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KNOTS AND LINKS WITHOUT PARALLEL TANGENTS
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Abstract. This paper solves a problem of Colin Adams, showing that any link L

in R3 is isotopic to a smooth link L̂ which has no parallel or antiparallel tangents.

§1. Introduction

Steinhaus conjectured that every closed oriented C1-curve K has a pair of anti-
parallel tangents, that is, there are two points p1, p2 on K, such that the tangent
vectors p′1, p

′
2 at those points satisfy p′1 = cp′2 for some negative number c. The

conjecture is false, as Porter [3] showed that there exists an unknotted curve which
has no anti-parallel tangents. Colin Adams raised the question of whether there
exists a nontrivial knot in R3 which has no parallel or antiparallel tangents. In this
paper we will solve this problem, showing that any (smooth or polygonal) link L

in R3 is isotopic to a smooth link L̂ which has no parallel or antiparallel tangents.

Theorem 1.1. Given any tame link L in S3 and any neighborhood η(L) of L,
there is a smooth link L′ isotopic to L in η(L), which has no parallel or antiparallel
tangents.

If S(L) denotes the set of all smooth links isotopic to L, then the subset L̂(L)
of all L̂ which has no parallel or antiparallel tangents is not dense in S(L) if it is
endowed with C1 or C∞ topology. The reason is that if two links L1 and L2 are
very close to each other in the C1 topology, then their Gauss maps are also close
to each other, hence if we choose L1 so that its Gauss map has a transverse self
intersection, then the Gauss map of any L2 in a small neighborhood of L1 in the C1

topology will also have a self intersection point, and hence L2 has a pair of points
with parallel tangents. Nevertheless, from the proof of Theorem 1.1 one can see
that the link L′ in the theorem is C0 close to L, so L̂(L) is dense in S(L) under
the C0 topology. Theorem 1.1 is useful in studying supercrossing numbers, see the
recent work of Adams, Lefever, Othmer, Pahk and Tripp [1].

To present the idea of the proof, let us consider a smooth knot K : S1 → R
3.

The unit tangent vectors of K defines the Gauss map α : S1 → S2 of K, that is,
α(t) = K ′(t)/‖K ′(t)‖, where K ′ is the derivative of the map K. Let ρ : S2 → P 2 be
the standard double covering of the projective plane P 2. Then K has no parallel or
anti parallel tangents if and only if α is admissible in the sense that ρ◦α : S1 → P 2

is an injective map.
The first step is to approximate K with a generic polygonal knot K1. The “Gauss

map” of K1 is a non-continuous map with image a set of points, one for each edge
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of K1. One can bend each edge a little bit, so that ρ ◦ α : S1 − V → P 2 is an
injective map, where V is a small neighborhood of the vertices of K1. The map α
can be extended to a smooth map α1 : S1 → S2 such that ρ ◦ α1 : S1 → P 2 is still
an injective map. This can be done for links as well, see Lemma 2.3 below. Our
goal is then to find a knot K1 isotopic to K, such that its Gauss map is equal to α.

The speed function of K is defined as f(t) = ‖K ′(t)‖. Given a smooth function
f : S1 → R+, the integral of f(t)α(t), starting at a base point of S1, is then a map
Kf : I → R

3 with α as its Gauss map. Note that Kf may not be a closed curve.
We will define certain knots to be allowable ε-approximations of a polygonal knot
K1, and show (Lemmas 2.1 – 2.2) that such a knot is isotopic to K1. It then suffices
to show that f can be chosen so that Kf is an allowable ε-approximation of K1.

Choose f so that its restriction to S1 − V is the speed function of the bended
K1 above, and is very small on V . Then Kf is a union of bended edges of K1 and
some small arcs near the vertices of K1. The major technical difficulty is to choose
f so that these small arcs near the vertices of K1 are unknotted in certain sense,
which is a key property of allowable ε-approximations to assure that Kf is isotopic
to K1. This is done in Lemmas 2.4 – 2.5. One also has to modify f to make sure
that Kf is a closed curve, that is, Kf (0) = Kf (1). The proof of the theorem is
given at the end of Section 2.

