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Given a knot K in a 3-manifold M , we use N(K) to denote a regular neighborhood of

K. Suppose γ is a slope (i.e an isotopy class of essential simple closed curves) on ∂N(K).

The surgered manifold along γ is denoted by (H,K; γ), which by definition is the manifold

obtained by gluing a solid torus to H − IntN(K) so that γ bounds a meridianal disk. We

say that M is ∂-reducible if ∂M is compressible in M , and we call γ a ∂-reducing slope

of K if (H,K; γ) is ∂-reducible. Since incompressible surfaces play an important rule in

3-manifold theory, it is interesting to know what slopes of a given knot are ∂-reducing. In

generic case there are at most three ∂-reducing slopes for a given knot [12], but there is no

known algorithm to find these slopes. An exceptional case is when M is a solid torus, which

has been well studied by Berge, Gabai and Scharlemann [1, 4, 5, 10]. It is now known that

a knot in a solid torus has ∂-reducing slopes only if it is a 1-bridge braid. Moreover, all

such knots and its corresponding ∂-reducing slopes are classified in [1]. For 1-bridge braids

with small bridge width, a geometric method of detecting ∂-reducing slopes has also been

given in [5]. It was conjectured that a similar result holds for handlebodies, i.e, if K is a

knot in a handlebody with H − K ∂-irreducible, then K has ∂-reducing slopes only if K

is a 1-bridge knot (see below for definitions). One is referred to [13] for some discussion of

this conjecture and related problems.

The main result of the present paper is to give an algorithm which will determine all

∂-reducing slopes for a given 1-bridge knot in a handlebody. Given a 1-bridge presentation

of a knot K in a handlebody H, the Main Algorithm in Section 7 will do the following.

(1). Determine if K is disjoint from some compressing disk of ∂H. If it is, then ∂H is

compressible after all surgeries, so all slopes are ∂-reducing.

(2). If K intersects all compressing disk of ∂H, determine if K is isotopic to a simple

closed curve on ∂H. If it is, then ∂H is compressible in (H,K; γ) if and only if ∆(γ, γ 0) ≤ 1,

where γ0 is the the boundary of an annulus in E(K) whose other boundary component is

on ∂H.
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(3). If the answer to 1 and 2 is negative, find three “candidate slopes”. These are the

only non meridional slopes which may be ∂-reducing.

(4). For each candidate slope γ i, determine if (H,K; γ i) is ∂-reducible.

The following is an outline of the algorithm.

Given a 1-bridge presentation α ∪ β of K, and a cutting system D = D1 ∪ . . . ∪ Dh of

H disjoint from β, let B be the 3-ball obtained by cutting along D. We can form a graph

Γ on ∂B by letting ∂α and the copies of Di be the vertices, and α ∩ ∂B be the edges. D

can be modified so that Γ has no “bad cut vertex” (Proposition 3.1). It can then be shown

that ∂H has a compressing disk disjoint from K if and only if Γ has a component disjoint

from ∂α. This completes (1) above. Also, if Γ has two components, each containing a point

of ∂α, then ∂H is incompressible after all nontrivial surgeries (Corollary 4.2). So we can

assume that Γ is connected.

The arc β is isotopic to any arc δ on ∂B with ends on ∂α. The arc δ is called a normal

arc if, after shrinking δ to a point, the graph (Γ ∪ δ)/δ has no cut points. It is easy to find

a normal arc (Proposition 5.1). The knot K can be retrived from α ∪ δ by first pushing δ

into IntH, then pushing α into IntH. This process determines an immersed annulus with

one boundary ∂ ′ on ∂N(K), and the other one on α∪ δ. It can be shown that K is isotopic

to a simple closed curve if and only if δ is disjoint from α, in which case γ is a ∂-reducing

slope if and only if ∆(γ, ∂ ′) ≤ 1. This completes (2) above.

Now assume ∂ ∩ α 6= ∅. There are three slopes γ1, γ2, γ3 on ∂N(K) which intersect the

meridian just once, and intersect ∂ ′ at most once. These are the candidate slopes. It will be

shown (Theorem 6.2) that these are the only non meridianal slopes that can be ∂-reducing.

