of them is d-reducible and the other is annular, and to [GW3] if both Y (r,) are
annular and atoroidal. (The main theorem of [GW3] said that if A =5 then Y and
r1, 7o are listed in one of the three possibilities in [GW3, Theorem 1.1], but in that
case both Y (r,) are toroidal.)

Case 3. Ty ¢ 0Y. Let X; be the component of X|(0Y) containing Ty, and
let X5 be the closure of X — X1, so X = X; U X5. Since M7 contains no non-
separating torus (Lemma 23.3), 73 = X; N X3 is a single torus. Since X (r,) is
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atoroidal, 77 must be compressible in X;(r,) for a = 1,2. Thus Lemma 23.2 and
the fact that X (r,) contains no lens space summand imply that X;(r,) is a solid
torus for a = 1,2, as in Lemma 23.2(1); moreover, since A(ry,72) > 1, by Lemma
23.2(1) X; is a (p, q) cable space, and by [CGLS, Theorem 2.4.3] A(r,r,) = 1 for
r the cabling slope. It is easy to see that the meridian slopes m, of Xj(r,) satisfy
A(mi,ma) = pA(ry,r2) > 5. Now X(r,) = Xa(my), so by Cases 1 and 2 above
applied to X, we see that this case is also impossible. 0

Denote by c¢-d the minimal intersection number between the two isotopy classes
of simple closed curves on a surface represented by ¢ and d, respectively. If ¢ : F —
F is a homeomorphism and K a curve on the surface F', then K is said to be ¢-full
if for any essential curve ¢ on F' there is some 4 such that ¢ - ¢*(K) # 0.

If K is a knot in a 3-manifold Y with a preferred meridian-longitude, denote by
Y (K,p/q) the manifold obtained from Y by p/q surgery on K. Let X = F x [ /9
be an F-bundle over S! with gluing map 1, let F; = F x t,t € I = [0,1], and let
K be an essential curve on F /3. Then there is a preferred meridian-longitude pair
(m,1l) on ON(K), with [ the slope of I}, N ON (K).

LEMMA 23.9. Let X = FxI/¢. Letn: FxI — Fy be the projection, ¢ = no,
and K an essential curve on Fy jo. If n(K) C Fy is p-full and g > 1, then X (K,p/q)
is hyperbolic.

PROOF. Let A; be an annulus in X with 0A4; = K U K;, where i = 0,1 and
K; C F;. Let V; be a regular neighborhood of A;. PutY = FxI. ThenY = V;UW,
where W is homeomorphic to F x I, and Vi "W is an annulus A’. After p/q surgery
on K we have Y(K,p/q) = V1(K,p/q) UW. Note that V1(K,p/q) is a solid torus
with A’ an annulus on 0V; (K, p/q) running ¢ times along the longitude. By an
innermost circle outermost arc argument one can show that Y (K, p/q) is irreducible,
O-irreducible, atoroidal, and any essential annulus As can be isotoped to be disjoint
from K, i.e. 0As - K1 = 0. Moreover, if As has at least one boundary component
on F) then A, is either vertical in the sense that it is isotopic to ¢ x I C F' x I for
some curve ¢ C F', or isotopic to A’ and hence has both boundary curves parallel
to K;. Similarly, using Ay and Vj one can show that dAs - Ko = 0, and if As is not
vertical and Ay N Fy # @ then it has both boundary curves parallel to K.

The above facts imply that X (K,p/q) =Y (K,p/q)/v is irreducible. Since the
non-separating surface Fy cuts X (K, p/q) into Y (K, p/q), which is not an I-bundle,
we see that X (K,p/q) is not Seifert fibered. It remains to show that X (K,p/q) is
atoroidal.

If T is an essential torus in X (K,p/q) then it can be isotoped so that T N
Y(K,p/q) = Q is a set of essential annuli. Let C; = Q@ N F;. We claim that for any
curve ¢ C Cp, ¢(c) is isotopic to a curve in Cp.

We have ¢(Cy) = C4, so ¢(c) C Cy. If ¥(c) belongs to a vertical annulus Q
then p(c) = n(y(c)) = Q1N Fy C Cy. If (c) belongs to a non-vertical annulus then
by the property proved above, ¥(c) is isotopic to K7, so ¢(c) =2 n(K;) = Ky. Note
that if @ has a non-vertical component with boundary on F; then the fact that
Cy, C1 have the same number of components implies that there is also a non-vertical
component Qg with boundary on Fy, and we have shown that each component ¢’
of dQ is isotopic to Ko, so p(c) 2 ¢ C 9Qy C Cy. This completes the proof of the
claim.
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Let ¢ be a component of Cy. We have shown above that ¢ - Ky = 0 for any
c C Cy. Applying the above to ¢! we see that there is a curve ¢/ C Cy such that
¢(c’) = ¢. By induction we have ¢ - ¢*(Kg) = ¢’ - ¢ "1(Kpy) = 0 for all i, which is a
contradiction to the assumption that Ko = n(K) is ¢-full and hence c - p*(Ky) # 0
for some 1. O

LEMMA 23.10. The manifold Ms is hyperbolic.