§2. Proof of the main theorem

We refer the readers to [4] for concepts about knots and links. Throughout this
paper, we will use I to denote a closed interval on R. Denote by S2 the unit sphere
in R3, and by S1 the circle S2 ∩Rxy on S2, where Rxy denotes the xy-plane in R3.
Denote by Z[z1, z2] the set {v = (x, y, z) ∈ R3 | z1 ≤ z ≤ z2}. Similarly for Y [y1,∞)
etc. A curve β : I → R

3 is an unknotted curve in Z[z1, z2] if (i) β is a properly
embedded arc in Z[z1, z2], with endpoints on different components of ∂Z[z1, z2],
and (ii) β is rel ∂ isotopic in Z[z1, z2] to a straight arc.

Given a curve α : I = [a, b] → S2 and a positive function f : I → R+ = {x ∈
R | x > 0}, we use β = β(f, α, t0, v0) to denote the integral curve of fα with
β(t0) = v0, where t0 ∈ I. More explicitly,

β(t) = β(f, α, t0, v0)(t) = v0 +
∫ t

t0

f(t)α(t) dt.

When t0 = a and v0 = 0, simply denote it by β(f, α).
If γ : [a, b]→ R

3 is a map and [c, d] is a subinterval of [a, b], denote by γ[c, d] the
restriction of γ on [c, d]. If u, v are points in R3, denote by e(u, v) the line segment
with endpoints at u and v, oriented from u to v. Denote by d(u, v) the distance
between u and v. Denote by ‖e‖ the length of e if e is a line segment or a vector in
R

3. Thus d(u, v) = ‖e(u, v)‖ = ‖u− v‖.
Given n points v1, ..., vn in R3, let ei = e(vi, vi+1). The subscripts are always

mod n numbers. Thus en = e(vn, v1). In generic case, the union of these edges
forms a knot, denoted by K(v1, ..., vn). To avoid trivial case, we will always assume
n ≥ 4.

Lemma 2.1. Let K = K(v1, ..., vn) be a polygonal knot, and let N be a regular
neighborhood of K. Then there is a number r > 0 such that

(i) N contains the r-neighborhood N(K) of K;
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(ii) K ′ = K(v′1, v1, ..., v
′
n, vn) is isotopic to K in N if d(vi, v′i) < r; and

(iii) K ′′ = K(v′1, ..., v
′
n) is isotopic to K in N if d(vi, v′i) < r.

Proof. Choose r > 0 to satisfy (i) and r < d/4, where d is the minimal distance
between non-adjacent edges of K. The knot K ′ is contained in N(K). Let Di be
the meridian disk of the r-neighborhood N(ei) of the i-th edge ei = e(vi, vi+1) of
K, intersecting ei perpendicularly at its middle point mi. It is easy to check that
the distance from mi to any edge ej (j 6= i) is at least d/2 = 2r, hence Di is a
meridian disk of N(K). The edge e(v′i, vi) is contained in an r-neighborhood of vi,
hence is disjoint from all Dj . Thus Di intersects K ′ at a single point on the edge
e(vi, v′i+1), so the disks D1, ..., Dn cut N(K) into balls B1, ..., Bn, each intersecting
K ′ in an arc consisting of three edges, hence unknotted. Therefore K ′ is isotopic
to K in N(K). This proves (ii).

By (ii), both K and K(v′1, ..., v
′
n) are isotopic to K(v1, v

′
1, ..., vn, v

′
n) in N . There-

fore, they are isotopic to each other, and (iii) follows. �

Denote by C(θ, u, v) the solid cone based at u (the vertex of the cone), open in
the direction of v, with angle θ. More explicitly, if we set up the coordinate system
with u the origin and v in the direction of (0, 0, 1), then

C(θ, u, v) = {(x, y, z) ∈ R3 | z ≥ cot θ
√
x2 + y2}.

A smooth curve β : [a, b] → B in a ball B is θ-allowable if (i) β is properly
embedded and unknotted in B, (ii) the cones Ca = C(θ, β(a),−β′(a)) and Cb =
C(θ, β(b), β′(b)) are mutually disjoint, each intersecting B only at its cone point.