It remains to decide if γi are ∂-reducing slopes. Theoretically it can be done by an

algorithm of Haken using handle decomposition and normal surfaces (see [8]), but in practice

that algorithm is quite sophisticated. We will do it as follows. Let M be the handlebody

H − IntN(β). It can be shown (Theorem 2.1) that each γ i corresponds to a curve γ ′

i on

∂M so that (M,K; γ i) = M [γ′

i], where M [γ ′

i] denotes the manifold obtained by 2-handle

addition on M along γ ′

i. By Jaco’s handle addition lemma, M [γ ′

i] is ∂-reducible if and only

if ∂M −γ′

i is compressible. Now a theorem of Starr (Theorem 1.2) can be used to determine

if ∂M − γ′

i is compressible. This completes the algorithm.

The paper is organized as follows. In Section 1 and 2 we translate the problem of

deciding whether a given boundary slope is ∂-reducing to a problem of deciding whether a

certain curve on the boundary of a handlebody intersects all compressing disks, which can

be accomplished by a result of Starr [11]. Sections 3 – 6 will complete (1) – (3) above to

find the candidate slopes. Theorem 4.1 is a generalization of a theorem of Menasco [9] and
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might be of independent interest. The Main Algorithm in Section 7 is a combination of the

algorithms and theorems in these two steps. In Section 8 we give some final remarks. In

particular, Theorem 8.3 has similar nature to the solid torus case, and is useful in practice.

Definitions and Conventions. One is referred to [6] for standard notations and conven-

tions about 3-manifold. In particular, we will always assume that two submanifolds are in

general position.

We use H to denote a handlebody, and use K to denote a knot in H. K is called a

1-bridge knot if it is isotopic to some curve α ∪ β, where α is an arc on ∂H, and β is a

proper arc in H which is rel ∂β isotopic to some arc β ′ on ∂H. In this case α∪β is called a

1-bridge presentation of K. Note that the two arcs α and β ′ may intersect each other, but

they have no self intersections.

Given a curve γ on the boundary of a 3-manifold M , we can glue a D2 × I to M so that

∂D2 × I is glued to a regular neighborhood of γ on ∂M . This process is called a 2-handle

addition, and the manifold so obtained is denoted by M [γ].

1 Compressibility of ∂H − γ

Consider a set of simple closed curves γ on the boundary of a handlebody H. We need an

algorithm to determine if ∂H−γ is compressible. The proof of Proposition 1.1 will produce

a cutting system so that the corresponding graph is either disconnected or 2-connected (see

below for definitions.) Corollary 1.3 then asserts that ∂H − γ is compressible if and only if

the graph is disconnected. Theorem 1.2 is due to Edith Starr [11]. We give a proof here for

the convenience of the readers.

Recall that a set of disks D = D1 ∪ . . . ∪ Dg is a cutting system of H if after cutting

along D, the manifold B = H − IntN(D) is a 3-ball. Each Di gives rise to two disks D′

i

and D′′

i on ∂B, which we will consider as “fat” vertices. Each arc component of γ ∩ ∂B is

considered an edge. If γ ∩ ∂B has circle components, add a vertex to each of them. We

thus obtain a planar graph on the sphere ∂B, denoted by Γ = Γ(D).

Some convention is in order. Since we are dealing with graphs with fat vertices, a loop

is actually an arc e on the sphere ∂B which has both ends on a fat vertex v. By a disk on

∂B bounded by e we mean a disk D on ∂B which is bounded by e and a boundary arc of

v, such that D is disjoint from the interior of the fat vertex e.

A vertex v on a graph Γ is called a cut vertex if Γ − v has more components than Γ.

In this case there is a circle C on ∂B, called a cut circle, which intersects Γ only at v, and

both sides of C has edges of Γ incident to v. Γ is called 2-connected if it is connected and

has no cut vertices.
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Proposition 1.1 Given curves γ on ∂H, there is a cutting set D so that Γ(D) has no cut

vertices. Thus Γ(D) is either disconnected or 2-connected.

Proof. Start with an arbitrary cutting system D ′. Suppose Γ(D′) is a cut vertex, say D′

1.

Let C be the corresponding cut circle, which is an arc with ends on ∂D ′

1. The two ends of

C cut ∂D′

1 into two arcs e1, e2, and we have two circles C1 = C ∪ e1 and C2 = C ∪ e2, each

having less intersection with γ than ∂D ′

1. Exactly one of the Ci, say C1, separates the two

disks D′

1 and D′′

1 . Let D0 be a disk in B bounded by C1. Then D′′ = D0 ∪D2 ∪ . . . ∪Dg is

a cutting set with |D′′ ∩ γ| < |D′ ∩ γ|. Now consider Γ(D′′) and repeat the above process.

q.e.d

Theorem 1.2 (Starr [11]) ∂H −γ is incompressible if and only if there is a cutting system

D such that Γ(D) is 2-connected.