PROOF. Let W = M;5|Fp, let Fy, F_ be the two copies of F, in W, and let A
be the annulus Ty|0Fp. Then W is obtained from Y = F; U F_ U A by attaching
faces of I';, and then some 3-cells.

Two faces of Iy, are parallel if their boundary curves are parallel on Y. Since
parallel faces cobound a 3-cell in W, we need only attach one such face among a set
of parallel faces. From Figure 11.10 one can check that the four bigons are parallel
faces, and the two 6-gons are parallel to each other. Therefore W is obtained from
Y by attaching one bigon o;, one 6-gon o2 and then a 3-cell. Let o; be the bigon
on Figure 11.10 between the edges B and G, and assume that the edge B C F,.

Cutting W along o1, we obtain a manifold W; with boundary a torus, and it
contains the 6-gon oo. Therefore it is a solid torus such that the remnant of F,
denoted by F', runs along the longitude three times. If we replace o2 and the
attached 3-cell by a solid torus .J with meridian intersecting F" in one essential arc
then Wi becomes a F| x I and W becomes X = F, x I. Therefore W = X (K,p/q),
where K is the core of J, and ¢ = 3. Let v : F. — F, be the gluing map,
n: F4 x I — F_ the projection, and ¢ = no. By Lemma 23.9 we need only show
that the curve K_ on F_ isotopic to K is -full.

In Mj; the bigon o; has boundary edges B U G on Fp, as shown in Figure
11.10(b). Suppose B C F; and G C F_ when we consider o7 as a bigon in F} x I.
Then 1) maps the curve B on F_ to the curve B on F, which is mapped to G on
F_ by n. Therefore ¢ : F~ — F_ maps B to G. Since F_|B is an annulus and B is
disjoint from the curve K _ above, this determines K _. Also ¢(K_) is the curve on
F_ disjoint from ¢(B) = G, so K_ intersects (K _) transversely at a single point,
cutting F_ into an annulus. Therefore K _ is op-full, and the result follows. ]

LEMMA 23.11. The manifold My is hyperbolic.

PROOF. The proof is similar to that of Lemma 23.10. In this case W = My|F,
is obtained from Fy U F_ U A; U Ay by attaching two bigons o1, 02 and one 4-gon
o3, s0 W = X(K,p/q) with ¢ = 2, where X = Fy x I and K is disjoint from o1, os.
Choose 01,02 to be the bigons in Figure 11.9(a) bounded by H U E and E U N,
respectively. Then F_ can be identified with F}, and o1, 09 intersects F_ in the
edges E' and N, respectively. These cut F_ into an annulus containing the curve
K_ isotopic to the knot K in X = F, x I. The map ¢ : F~ — F_ maps the
edges F and N in Figure 11.9(b) to H and E, respectively, so ¢(K_) is the curve
in the annulus F_|(H U E). The curves K_ and ¢(K_) intersect transversely at a
single point, cutting F_ into a neighborhood of 0F_, hence K _ is -full, and M,
is hyperbolic by Lemma 23.9. 0

LEMMA 23.12. Let F be a closed orientable surface of genus 2, and let o, 3 be
two non-separating simple closed curves on F', intersecting minimally, cutting F
into disks. Let X be obtained from F x I (I =10,1]) by attaching a 2-handle along
a x {0}. Identify F with F x {1} C F x I, and let T = 0X — F. Then
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(1) a compressing disk D of F intersects 8 at least 3 times; and
(2) an incompressible annulus A in X with A C F and OANSG = 0 is boundary
parallel.

PROOF. (1) Let E be the disk in X bounded by ax1, cutting X into X' = T'xI.
Note that X is a compression body, and {E'} is the unique (up to isotopy) complete
disk system for X.

By assumption aU 3 cuts F' into disks, hence | N 3| > 3. Since « intersects (3
minimally, we may choose a hyperbolic structure on the surface F' so that o, § are
geodesics. Let D be a compressing disk for F' in X. Up to isotopy we may assume
that v = 9D is a geodesic or a slight push off of a geodesic if it is isotopic to a or
B. Then both |y N«| and |y N G| are minimal up to isotopy.