A smooth arc β : [a, b] → R
3 is called an ε-suspension if it is an embedding

into an isosceles triangle ∆ in R3 with base the line segment e = e(β(a), β(b)) and
height ε. It is called a round ε-suspension if furthermore it is a subarc of a round
circle in R3, and ‖β′(t)‖ is a constant function. The line segment e is called the
base arc of β, and the disk bounded by β and e is called the suspension disk. Put
θ = 2ε/‖e‖. Then the two angles of ∆ adjacent to e are at most arctan(2ε/‖e‖) < θ.
Therefore ∆, hence the curve β, is contained in the cones C(θ, β(a), β′(a)) and
C(θ, β(b),−β′(b)).

Let K be a polygonal knot, with edges e1, ..., en. A smooth curve β : S1 → R
3

is an allowable ε-approximation of K if it is a union of arcs β1, ..., β2n, such that
(i) each β2k is an ε-allowable arc in some ball Bk of radius at most ε;
(ii) each β2k−1 is an ε-suspension, such that its base arc Ek is parallel to ek, and

the difference between the lengths of ek and Ek is at most ε.

Lemma 2.2. Given any polygonal knot K = K(v1, ..., vn) and a regular neighbor-
hood N of K, there is an ε > 0 such that any allowable ε-approximation γ of K
with the same initial point is a knot, which is isotopic to K in N .

Proof. Rescaling R3 if necessary, we may assume that the length of each edge of
K is at least 3. Let ei = e(vi, vi+1). Denote by m the minimum distance between
nonadjacent edges, and by r the number given in Lemma 2.1.

Let ε be a very small positive number (for example, ε < min(1,m/10n, r/10n)).
Let β1, ..., β2n be the arcs of γ, and Bi the ball containing β2i, as in the definition
of allowable ε-approximation. Let ∆i be the isosceles triangles containing β2i−1,
as in the definition of ε-suspension arcs. Denote by v′′i , v

′
i+1 the initial and ending

points of β2i−1, respectively. Consider the union of all ∆i and Bi.
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Sublemma. The triangles ∆i are mutually disjoint, the balls Bi are mutually dis-
joint, and ∆i intersects Bj only if j = i or i−1 mod n, in which case they intersects
at a single point.

Since the base arc Ei = e(v′′i , v
′
i+1) of β2i−1 is parallel to ei with length difference

at most ε, and since d(v′i, v
′′
i ) is at most 2ε (the upper bound of diameters of Bi),

one can show by induction that d(vi, v′i) ≤ (3i − 2)ε, and d(vi, v′′i ) ≤ 3iε. Put
δ = 4nε < m/2. Then β2i−1 is in the δ-neighborhood of ei, and Bi is in the δ-
neighborhood of vi+1. Since the distance between two vertices or nonadjacent edges
of K is bounded below by m, it follows that the balls Bi are mutually disjoint, ∆i

is disjoint from ∆j when i and j are not adjacent mod n, and disjoint from Bj if j
is not equal or adjacent to i mod n. Since ‖Ei‖ > 3− ε and the height of ∆i is at
most ε, the two angles of ∆i adjacent to Ei is at most 2ε/(3− ε) < ε. Thus for each
endpoint v of Ei, ∆i is contained in a cone of angle ε based at v in the direction of
the tangent or negative tangent of β at v. Since β2i is an ε-allowable arc, it follows
from definition that ∆i is disjoint from ∆i+1, and they each intersects Bi only at
a single point. This completes the proof of the sublemma.

Since each βi is an embedding, it follows from the sublemma that γ : S1 → R
3 is

an embedding, hence is a knot. We can deform β2i−1 to the edge Ei by an isotopy
through the suspension disk. Since β2i is unknotted in Bi, it can be deformed
via an isotopy rel ∂ to a straight arc E′i in Bi. By the sublemma these isotopies
form an isotopy of γ to the polygonal knot K2 = E1 ∪ E′1 ∪ ... ∪ En ∪ E′n =
K(v′1, v

′′
1 , ..., v

′
n, v
′′
n). Since d(v′i, v

′′
i ) is very small, by Lemma 2.1(ii) K2 is isotopic

to the knot K(v′′1 , ..., v
′′
n), which is isotopic to K by Lemma 2.1(iii). �

Let A be a compact 1-manifold. A smooth map α : A → S2 is admissible if (i)
α is an embedding, and (ii) it has no antipodal points, i.e., α(t) 6= −α(s) for all
t 6= s. Denote by λ : S2 → S2 the antipodal map, and by ρ : S2 → P 2 the standard
double covering map onto the projective plane P 2. Then α is admissible if and only
if ρ ◦ α : A→ P 2 is a smooth embedding.