Proof. Suppose ∂H − γ is compressible with E a compressing disk such that |E ∩ D| is

minimal. If ∂E is disjoint from D then ∂E is a circle on ∂B which separates Γ, so Γ is

disconnected. If ∂E ∩ D 6= ∅ then E ∩ D has some arc components. An outermost arc on

E cuts off an arc e of ∂E which has both ends on the same fat vertex of Γ and has interior

disjoint from Γ. If e bounds a disk on ∂B with interior disjoint from Γ then one can use this

disk to isotop E and get another compressing disk E ′ with |E′∩D| < |E∩D|, contradicting

the choice of E. Hence both sides of e intersects Γ, so either Γ is disconnected, or v is a cut

vertex. This proves the sufficiency.

Now suppose ∂H − γ is incompressible. Let D be the cutting system obtained by

Propsition 1.1. If Γ(D) is disconnected, a separating circle would bound a disk which would

be a compressing disk of ∂ − γ, which is absurd. Therefore Γ(D) is 2-connected. q.e.d

Corollary 1.3 Let D be a cutting system so that Γ(D) has no cut vertices. Then ∂H − γ

is incompressible if and only if Γ(D) is connected. q.e.d

A more general result is true. Suppose D is a set of disks in H cutting H into a union

of 3-balls B1 ∪ . . . ∪ Bk. Construct a graph Γ = Γ(D) as above. Let Γi be the part of Γ on

∂Bi. We will need the following result for the proof of Theorem 6.2.

Corollary 1.4 If Γi is 2-connected for all i, then ∂H − γ is incompressible.

Proof. The proof is essentially the same as that for the sufficiency of Theorem 1.2. q.e.d
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2 ∂-reducibility of a given surgery

Suppose K is a knot in a handlebody H with 1-bridge presentation α ∪ β. Let M be the

handlebody H− IntN(β). Consider the punctured torus P = ∂N(β)∪N∂(α), where N∂(α)

denotes a regular neighborhood of α on ∂M . It is easy to see that when attaching a 2-handle

to M along the curve ∂P , we get a manifold X = M [∂P ], which is homeomorphic to the

knot exterior H − IntN(K). We identify X with H − IntN(K). The punctured torus P lies

on ∂N(K), so any slope γ on ∂N(K) can be isotoped into P .

Theorem 2.1 With the above identification, the surgered manifold (H,K; γ) is homeomor-

phic to M [γ].

Proof. By definition, (H,K; γ) is obtained from X by attaching a solid torus V to ∂N(K)

so that γ bounds a meridian D of V . This can be done in two steps: Adding a neighborhood

N(D) of D, then adding the rest part. The first step is a 2-handle addition along the curve

γ, while the second is simply gluing a 3-ball to the manifold along its boundary, called

“adding a 3-handle”. If we use B to denote the 3-handle, then the above can be written as

(H,K; γ) = X[γ] ∪ B = M [∂P ][γ] ∪ B.

Since ∂P and γ are disjoint, we can switch the order of the two 2-handle additions, and get

(H,K; γ) = M [γ][∂P ] ∪ B.

Notice that the 2-handle added along ∂P intersects the 3-handle at a disk, so they cancel

each other. Therefore (H,K; γ) is homeomorphic to M [γ]. q.e.d

Corollary 2.2 (H,K; γ) is ∂-reducible if and only if ∂M − γ is compressible.

Proof. Since M is a handlebody, ∂M is compressible. The result now follows from the

above theorem and Jaco’s handle addition lemma [7, Lemma 1]. q.e.d

Given a slope γ on ∂N(K), Corollary 2.2 and Proposition 1.1 can be used to determine

if ∂H is compressible in (H,K; γ). The remaining task is to determine a finite set of

“candidate slopes” so that surgeries along all other slopes produce ∂-irreducible manifolds.

We can then use the above to check this finite set of slopes and see if there are any slopes

along which surgeries produce ∂-reducible manifolds.
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3 Find a good cutting system

Suppose D = D1 ∪ . . . ∪ Dg is a cutting system. Let B = H − IntN(D) be the 3-manifold

obtained by cutting H along D. As in section 1, each Di determines two fat vertices D′

i

and D′′

i on ∂B. Consider the two ends of α also as vertices, and consider the arcs in α ∩B

as edges. Then we get a graph Γ = Γ(α,D).