We may assume that D N E consists of arcs. If DN E # (), by taking an arc
that is outermost on D, surgering F along the corresponding outermost disk in D,
and discarding one of the resulting components, we get a new disk E’ having fewer
intersections with D, such that {E’} is a complete disk system for X. Since {F}
is the unique complete disk system for X, E’ is isotopic to E. Since |0E’' N 0D| <
|OFE N OD| = |aN~| and OF’ is isotopic to OF, this is a contradiction to the fact
that |y N | is minimal up to isotopy. Therefore D N E = (. Hence D either (a) is
parallel to E, or (b) cuts off a solid torus containing E.

In case (a) 0D is a parallel copy of a, so |[0D N G| = |aN G| > 3 and we are
done. In case (b), let F} be the punctured torus on F' bounded by 7 which does
not contain . If |y N G| < 2 then F; contains at most one arc of 3, so it contains
an essential loop disjoint from « U §, which is a contradiction to the assumption
that aU 3 cuts F into disks.

(2) Let A be an incompressible annulus in X with 94 C F'— (. We may assume
that «, 8 are hyperbolic geodesics, and each component of 0A is either a geodesic,
or a slight push off of a geodesic if it is parallel to «, 8 or another component of
OA. Thus both |0ANal and |[§AN 3| are minimal; in particular, 9JANS = (. As in
(1), this implies that A N E consists of essential arcs on A. If AN E = () then 0A
lies in F'|(aw U 3), but since A is incompressible while each component of F|(a U )
is a disk, this is impossible. Therefore we may assume that A N E is a non-empty
set C' of essential arcs on A.

Let B; be a component of A|C. Then B; is a disk in X’ = T x I, so 9B; is
a trivial loop on T”, bounding a disk B} on T". Let Ej, E> be the two copies of
EonT'. If BiN(EUE,) is a single disk then one can use a disk component of
BINF to isotope A to reduce [0ANIE| = |0AN«|, which is a contradiction to the
minimality of |[0A N «|. Therefore B; N (E1 U F2) consists of two disks, and B'NF
is a single disk P;. One can check that UP; is an annulus on F' parallel to A. [

LEMMA 23.13. The manifold M4 is hyperbolic.

PRrOOF. Cutting M4 along the surface Fj, we obtain two manifolds X7, Xo,
where X is the one containing the four bigon faces of F,, and X5 contains the two
4-gon faces of F,,. Let 01, 09 be the bigons on F,, bounded by the edges £ U F and
B UY respectively in Figure 20.6, and let o3 be the 4-gon bounded by the edges
BUCUY UF. Note that any other face of F, is parallel in X; to one of these.

Let A; = X; NTy. Then X; is obtained from the genus 2 surface Fp U A;
by attaching 01,02 and then a 3-cell, hence it is a handlebody of genus 2 because
do1, Doy are disjoint nonparallel nonseparating curves on Fp U A;. The core of A;



24. TOROIDAL SURGERY ON KNOTS IN §3 131

is a curve on 90X such that after attaching a 2-handle to X along A; we get the
manifold on the side of £, which contains no torus boundary component, hence
from Figure 22.14(b) we see that it is the double branched cover of a Montesinos
tangle T'(2,2), which is a twisted I-bundle over the Klein bottle. This implies that
the surface F, = 0X1 — A1 is incompressible in X;.

Now consider Xs. Let F' be the genus 2 surface F}, U Az, a the boundary of
o3, and (§ the core of As. Then « intersects 8 minimally at four points. From
Figure 20.6(b) we see that the edges B,C,Y, F cut the surface F} into two disks,
hence o U 3 cuts F into disks. X5 is obtained from F' x I by attaching a 2-handle
along the curve a x {0}. Therefore it satisfies the conditions of Lemma 23.12. In
particular, F} is incompressible in X5.

Since X7 is a handlebody and X5 is a compression body, they are irreducible
and atoroidal. Since My, is obtained by gluing X7, X5 along the incompressible
surface Fy, M4 is also irreducible. It is well known that an incompressible surface
in a Seifert fiber space is either vertical, and therefore an annulus or torus, or
horizontal, in which case it intersects all boundary components. Since the surface
Fy, satisfies neither condition, we see that M4 is not Seifert fibered. It remains to
show that M, is atoroidal.

Assume My, is toroidal and let 77 be an essential torus in Mi, intersecting
F, minimally. Since X; is atoroidal, T} intersects X; in incompressible annuli. A
component A of 71 N X is an incompressible annulus in X5 disjoint from (3, hence
by Lemma 23.12 it is parallel to an annulus A” on 9X,. If A” C F} then T} can be
isotoped to reduce | Ty N Fp|, which is a contradiction to the minimality assumption.
Therefore A” D 8 and hence A” D As, so each component of 9A” is parallel to a
component of 0Fy. Since this is true for all components of T3 N X5, we see that
each component of T7 N F}, is parallel to a component of F}.