Lemma 2.3. Suppose Y is the disjoint union of finitely many circles, and suppose
A is a compact submanifold of Y . Let α : A→ S2 be an admissible map such that
each circle component of α(A) bounds a disk ∆ with interior disjoint from α(A)
and λ(∆). Then α extends to an admissible map α̂ : Y → S2.

Proof. Let I be the closures of components of Y − A. We need to extend α to an
admissible map α̂ : A ∪ I → S2 which still satisfies the assumption of the lemma.
The result would then follow by induction. If I is a circle, define α̂ : I → S2 to
be a smooth map embedding I into a small disk D of S2 such that D, ρ(D) and
α(A) are mutually disjoint. So suppose I is an interval with endpoints u1, u2 on a
component Y0 of Y . Denote by α̃ = ρ ◦ α.

If J = Y0 − IntI is connected, then by assumption α̃ is an embedding, so there
is a small disk neighborhood D of α̃(J) which is disjoint from α̃(A−J). Let D1 be
the component of ρ−1(D) containing α(J), and extend α to a smooth embedding
α̂ : A ∪ I → S2 so that α̂(I) ⊂ D.

Now suppose J is disconnected. Let J1, J2 be the components of J containing
u1, u2 respectively. Let K1, ...,Kr be the circle components of A, and let Di be the
disk on P 2 bounded by Ki. By assumption α̃(Ji) are in P 2 − ∪Di, so there are
two non-homotopic arcs γ̃1, γ̃2 : I → P 2 such that γ̃i ∪ α̃ : I ∪A→ P 2 is a smooth
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embedding. One of the γ̃i lifts to a path γ : I → S2 connecting u1 to u2. It follows
that γ ∪ α : I ∪A→ S2 is the required extension. �

Lemma 2.4. Suppose α = (α1, α2, α3) : I = [a, b] → S2 is an admissible curve
intersecting S1 transversely at two points in the interior, and α3(a) > 0. Then
there is a function f : I → R+ such that (i) f(t) = 1 in a neighborhood of ∂I, and
(ii) the integral curve β = (β1, β2, β3) is unknotted in Z[z1, z2], where z1 = β3(a)
and z2 = β3(b).

Proof. By assumption α3 has exactly two zeros u, v ∈ I, (u < v), so a3(t) < 0 if and
only if t ∈ (u, v). Since α3(u) = α3(v) = 0, the two points α(u) and α(v) lie on the
unit circle S1 on the xy-plane, hence by a rotation along the z-axis if necessary we
may assume that they have the same x-coordinate, i.e., α1(u) = α1(v). Since α is
admissible, α(u) 6= ±α(v), so we may assume that α1(u), α1(v) > 0. Notice that in
this case α2(u), α2(v) must have different signs. Without loss of generality we may
assume that α1(t), α2(t) > 0 when t is in an ε-neighborhood of u, and α1(t) > 0,
α2(t) < 0 when t is in an ε-neighborhood of v, where 0 < ε < min(u− a, b− v).

We start with the constant function f(t) = 1 on I, and proceed to modify f(t)
so that f(t) and the integral curve β = β(f, α, t0, v0) satisfy the conclusion of the
lemma. Put β = (β1(t), β2(t), β3(t)), and choose the base point v0 so that β(u) = 0.
Thus

βi(t) =
∫ t

u

f(t)αi(t) dt.

Since α1(u), α2(u) > 0, and β1(u) = β2(u) = 0, by enlarging f(t) in a small ε-
neighborhood of u, we may assume that β1(t), β2(t) > 0 for all t ∈ (u, v]. Since
α2(t) < 0 in a neighborhood of v, we may then enlarge f(t) near v so that β2(v) =
β2(u) = 0. This does not affect the fact that β1(t) > 0 for t ∈ (u, v], and β2(t) > 0
for t ∈ (u, v). Geometrically the curve β has the property that its projection to the
xy-plane lies in the half plane {y ≥ 0}, with initial point at the origin and ending
point on the positive x-axis.