Definition. Let Γ = Γ(α,D) be the graph corresponding to a cutting system D. A cut

vertex v of Γ is called a bad cut vertex if there is a cut circle C for v such that the two

ends of α lie on the same disk on ∂B bounded by C. Similarly, a separating circle C for Γ

is called a bad separating circle if the two ends of α are on the same disk bounded by C.

A cutting system D is called a fair cutting system if it is disjoint from β, and Γ(α,D) has

no bad cut vertex. If in addition there is no bad separating circles for Γ(α,D), then D is

called a good cutting system.

Proposition 3.1 There exists a fair cutting system D.

Proof. Start with an arbitrary cutting system D which is disjoint from β. If Γ(α,D) has

no bad cut vertex we are done. Assume v is a bad cut vertex, and let e be the corresponding

cut circle. Without loss of generality we may assume that v = D ′

1. Then ∂e cuts ∂D′

1 into

two edges e1 and e2. Let Ci = e∪ei. One of the Ci, say C1, separates D′

1 from D′′

1 . Since C1

does not separates the two ends of α, it bounds a disk D0 which is disjoint from β. Replace

D1 by D0 to get a new cutting system D′ which is still disjoint from β. If Γ(α,D ′) has bad

cut vertex, repeat the process. Since |D ′ ∩ α| < |D ∩ α|, the process will eventually stop,

and produce a cutting system D′′ such that Γ(α,D′′) has no bad cut vertex. q.e.d

We remark that in general there is no cutting system D which is disjoint from β and

yet has no cut vertices.

Lemma 3.2 Suppose α ∪ β is a 1-bridge presentation of K. Then ∂H is compressible in

H − K if and only if ∂H − α is compressible in H − (α ∪ β).

Proof. Consider M = H − IntN(β) and P = ∂N(β) ∪ N∂(α). We identify H − IntN(K)

with M [∂P ], as in Section 2. Clearly, there is a homeomorphism M − P ∼= H − (α ∪ β),

which sends the surface ∂M − P to ∂H − α.

If ∂M − P is compressible in M − P , a compressing disk will either be a compressing

disk of ∂H in H − IntN(K) = M [∂P ], or it cuts off a 3-ball of H containing K. In either

case ∂H is compressible in H − K.

Now suppose ∂M − P is incompressible. In particular ∂P does not bound disk in M .

Since P is a punctured torus, ∂P is coplanar to any essential curve in P , so no essential curve
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in P bounds any compressing disk. In other words, P is also incompressible. Therefore

∂M − ∂P is incompressible in M . Since ∂M is compressible, by Jaco’s handle addition

lemma [7], the manifold M [∂P ] = H − IntN(K) has incompressible boundary. q.e.d

Theorem 3.3 ∂H is incompressible in H − K if and only if there exists a good cutting

system.

Proof. The proof is similar to that of Theorem 1.2. Suppose D is a good cutting system.

If ∂H is compressible in H−K then by Lemma 3.2 there is a compressing disk E of ∂H −α

in H − (α ∪ β). Isotop E so that |E ∩D| is minimal. If E ∩ D = ∅, then the curve ∂E is a

circle in ∂B disjoint from Γ, and both disks of ∂B bounded by ∂E intersect Γ. Moreover,

since E is disjoint from β, the two points ∂β = ∂α lie on the same side of ∂E. Thus ∂E is a

bad separating circle for Γ, contradicting the assumption that D is a good cutting system.

So assume E ∩ D 6= ∅. Then an arc of E ∩ D which is outermost on E cuts off a disk E ′

in B whose boundary ∂E ′ intersects Γ just at a fat vertex. If one component of ∂B − ∂E ′

is disjoint from Γ, one can isotop D to reduce |E ∩ D|, which contradicts the choice of D.

Hence both sides of ∂E ′ contain parts of Γ. Again, the two ends of α lie on same side of

∂E′ because E ′ ∩ β = ∅. Hence either the vertex at which ∂E ′ is based at is a bad cutting

vertex, or ∂E ′ can be pushed off the vertex to become a bad separating circle for Γ. Both

cases contradict the assumption that D is a good cutting system, completing the proof of

sufficiency.