Now let A} be a component of T3 N X;. By the above, the two boundary
components of A} are parallel on 9X;. Since X; is a handlebody, A} is parallel to
an annulus A} on 9X;. For the same reason as above, it must contain the annulus
Ajp. This is true for all components of Ty N X;. Let A} be a component of 71 N X;
which is closest to A;. Then 0A} = 0Aj, hence Ty = A} U A5. It follows that 17 is
parallel to Tj, contradicting the assumption that 77 is essential in M. O

THEOREM 23.14. The manifolds M; in Definition 21.3 are all hyperbolic.

ProoF. This follows from [GW1, Theorem 1.1] for ¢ = 1,2,3, and from Lem-
mas 23.7, 23.8, 23.10, 23.11 and 23.13 for i > 3. O

24. Toroidal surgery on knots in S

Recall that each of the manifolds M7, Ms, M3 admits two toroidal Dehn fillings
ri,r! on a torus boundary component T with distance 4 or 5. These are the

exteriors of the links L1, Lo, L3 in Figure 24.1. Let L; = K] U K/, where K] is the
left component of L;. Let T1 = ON(K]), and Ty = IN(K/).
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Each M; has a pair of toroidal slopes r, 7/ on Ty. These are given in [GW1,

Theorem 7.5] and shown in Figures 7.2, 7.4 and 7.5 of [GW1].

LEMMA 24.1. With respect to the preferred meridian-longitude pair of K, the
slopes ri, v are given as follows, up to relabeling.

(1) i =0 and r{ = 4.

(2) ry = =2 and rf = 2.

(3) ry = =9 and r§ = —13/2.

PROOF. (1) This is basically proved in [GW1, Lemma 7.1]. It was shown that
M; is the double branched cover of the tangle 1 in Figure 7.2(c) of [GW1]. Let m
be the meridian, [ the preferred longitude, and I’ the blackboard longitude of the
diagram of K7 in [GW1, Figure 7.2(a)]. Calculating the linking number of I’ with
K{ in Figure 7.2(a) we see that I’ = 2m + 1. Let n : M; — @1 be the branched
covering map. If r is a slope on T then 7(r) is a curve of a certain slope on the inside
boundary sphere, which will be denoted by a number in Qy = QU {oc}. One can
check that n(m) = 0/1, and n(I") = 1/0. The two toroidal slopes 7}, 7/’ map to slopes
—1/2 and 1/2, as shown in Figure 7.2(d) and (e) of [GW1]. We have o(—2m+1') =
(=2x0+4+1)/(-2x14+0)=—-1/2,and p(2m+1') = (2x0+1)/(2x1+0) =1/2.
Therefore rj = —2m +1' = —2m+ 2m+1)=land r{ =2m +1' = 4m + 1.

(2) This is similar to (1), using [GW1, Figure 7.4] instead. We have n(m) = 0/1,
n(l’) = 1/2, n(ry) = 1/0, n(ry) = 1/4, and | = I’. Therefore ry = —2m + [ and
rh =2m+1.

(3) Use 7.5(k) to denote [GW1, Figure 7.5(k)]. 7.5(a) shows that I’ = — 6m.
A careful tracking of I’ during the modification from 7.5(a) to 7.5(b) then to 7.5(c)
shows that n(m) = 0/1 and n(l’) = 1/3. From 7.5(c) and 7.5(e) we see that
n(ry) = 1/0 and n(r§) = 2/5. Therefore r5 = =3m +1' = —9m + [, and r§ =
—m+2l'=—-m+2(l —6m) = —13m + 2. O

LEMMA 24.2. Suppose K is a hyperbolic knot in S* admitting two toroidal Dehn
surgeries K (r1), K(re) with A(r1,r2) =4 or 5. Then there is an i € {1,2,3} and
a slope s on Ty of M; such that (E(K),r1,72) =2 (M;(s),r:, 7).

2 T

PROOF. Let F, be an essential punctured torus in My = S® — Int N (K) such
that F, is an essential torus in K (r4), chosen so that |9F, | is minimal. By Theorem
21.4 the triple (E(K),r1,72) is equivalent to either (M, r,r!) with 1 < ¢ < 14,
or to (M;(s),r},r!) for some ¢ = 1,2,3,14. Therefore we need only show that the
manifold M; (i = 4, ...,14) is not the exterior of a knot or link in S3.