The function β3 is decreasing in [u, v] because α3(t) is negative in this interval.
Thus β3(v) < β3(u). Since α3 is positive in [a, u] and [v, b], β3 is increasing in
these intervals. We may now enlarge f(t) in (u − ε, u) and (v, v + ε), so that
z3 = β3(u−ε) < β3(v) and z4 = β3(v+ε) > β3(u). Thus the curve β on [u−ε, v+ε]
is a proper arc in Z[z3, z4]. We want to show that it is unknotted.

By the above, the curve β[u, v] lies in Z[z3, z4]∩ Y [0,∞), with endpoints on the
xz-plane. Since β3 is decreasing on [u, v], β is rel ∂ isotopic in Z[z3, z4] ∩ Y [0,∞)
to a straight arc β̂[u, v] on the xz-plane. Since α2(t) > 0 for t ∈ [u − ε, u], and
β2(u) = 0, we have β2(t) < 0 for t ∈ [u− ε, u]. Similarly, since α2(t) < 0 near v, we
have β2(t) < 0 for t ∈ [v, v + ε]. Therefore, the above isotopy is disjoint from the
arcs β[u− ε, u] and β[v, v+ ε], hence extends trivially to an isotopy of β[u− ε, v+ ε],
deforming β[u− ε, v + ε] to the curve β̂ = β[u− ε, u] ∪ β̂[u, v] ∪ β[v, v + ε].

Since α1(t) is positive near u, v, β1 is increasing in [u− ε, u] and [v, v+ ε]. Since
β̂ is a straight arc connecting β(u) and β(v), and β1(v) > β1(u) by the above, the
first coordinate function of β̂ is also increasing in [u, v]. It follows that the first
coordinate of β̂ is increasing in [u− ε, v + ε], therefore, β̂ is unknotted in Z[z3, z4],
hence is rel ∂ isotopic to a straight arc β̃ in Z[z3, z4].

Since β3(t) is increasing on [a, u−ε]∪ [v+ε, b], the above isotopy extends trivially
to an isotopy deforming β : I → R

3 to the curve β[a, u− ε] ∪ β̃ ∪ β[v + ε, b]. Since



6 Y.-Q. WU

the third coordinate of this curve is always increasing, it is unknotted in Z[z1, z2],
where z1 = β3(a) and z2 = β3(b). Therefore, β is also unknotted in Z[z1, z2]. �

Given a ∈ R and δ > 0, let ϕ = ϕ[a, δ](x) be a smooth function on R1 which is
symmetric about a, ϕ(a) = 1, ϕ(x) = 0 for |x− a| ≥ δ, and 0 ≤ ϕ(x) ≤ 1 for all x.
Given a, b ∈ R with a < b, let ψ(x) = ψ[a, b](x) be a smooth monotonic function
such that ψ(x) = 0 for x ≤ a, and ψ(x) = 1 for x ≥ b. Such functions exist, see for
example [2, Page 7].

For any point p ∈ S2, denote by U(p, ε) the ε-neighborhood of p on S2, measured
in spherical distance. Thus for any q ∈ U(p, ε), the angle between p, q (considered
as vectors in R3) is less than ε.

Lemma 2.5. Let 0 < ε < π/8, and let α = (α1, α2, α3) : I = [a1, a2] → S2 be an
admissible arc transverse to S1, such that α3(ai) > ε. Let µ > 0. Then there is a
smooth positive function f(t) such that (i) f(t) = 1 near ai, and (ii) the integral
curve β = β(f, α, t0, v0) is an ε-allowable arc in a ball of radius µ in R3.

Proof. Notice that U(α(ai), ε) are on the upper half sphere S2
+. Choose 0.1 > δ > 0

sufficiently small, so that α(t) ∈ U(α(ai), ε) for t in a δ-neighborhood of ai, i = 1, 2.
Choose c0 = a1 + δ, c1, ..., cp = a2 − δ so that the curve α(Ij) intersects S1 exactly
twice in the interior of Ij = [cj−1, cj ], j = 1, ..., p.