For necessity, let D be a fair cutting system produced by Proposition 3.1. Then Γ(α,D)

has no bad cut vertex. If there is a bad separating circle C, then C bounds a disk E in B

which is disjoint from Γ and β, so E is a compressing disk of ∂H − α in H − α ∪ β. By

Lemma 3.2 ∂H is compressible in H − K. q.e.d

Corollary 3.4 Let D be a cutting system produced by Proposition 3.1. Then ∂H is incom-

pressible in H − K if and only if D is a good cutting system. q.e.d

Note that if D is obtained by Proposition 3.1, then it is fair, so it is good if and only if

each component of Γ(α,D) contains some ends of α.

4 If Γ(α,D) is disconnected

We now assume that ∂H is incompressible in H −K. By Corollary 3.4 and Proposition 3.1

we can find a good cutting system. This section deals with the special case that Γ(α,D)

is disconnected. We will show that in this case all nontrivial surgeries on K produce ∂-

irreducible manifolds. This will follow from Theorem 4.1, which generalize a theorem of

Menasco [9].
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Recall that a curve C1 on a surface F is called coplanar to another curve C2 if either

they are parallel or C1 bounds a once punctured torus which contains C2 as a nonseparating

curve. If F is the boundary of a 3-manifold and C2 bounds a compressing disk, then so does

any curve coplanar to C2. Note also that if C1, C2 are nonseparating, then C1 is coplanar

to C2 if and only if it is parallel to C2.

Theorem 4.1 Suppose K is a knot in a 3-manifold M such that ∂M is incompressible in

M − K. Suppose D1, D2 are compressing disks of ∂M in M such that D1 intersects K at

one point, and ∂D1 is not coplanar to ∂D2. Then ∂M is incompressible in all manifolds

resulted from nontrivial surgeries on K.

Proof. Let X be the knot exterior M − IntN(K). Let A be the annulus D1 ∩ X. It

is incompressible in X, otherwise ∂D1 would bounds a compressing disk of ∂M in X,

contradicting our assumption. By [3, Theorem 2.4.3], either X is (torus ×I), or ∂M remains

incompressible in all (M,K; γ) with ∆(γ,m) ≥ 2, where m is the meridian slope of K. The

first case is impossible because then ∂D2 would be parallel to ∂D1.

Now assume ∆(γ,m) = 1. We have (M,K; γ) = X ∪ V , where V is the attached solid

torus. Let X ′ = X − IntN(A). Then

X ∪ V = (X − IntN(A)) ∪ N(A) ∪ V = X ′ ∪ (N(A) ∪ V )

Since the inner boundary of A intersects the meridian of V just once, V ′ = N(A) ∪ V is a

solid torus, whose frontier in X ∪ V is an annulus which is the neighborhood of a longitude

of V ′. Therefore, gluing V ′ to X ′ produces a manifold homeomorphic to X ′. In other words,

the surgered manifold (M,K; γ) is homeomorphic to the manifold X ′ obtained by cutting

X along the annulus A.

Denote by γ the central curve of the annulus ∂N(K) ∩ X ′. Notice that ∂X ′ − γ is

incompressible, for a compressing disk E could be isotoped to have boundary lying on

∂X ′∩∂M , so it would be a compressing disk of ∂M in X = M−IntN(K), contradicting our

assumption. If ∂(M,K; γ) = ∂X ′ were compressible, by Jaco’s Handle Addition Lemma

[7] the manifold X ′[γ] obtained by attaching a 2-handle to X ′ along the curve γ would

have incompressible boundary. But this is impossible because one can see that X ′[γ] is

homeomorphic to M−IntN(D1), and since ∂D2 is not coplanar to ∂D1, D2 is a compressing

disk of the boundary of M − IntN(D1). q.e.d

Corollary 4.2 Let D be a good cutting system, and Γ(α,D) the corresponding graph. If

Γ(α,D) is disconnected, then either H is a solid torus with K as a central curve, or all

nontrivial surgeries on K produce ∂-irreducible manifolds.
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Proof. If Γ(α,D) is disconnected, there is a curve C on ∂B which separates Γ(α,D). Since

D is a good cutting system, the two ends of α lie on different sides of C, so C bounds a disk

D in B which is disjoint from α and intersects β at one point. Such a disk is a compressing

disk of ∂H intersecting K just once, so the result follows from [4, Theorem 1.1] if H has

genus one. When H has genus greater than one, H − IntN(D) is a handlebody, so we can

find another compressing disk D2 of ∂H which is nonseparating and is not parallel to D.