When i = 4, the surface F} has two boundary circles on T with the same
orientation. Let A be an annulus on Ty connecting these two boundary components.

Then Fp U A is a non-orientable closed surface in My. It follows that M, cannot
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be the exterior of a knot in S? because S° contains no embedded non-orientable
surface.

For i = 5, let V4 be the Dehn filling solid torus of M5(rp). Then the Zg homology
group H of V, U Fy is generated by «, x and y, where « is the core of V3, and x,y
are represented by the edges A and F in Figure 11.10(b), respectively. A bigon in
Figure 11.10(a) gives the relation x = y. Consider the quotient group H’ obtained
from H by identifying x with y. Then H' = Zy ®Zs is generated by « and . Each
corner of Figure 11.10(a) represents the element «, and each edge represents z in
H’. Since each face in Figure 11.10(a) has an even number of edges and an even
number of corners on its boundary, it represents 0 in H’. Therefore

Hl(M5(Tb),ZQ) = Hl(‘/b U Fb U Fa,Zg) = H/ = ZQ (&%) ZQ.

Since the Zs homology of any manifold obtained by Dehn surgery on a knot in S3
is either trivial or Zs, it follows that Mj is not a knot exterior.

Now assume that M; is the exterior of a knot K in S2 for some i > 6. By
Theorem 23.14 K is hyperbolic. Put Qg = QU{oc}. A number in Qp is represented
by p/q, where p, ¢ are coprime integers, and ¢ > 0. Given a meridian-longitude pair
(m,l) and r = p/q € Qo, denote by K (r) the manifold obtained by surgery on K
along the slope pm + ¢l. There is a one to one correspondence 7 : Qg — Qg such
that A(n(r),n(s)) = A(r,s), and K(n(r)) is the double branched cover of Q;(r),
which is the manifold X;(r) given in Lemma 22.2. Since K (n(r3)) is a lens space,
by the Cyclic Surgery Theorem [CGLS, p.237] the slope n(r3) is an integer slope
with respect to the preferred meridian-longitude of K. To simplify the calculation,
let I = n(rs).

By [GLul] n(r1) and n(rz) are integer or half integer slopes. Suppose 7(r;) =
pi/q;- Then ps/qs = 0/1. By the above we have ¢; = 1 or 2 for ¢ = 1,2. By Lemma
22.2, |p1| = A(r1,r3) = 1, and |p2| = A(re,73) < 2.

If |po] = 1 then 4 < A(ry,7m2) = A(n(r1),n(r2)) = |p1g2 — p2qi1| implies that
¢1 = g2 = 2. This is a contradiction to [GWZ, Theorem 1], which says that a
hyperbolic knot in S® admits at most one non-integral toroidal surgery.

We now have |pa2| = 2, so n(rz) = p2/q2 = £2/1. Since A(ry,72) = |p1g2 —
peqi| = | £ 1 — (£2)q1| > 4, we must have p1/¢1 = F1/2, and A = 5. From
Lemma 22.2 we see that for ¢ € {6, ...,13}, the only M; satisfying A(re,r3) = 2 and
A(ry,r2) =5 are the ones with ¢ =7, 10 or 11.

Consider the case i = 10. Let ry be the slope such that 7(rg) is the meridian
slope 1/0. Then we have A(rg,r;) = A(n(ro),n(r:)) = A(1/0,p;/q;) = ¢ There-
fore by the above we have A(rg,r;) = ¢; = 2,1,1 for i = 1,2, 3, respectively. By
Lemma 22.2 we have 1, = 0/1, 7 = —=5/2 and r3 = 1/0. Let rg = p'/q’. Then we
have

A(ro,m1) = [p'| =2

A(To,f‘g) = |2pl + 5q'| =1

A(TO,T?,) = q/ =1
These equations have a unique solution 7o = —2/1. One can check that Q10(—2/1)
is the 2-bridge knot Kj,7, so its double branched cover is L(7, 2) # S3, which is a
contradiction.

The tangles @7, @11 and Q14 in Figures 22.7, 22.11 and 22.14 have a circle
component. If M; is a knot exterior in S? then there is a slope r such that the
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double branched cover of Q;(r) is S3. Since each of Q7(r) and Qq1(r) has at
least two components, its double branched cover has nontrivial Zs homology [Sa,
Sublemma 15.4], so M7 and M;; are not knot exteriors in S3. Similarly My is not
the exterior of a link in S3. O

LEMMA 24.3. (1) Leti € {1,2,3}. If r1,79 are toroidal slopes of M; on Ty with
A(ry1,m9) >4, then {r1,ma} = {rl,r!'}.