By Lemma 2.4 applied to each Ij , we see that there is a function f1(t) on I, such
that f1(t) = 1 near ci and on [a1, c0]∪ [cp, a2], and the part β1[c0, cp] of the integral
curve β1 = β(f1, α, t0, v0) is unknotted in Z[z0, zp], where zi = β(ci). Without loss
of generality we may choose t0 = c0 and v0 = 0. Since the curve is compact, the
isotopy is within a ball, so there is a disk D in R2, such that β1[c0, cn] is unknotted
in D× [z0, zp]. Choose N large enough, so that the ball B(N) of radius N centered
at the origin contains both D × [z0, zp] and the curve β1 in its interior. We want
to modify f1(t) on [a1, c0) ∪ (cp, a2] to a function f3(t), so that β3 = β(f3, α, c0, 0)
is an ε-admissible curve in B(10N), and f3(t) = 10N/µ near ∂I.

First, consider the function

f2 = f1 + (
10N
µ
− 1)(1− ψ[a1, a1 + ε1] + ψ[a2 − ε1, a2]),

where ε1 is a very small positive number, say ε1 < min(δ, µ/10). By the property of
the ψ functions, we have f2(t) = f1(t) for t ∈ [c0, cp], and f2(t) = 10N/µ near a, b.
Let β2 = β(f2, α, z0, 0). Since ε1 is very small, one can show that ‖β2(t)‖ < 2N for
all t ∈ [a, b]. Let b1, b2 be positive real numbers. Define

f3(t) = f2(t) + b1 ϕ[a1 +
δ

2
,
δ

4
](t) + b2 ϕ[a2 −

δ

2
,
δ

4
](t).

Let β3 be the integral curve β3(f3, α, z0, 0). We have

β3(a2) = β2(a2) + b2

∫ b

zp

ϕ[a2 −
δ

2
,
δ

4
](t)α(t) dt = β2(a2) + b2v2.

Since α(t) ∈ U(α(a2), ε), by the choice of ε we have α3(t) > 0 for all t ∈ [zp, b],
hence the vector v2 above is nonzero. Since ‖β2(a2)‖ < 2N , we may choose b2 > 0
so that ‖β3(a2)‖ = 10N . Similarly, choose b1 > 0 so that β3(a1) = 10N . Now the
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arc β3 has both endpoints on the boundary of B(10N). We want to show that it is
an unknotted arc properly embedded in this ball.

Consider a point t ∈ [cp, a2] such that ‖β3(t)‖ ≥ 10N . Let θ(t) be the angle
between β3(t) and β′3(t). Put u0 = β3(cp), and notice that ‖u0‖ < N . Since
α(t) ∈ U(α(a2), ε), the curve β3[cp, b] lies in the cone C(ε, u0, α(a2)), so the angle
between (β3(t)− u0) and α(t) is at most 2ε. We have

cos θ(t) =
β3(t) · α(t)
‖β3(t)‖

=
(β3(t)− u0) · α(t) + u0 · α(t)

‖β3(t)‖

≥ (10N −N) cos(2ε)−N
10N

= 0.9 cos(2ε)− 0.1

>
1
2

Therefore, θ(t) < π/3. In particular, this implies that the norm of β3(t) is strictly
increasing if it is at least 10N and t ∈ [cp, a2]; but since ‖β3(a2)‖ = 10N , it follows
that β3(t) lies in the interior of B(10N) for t ∈ [cp, a2). Similarly, one can show
that this is true for t ∈ (a1, c0]. Therefore, β3 is a proper arc in B(10N). It is
unknotted because its third coordinate is increasing on [a1, c0] ∪ [cp, a2] and the
curve β3[c0, cp] = β1[c0, cp] is unknotted in D × [z0, zp], with β3(c0) on D × z0.

We need to show that the cone C(ε, β3(a2), β′3(a2)) intersects B(10N) only at
the cone point, but this is true because ε+ θ(a2) < π/8 + π/3 < π/2. Similarly for
C(ε, β3(a1),−β′3(a1)). Also, notice that the cone C(ε, β3(a2), β′3(a2)) lies above the
xy-plane, while C(ε, β3(a1),−β′3(a1)) lies below the xy-plane, so they are disjoint.
It follows that β3 is an ε-allowable curve in B(10N).