In this case the result follows from Theorem 4.1. q.e.d

5 Find a normal connecting arc

In this section we assume D is a good cutting system such that Γ = Γ(α,D) is connected.

Define a connecting arc to be an arc δ on ∂B which has ends on ∂α and is disjoint from the

fat vertices. It is called a normal connecting arc if after shrinking δ to a point, the graph

Γδ = (Γ∪ δ)/δ has no cut vertices. We use [δ] to denote the vertex in Γδ which is the image

of δ.

Proposition 5.1 Given a good cutting system D with Γ(α,D) connected, there is a normal

connecting arc.

Proof. Choose an arbitrary connecting arc δ and consider Γδ. Since Γ is connected and

has no bad cut vertex, it is easy to see that no fat vertex can be a cut vertex of Γδ. If [δ] is

not a cut vertex either then we are done. Otherwise, let C be a circle on ∂B/δ intersecting

Γδ at [δ] such that both sides of C intersects Γδ. Such circle corresponds to an arc C ′ on ∂B

which is disjoint from Γ and has both ends on the arc δ. Let e be the segment of δ between

the two ends of C ′. If e ∩ Γ = ∅, C ′ ∪ e would be a circle which separates Γ, contradicting

the connectivity of Γ. Hence when replacing e by C ′ we get another connecting arc δ′ with

|δ′ ∩ Γ| < |δ ∩ Γ|. Repeat this process, we will eventually obtain a normal connecting arc.

q.e.d

Corollary 5.2 If δ is a connecting arc of least intersection with Γ, then δ is normal. q.e.d

6 Find candidate slopes

Since β is an unknotted arc in B, for any connecting arc δ on ∂B, β∪δ bounds an embedded

disk D. If δ is disjoint from Int(α), then K is isotopic to the simple closed curve δ ∪ β on

∂H, in which case there are infinitely many ∂-reducing surgeries, and the slopes are known

[3, Theorem 2.4.3]. So we need only deal with the case that δ ∩ Intα 6= ∅. First we have
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Lemma 6.1 Let D be a good cutting system, and let δ be a normal connecting arc. Then

one of the following holds.

(1) δ ∩ Int(α) = ∅.

(2) There is a compressing disk of ∂H intersecting K only once.

(3) There is no incompressible annulus in X = H − IntN(K) with one boundary com-

ponent on each of ∂H and ∂N(K).

Proof. Assuming (3) is false, let A be an incompressible annulus with one boundary on

each of ∂H and ∂N(K). Let l be the slope A∩∂N(K). Since H = (H,K;m) is ∂-reducible,

by [3, Theorem 2.4.3] we must have ∆(m, l) ≤ 1. If l = m, then A extends to a disk in

H intersecting K just once, giving conclusion (2). So we can assume ∆(l,m) = 1. By [3,

Theorem 2.4.3] any slope γ with ∆(γ, l) = 1 is a ∂-reducing slope. In particular there is

a slope γ on ∂N(K) with ∆(m, γ) ≥ 2 such that (H,K; γ) is ∂-reducible. But according

to Proposition 1 of [12] and its proof, this implies that β is rel ∂β isotopic to an arc β ′

on ∂H with β ′ ∩ Int(α) = ∅. Let E be a disk bounded by β ∪ β ′. By the same proof as

that for Theorem 3.3, one can show that E can be made disjoint from D. Therefore β ′

is a connecting arc. After shrinking δ to a point, β ′ becomes some circles in Γδ. If (1)

is false, then β ′ ∪ δ intersects Int(α), so at least one of these circles is a cut circle for [δ],

contradicting the assumption that δ is a normal connecting arc. q.e.d

Now consider the manifold M = H − IntN(β), and the punctured torus P = ∂N(β) ∪

N∂(α) as defined in Section 2. Let Dg+1 = D ∩ M , where D is a disk bounded by β ∪ δ.

Then ∂Dg+1 intersects P at an arc and cuts P into an annulus. There are 3 simple closed

curves γ1, γ2, γ3 on P which runs through N∂(α) only once and intersects ∂Dg+1 at most

once. Call these the candidate slopes (associated to δ).