(2) The slope —T is a solid torus filling slope on Ty of Ms, and there is an
orientation preserving homeomorphism of Ms which interchanges the two solid torus

filling slopes {1/0,—7/1} and the two toroidal slopes {—9,—13/2}.

PROOF. Since M7, My, M3, My, are the only ones in Definition 21.3 with two
boundary components, by Theorem 21.4 (M;,r1,r2) is equivalent to one of the
(Mj, 7%, 7)) with j = 1,2,3,14. Since My, Ma, M3 are link complements in 3
and by Lemma 24.2 My, is not, we have j # 14. Computing Hq(M;,T1) shows
Hl(Ml,To) = Z, Hl(MQ,TO) = Zg, and Hl(Ml,To) = Z5, hence we must have
j=1.

By definition there is a homeomorphism ¢ : (M;,r1,72) — (M;, v, r), up to re-
labeling of r1, 7. For i = 1,2, by [Gal] and [Be] the knot K has no nontrivial solid
torus surgery, hence ¢(m) = m, where m is a meridian of K!'. Since A(m,r}) =
A(m,r!) =1, by the homeomorphism we also have A(m,r1) = A(m,re) = 1, so
r1,72 are also integer slopes. It follows that if {r1,re} # {r{,7} then there is a
pair of toroidal slopes with distance at least 5. Since M7, M5 is not homeomorphic
to M3, this is a contradiction to Theorem 21.4 and [Go].

Now suppose ¢ = 3. By an isotopy one can deform the tangle in [GW1, Figure
7.5(c)], which is shown in Figure 24.2(a), to the one in Figure 24.2(b), which is
invariant under the 7 rotation v along the forward slash diagonal. The 1/0 slope in
Figure 24.2(b) corresponds to the 1/2 slope in Figure 24.2(a), which, by the proof
of Lemma 24.1(3), lifts to the slope —7m + [ on Ty. The two toroidal slopes 1/0
and 2/5 for the tangle in Figure 24.2(a) correspond to the slopes —1/2 and 2 in
Figure 24.2(b), which are interchanged by 1. It follows that ¢ lifts to an orientation
preserving homeomorphism 1’ : M3 — Mj, which interchanges the two solid torus
filling slopes {1/0,—7/1} and the two toroidal slopes {—9,—13/2}. In fact, ¢’ is
represented by the matrix

7 1
(3 0)

in the sense that if A(p,q)! = (p',¢')t (where Bt denotes the transpose of the matrix
B) then ¢/ (pm + ql) = p'm + ¢'l.

Solid torus surgeries on knots in a solid torus have been completely classified
by Gabai [Gal] and Berge [Be]. It was shown that there is only one knot admitting
two nontrivial solid torus surgeries, which is a 7-braid. Since K% is a 5-braid, we
see that m = 1/0 and m’ = —7/1 are the only solid torus filling slopes on Tp.
Therefore the homeomorphism ¢ : (Mg, r5,74) — (M3, 71, r2) must map the set of
two curves {m,m’} to itself, possibly with the orientation of one or both of the
curves reversed. If ¢ preserves the orientation of m’ and reverses the orientation of
m then ¢(r5) = 9/1 would also be a toroidal slope, which is a contradiction to [Go]
because A(—9/1,9/1) = 18 > 8. Similarly ¢ cannot preserve the orientation of
m while reversing the orientation of m’. Therefore ¢ is orientation preserving and
its induced map on the set of slopes on T} is either the identity map, which fixes
{r5, 7%}, or the same as that induced by 1’ above, which interchanges {r5,75}. O
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(a) (b)
Figure 24.2

Denote by L;(n) the knot obtained from K by 1/n surgery on K.

THEOREM 24.4. A knot K in S® is hyperbolic and admits two toroidal surgeries
K(r1), K(re) with A(r1,72) > 4 if and only if (K, r1,72) is equivalent to one of the
following, where n is an integer.

(1) K=Li(n), n#0,1; 1 =0, ry =4.

(2) K=1Ls(n),n#0,+1; 11 =2—9n, r, = —2 — 9n.

(8) K =Ls(n), n#0; r1 =—9—25n, ro = —(13/2) — 25n.

(4) K is the Figure 8 knot; r1 =4, ro = —4.