Finally, rescale the curve by defining f(t) = f3(t)µ/10N , and β = β(f, α, c0, 0).
Then β is an ε-allowable curve in a ball of radius µ, and f(t) = 1 near ∂I. �

Lemma 2.6. Suppose the integral curve β = β(f, α, a, 0) is a round ε-suspension.
Then for any k ∈ [ 1

2 ,
3
2 ], there is a positive function g(t) such that (i) g(t) = f(t)

near a, b, and (ii) the integral curve γ = β(g, α, a, 0) is a (kε)-suspension with
γ(b)− γ(a) = k(β(b)− β(a)).

Proof. Without loss of generality we may assume [a, b] = [−1, 1]. Set up the
coordinate system so that β lies in the triangle with vertices β(a) = (0, 0, 0),
β(b) = (2u, 0, 0) and (u, ε, 0), where 2u = ‖β(b) − β(a)‖. Put α = (α1, α2, α3).
Then α3(t) = 0, and α2(−t) = −α2(t). Consider the smooth function φ =
ψ[−1 + δ,−1 + 2δ] − ψ[1 − 2δ, 1 − δ]. It is an even function with φ(t) = 1 when
|t| ≤ 1− 2δ, and φ(t) = 0 when |t| ≥ 1− δ. Let g(t) = c+ pφ(t), where p > −c is a
constant. Since |φ(t)| ≤ 1, g(t) is a positive function. We have

γ(1) =
∫ 1

−1

g(t)α(t) dt = β(1) + p

∫ 1

−1

φ(t)α(t) dt.

Since φ(t) is even and α2 is odd, γ2(1) = γ3(1) = 0. When δ approaches 0, the
integral

c

∫ 1

−1

φ(t)α1(t) dt

approaches β1(1) = 2u. Hence for any s ∈ [u, 3u], we may choose δ small and
p ∈ (−c, c) so that γ(1) = (s, 0, 0). Note that γ′1(t) = (c − p)α1(t) > 0, so γ is an
embedding.
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Consider γ and β as curves on the xy-plane. Then The tangent of γ at t is given
by

γ′2(t)
γ′1(t)

=
g(t)α2(t)
g(t)α1(t)

=
α2(t)
α1(t)

,

which is the same as the tangent slope of β at t, and hence is bounded above by
ε. Thus γ is below the line y = εx on the xy-plane. Similarly, it is below the line
y = −ε(x − γ1(1)). It follows that γ is a kε-suspension, where k = γ1(1)/β1(1) =
s/2u ∈ [ 1

2 ,
3
2 ]. �

Proof of Theorem 1.1. Without loss of generality we may assume that L = K1∪...∪
Kr is an oriented polygonal link in general position, with oriented edges e1, ..., em,
which are also considered as vectors in R3. Let d be the minimum distance between
nonadjacent edges. We may assume each Ki has at least four edges, so d is also an
upper bound on the length of ei. For any ε1 ∈ (0, d/3) the connected components
of the ε1-neighborhood of L, denoted by N(Ki), are mutually disjoint. Choosing
ε1 small enough, we may assume that N(Ki) are contained in η(L). By Lemma 2.2
there is an ε > 0, such that any allowable ε-approximation of Ki is contained in
N(Ki) and is isotopic to Ki in N(Ki). Note that ε ≤ d/3. We will construct such
an approximation K̂i for each Ki, with the property that L̂ = K̂1 ∪ ...∪ K̂r has no
parallel or antiparallel tangents. Since N(Ki) are mutually disjoint, the union of
the isotopies from K̂i to Ki will be an isotopy from L̂ to L in N(L).

Consider the unit tangent vector of ei as a point pi on S2, which projects
to p̂i on P 2. Since L is in general position, p̂1, ..., p̂n are mutually distinct, so
by choosing ε smaller if necessary we may assume that they have mutually dis-
joint ε-neighborhoods D̂1, ..., D̂n, which then lifts to ε-neighborhoods D1, ..., Dn of
p1, ..., pn. Adding some edges near vertices of L if necessary, we may assume that
the angle between the unit tangent vectors of two adjacent edges ei, ei+1 of L (i.e.
the spherical distance between pi and pi+1), is small (say < π/2).

Bend each edge ej a little bit to obtain a round (ε/2)-suspension êj : Ij → R
3

with ‖ê′j(t)‖ = 1 (so the length of Ij equals the length of the curve êj). Then its
derivative ê′j is a map Ij → S2 with image in Dj because Dj has radius ε. Let
Y = ∪S1

i be a disjoint union of r copies of S1, and let A = ∪Ij be the disjoint
union of Ij . Embed A into Y by a map ξ according to the order of ei in L. More
precisely, if ej and ek are edges of L such that the ending point of ej equals the
initial point of ek then the ending point of ξ(Ij) and the initial point of ξ(Ik)
cobounds a component of Y − ξ(A). The union of the maps ê′j ◦ ξ−1 defines a map
ξ(A)→ S2, which is admissible because the disks D̂j on P 2 are mutually disjoint.
By Lemma 2.3, it extends to an admissible map α̂ : Y → S2. It now suffices to
show that each Ki has an allowable ε-approximation K̂i : S1

i → R
3, with α̂|S1

i
as

its unit tangent map.
The construction of K̂i is independent of the other components, so for simplicity

we may assume that L = K(v1, ..., vn) is a knot, with edges ei = ei(vi, vi+1). Since
L is in general position, the three unit vectors p1, p2, p3 of the edges e1, e2, e3 are
linearly independent, so there is a positive number δ < ε, such that the ball of
radius δ centered at the origin is contained in the set {

∑
uipi | ε > |ui|}.

We may assume that the intervals Ij = [aj , bj ] are sub-intervals of I = [0, an+1],
with a1 = 0 and bj < aj+1. Put Îj = [bj , aj+1]. Without loss of generality we
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may assume that the function ξ : A → S1 defined above is the restriction of the
function ξ : I → S1 defined by ξ(t) = exp(2πit/a2n). Put α = α̂ ◦ ξ : I → S2. Thus
α(t) = ê′j(t) on Ij .

Consider the restriction of α on Îj = [bj , aj+1]. We have assumed that the
spherical distance between pj and pj+1 is at most π/2. Since α(bj) ∈ Dj and
α(bj+1) ∈ Dj+1, the spherical distance between α(bj) and α(aj+1) is at most π/2+
2ε. As ε is very small, we may choose a coordinate system for R3 so that the third
coordinate α3 of α is greater than ε at bj and aj+1, and by transversality theorem
we may further assume that α is transverse to the circle S1 = S2 ∩ Rxy in this
coordinate system. Now we can apply Lemma 2.5 to get a function fj(t) on Îj such
that fj(t) = 1 near ∂Îj , and the integral curve γj = β(fj , α|Îj ) is an ε-allowable
curve in a ball of radius δ/2n. Extend these fj to a smooth map on I by defining
f(t) = 1 on Ij .

Consider the integral curve β = β(f, α). It is the union of 2n curves βi, β̂i
defined on Ii and Îi, where βi = β(f |Ii , α|Ii , ai, β(ai)) is a translation of êj because
f |Ii = 1; and β̂i = β(f |Îi , α|Îi , bi, β(bi)) is a translation of γi because f |Îi = fi. We
have

‖β(an+1)− β(a0)‖ ≤
n∑
1

‖β(aj+1)− β(bj)‖+ ‖
n∑
1

(β(bj)− β(aj))‖

≤
∑

2(δ/2n) + ‖
∑

ej‖ = δ.

By the definition of δ, there are numbers ui ∈ [−ε, ε], such that β(2n) − β(0) =∑3
i=1 uipi. Notice that |ui| < ε < ‖ej‖/2, so by Lemma 2.6, we can modify f(t)

on [aj + ε1, βj − ε1] for j = 1, 2, 3 and some ε1 > 0, to a function g(t), so that
the integral curve γ = β(g, α) on Ij is an ε-suspension with base arc the vector
ej + ujpj . Now we have γ(an+1) = γ(0), so γ is a closed curve. Since γ′(t) = α(t)
near 0 and 2n and α induces a smooth map α̂ : S1 → S2, it follows that γ induces
a smooth map γ̂ : S1 → R

3.
From the definition we see that γ̂ is an allowable ε-approximation of K. This

completes the proof of the theorem. �
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