PROOF. We first show that the knots in the list are hyperbolic and the slopes
are toroidal. For Li, Li(n) is a hyperbolic twist knot for n # 0,1, on which
the toroidal surgeries have been classified in [BW]. For L3 this is due to Eudave-
Mufioz, see [Eu, Theorem 2.1 and Prop. 2.2]. (One can check that Lz(n) is the
same as the Eudave-Munoz knot k(3,1,—n,0) in [Eu, Figure 25].) Since there is
an isomorphism of S which interchanges the two component of L, by Lemma
24.3(1) the only pair of toroidal slopes of distance at least 4 on K/ are +2. Recall
that La(n) is obtained by 1/n surgery on Kj. Since Ly is amphicheiral, La(n) is
homeomorphic to La(—n), hence if La(n) is toroidal for some |n| > 1 then so is
Lo(—n) and K} would have a pair of non-integral toroidal slopes (+1/n) of distance
at least 4, which is a contradiction. Similarly it follows from [Wu2] and [GW3] that
Ls(n) is also nontrivial and anannular for |n| > 1, and hence is hyperbolic. Also,
La(n)(r;) (i = 1,2) is the double branched cover of the tangle obtained by gluing
a 1/n tangle to the tangles in [GW1, Figure 7.4(d) and (f)], which is the union of
T(2,n) and T'(2,3), and hence is toroidal when |n| > 1. This completes the proof
of the sufficiency.

We now prove the necessity, so assume that K is hyperbolic knot admitting
two toroidal surgeries K (r1), K (r2) with A(rq,r2) > 4. By [Go] the Figure 8 knot
L1(—1) is the only hyperbolic knot in S? admitting two toroidal surgeries of distance
at least 6, so we assume A = 4 or 5. By Lemma 24.2 there is a homeomorphism
o (My(s),{ri,r!}) = (E(K),{r1,r2}) for some i = 1,2,3 and s C T7. It is easy
to see that L;(n) is either trivial or a torus knot when n = 0 or (i,n) = (1,1) or
(2,£1). Therefore we only need to show that s = 1/n because the slopes r; can
then be calculated using Lemma 24.1 and the Kirby calculus [Ro, p.267].

If Dehn filling on T3 of OM; along slope s produces a knot exterior E(K) =
M;(s), then the meridian-longitude of K may be different from that of K on Tp.



136 CAMERON McA. GORDON AND YING-QING WU

We use (m”,1") (resp. (m,1)) to denote a meridian-longitude pair of K" (resp. K)
in S3.

Claim 1. If E(K) = M(s) for some s on Ty of OM; then s = 1/n.

Since the linking number between the two components of L; is 0, a p/q Dehn
filling on 77 produces a manifold M (p/q) with H1(M1(p/q),Z) = Z @ Z,,, hence
Mi(p/q) is a knot complement only if |p| = 1. It follows that K = Li(n), where
n=gp.

Claim 2. If E(K) = Mas(s) for some s on Ty of dMs then s = 1/n for some n.

As before, let Lo = K5 U KY. Let M = E(K). Assume s = p/q and |p| > 1.
We have K(m") = La(s,m"”) = K}(s) = L(p,q). Therefore by the Cyclic Surgery
Theorem [CGLS], m” is an integer slope with respect to (m, 1), say m” = am+I1. By
[GLul] the toroidal slopes 71,7 of K are integer or half integer slopes with respect
to (m,1). Recall that ¢(r}) = r; and ¢(r4) = r2. Since m” is an integer slope, r1,72
cannot both be integer slopes, otherwise 4 = A(ry,7r2) < A(ry, m")+A(m” ,r2) = 2,
which is a contradiction. Also by [GWZ] they cannot both be half integer slopes.

Now assume 7 is an integer slope and ro is a half integer slope with respect
to (m,1). Since m” is an integer slope, we may choose | = m”. Then r = pym +1
and ro = pam + 21, so A(r1,m"”) = A(re,m”) = 1 implies p1,ps = £1. But then
A(ry,r2) = |2p1 — p2| < 3, a contradiction.

Claim 3. If E(K) = Ms(s) then there is an integer n and a homeomorphism
n: (Ms(1/n),{rs,75}) = (E(K),{r1,72}).

By Lemma 24.3 M5(—7) is a solid torus, and the meridian slope m” and the
slope r = —7 are the only solid torus filling slopes on Ty. If ¢(m’) = m then
S$3 = K(m') = Kj(s) implies that s = 1/n for some n, so n = ¢ is the required
map. If p(r) = m, let ¢ be the orientation preserving homeomorphism of Mz given
in Lemma 24.3, which maps m” to r. By Lemma 24.3 1) interchanges the slopes
rh,rY4. Let s’ =¢~1(s). Then o) : (Ms(s'),ry,r}) = (E(K),r1,r2) maps m” to
m. As above this implies that s’ = 1/n, hence n = ¢ 0 ¢ is the required map.

We now assume that p(m”) # m and ¢(r) # m. Note that K(m”) and K(r)
can be obtained from the solid tori Ms(m') and Ms(r) by s filling on T1, so they
have cyclic 71, hence by [CGLS] r,m” are integer slopes of K. Choose I = m”.
Since A(m”,r) = 1, we may assume r = 1/1 up to rechoosing the orientation of
I. The toroidal slope r§ = —9 satisfies A(r§,m”) = 1 and A(r},r) = 2, which
implies r§ = —1/1 or 1/3 with respect to (m,l). The second is impossible by
[GLul]. Similarly the fact that A(r{,m”) = 2 and A(r§,r) = 1 implies that
r4 = 2 with respect to (m,l). But then we have 5 = A(r§,r5) = A(-1,2) =3, a
contradiction. (]

COROLLARY 24.5. A hyperbolic knot K in S° has at most four toroidal surg-
eries. If there are four, then they are consecutive integers.

ProOF. By [GLul, GLu2] a toroidal slope of K must be an integer or half
integer, and if it is a half integer then K is a Eudave-Murtioz knot. By [T3, Corollary
1.2], if K is a Eudave-Mutioz knot then it has at most three toroidal slopes, hence
the result is true if K has a half integer toroidal slope. Therefore we may assume
that all toroidal slopes of K are integer slopes. The result follows if A(r,s) < 4
for all pairs of toroidal slopes (r, s) of K. Therefore by Theorem 24.4 we need only
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show that if K is either Li(n) or La(n) for some n then K has at most three integer
toroidal slopes.

If K is the knot Li(n) in Theorem 24.4(1) then by [BW] it has exactly two
toroidal slopes unless it is the Figure 8 knot, which has three toroidal slopes.

Now consider a knot K = La(n) in Theorem 24.4(2) and let r be an integral
toroidal slope of K other than r1,rs in the Theorem. Since A(r;,r) < 4, r must
be between 1 and 9. Denote by Ma(p/q) the p/q filling on T with respect to the
preferred meridian-longitude pair of Ls. By the proof of Lemma 24.1(2), My(—1)
is the double branched cover of Q2(1). Using the tangle in [GW1, Figure 7.4(c)]
one can check that Q2(1) is a Montesinos tangle T'(1/2, —2/5), therefore My(—1) is
a small Seifert fiber space with orbifold D?(2,5). Since La(n)(—1 —9n) is obtained
from Ms(—1) by Dehn filling on T and contains no non-separating surface, it is
atoroidal. Because of symmetry (Ls is amphicheiral), M2(1) is homeomorphic to
Ms(—1), so La(n)(1—9n) is also atoroidal. It follows that the only possible integer

toroidal slopes of La(n) are j — 9n for j = —2,0,2. This completes the proof.
(Actually it can be shown that —9n is not a toroidal slope of La(n) either, so it has
at most two integer toroidal slopes.) O

The following corollary is an immediate consequence of Theorem 24.4.

COROLLARY 24.6. Let K be a hyperbolic knot in S® which admits two toroidal
surgeries along slopes r1,r2, and A = A(ry1,r9) > 4. Then one of the r; is an
integer, and the other one is an integer if A # 5, and a half integer if A = 5.

Although there are infinitely many hyperbolic 3-manifolds M with toroidal
fillings M(r), M (s) at distance 4 or 5, we have shown that they all come from
finitely many cores X (r, s) as defined in Section 21.

QUESTION 24.7. Are there only finitely many cores X (r,s) of toroidal Dehn
fillings on hyperbolic 3-manifolds with A(r,s) =32 A(r,s) =27

We observe that the answer to Question 24.7 in the case A(r,s) =1 is almost
certainly ‘no’; here is an outline of an argument. Let N be a closed irreducible
3-manifold with a unique incompressible torus 7" up to isotopy. Let F' be a once-
punctured torus, regarded as a disk with two bands. It is intuitively clear that, for
any positive integer n, by tangling the bands in a sufficiently complicated fashion
we can construct an embedding F,, of F' in N so that if K, = 0F,, then N — K,
is hyperbolic, and K, cannot be isotoped to meet T in fewer than n points. Let
M, = N—-IntN(K,,), and let r, s on dM,, be the meridian of K, and the longitudinal
slope defined by F,,, respectively. Then A(r,s) = 1, M, (r) = N is toroidal by
definition, and M, (s) contains the non-separating torus Fn = F,UD, where D is
a meridian disk of V5. Hence, if we make sure that M,(s) does not contain a non-
separating sphere, then M, (s) is also toroidal. Since the number of intersections
of K, with T is at least n, the triples (M,,r, s) cannot all come from only finitely
many cores.
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