Theorem 6.2 Suppose D is a good cutting system, and suppose δ is a normal connecting

arc on ∂B with δ ∩ Int(α) 6= ∅. Let γ be a slope on P which is not a meridian of β. Then

∂M − γ is incompressible unless γ is one of the candidate slopes associated to δ.

Proof. Recall that by Corollary 2.2 ∂ − γ is compressible if and only if ∂H is compressible

in (H,K; γ). Let γ be a non-meridianal slope on ∂N(K) such that ∂H is compressible in

(H,K; γ). Apply Lemma 6.1. Our assumption rules out conclusion (1). Also, Corollary 4.2

says that (2) is false. Therefore (3) holds. By Theorem 1 of [12], we must have ∆(γ,m) = 1.

In other words, γ can be written as γ = α′∪ τ , where α′ is the part of α on ∂M (i.e, α with

the two small arcs α∩ IntN(β) removed), and τ is an arc on ∂N(β), isotoped to have least

intersection with ∂Dg+1.
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Let Dg+2 be a disk in H which is disjoint from β, such that ∂Dg+2 is the boundary of a

regular neighborhood of the arc δ. The set D′ = D ∪ Dg+1 ∪ Dg+2 cuts M into two 3-balls

B1 and B2. We assume B2 is the one that contains the fat vertices D ′

g+1 and D′′

g+1.

Consider the graph Γ(D′, γ) which has fat vertices as above, and has γ ∩ (∂B1 ∪∂B2) as

edges. Let Γi = Γ ∩ ∂Bi. It is easy to see that Γ1 is isomorphic to the graph Γδ defined in

Section 5, so it is 2-connected because we have assumed that δ is a normal connecting arc.

Now consider the graph Γ2. It has three vertices: D′

g+1, D′′

g+1, and D′

g+2, say. Since

δ∩ (α) 6= ∅, there are edges of Γ2 connecting D′

g+2 to both D′

g+1 and D′′

g+1. Since τ ∩∂Dg+1

is assumed minimal, there are no loops in Γ2. Moreover, if γ is not one of the candidate

slopes, then |τ ∩∂Dg+1| = |γ∩∂Dg+1| ≥ 2, so there is at least one edge of Γ2 which connects

the two vertices D′

g+1 and D′′

g+1. Hence the graph Γ2 is also 2-connected. By Corollary 1.4,

∂M − γ is incompressible. q.e.d

7 The main algorithm

The Main Algorithm is a combination of the results in the previous sections. It will deter-

mine whether ∂H is compressible in H−K, whether K is boundary parallel, and determine

all ∂-reducing slopes if there is any.

Main Algorithm. Given a 1-bridge presentation α ∪ β of a knot K in a handlebody H,

find all ∂-reducing slopes on ∂N(K).

Step 1. Use Proposition 3.1 to find a fair cutting system. By Corollary 3.4, if there

is a bad separating circle for Γ(α,D) then ∂H is compressible in H − K, so all slopes of

∂N(K) are ∂-reducing. Otherwise, D is a good cutting system.

Step 2. If Γ(α,D) is disconnected, then there is no ∂-reducing slopes other than the

median m of K (Corollary 4.2). Otherwise, use Proposition 5.1 to find a normal connecting

arc δ. If δ is disjoint from Int(α) then K is isotopic to the simple closed curve α ∪ δ on

∂H, so a slope γ is ∂-reducing if and only if ∆(γ, l) ≤ 1, where l is the slope determined by

an annulus bounded by K and α ∪ δ [3, Theorem 2.4.3]. Otherwise, let γ1, γ2, γ3 be the 3

candidate slopes defined in Section 6.

Step 3. Let M and P be as in Section 2. Use Proposition 1.1 and Corollary 1.3 to

determine if ∂M − γi is compressible for i = 1, 2, 3. Corollary 2.2 and Theorems 6.1 say

that (H,K; γ) is ∂-reducible if and only if γ is one of the γ i’s and ∂M − γ is compressible.

q.e.d
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8 Remarks and related results

Here are some related results. Sometimes they will provide quick decision about whether

K admits ∂-reducing surgeries.

8.1. A 1-bridge knot K is called to have width 1 if the bridge β is rel ∂β isotopic to

some arc β ′ on ∂H which intersects Int(α) just once. One can show that if K has width 1

then there is a nontrivial surgery on K that produces a handlebody.

Figure 1 Figure 2

8.2. The knot shown in Figure 1 is a width 1 knot in a genus 2 handlebody. It

is actually width 1 in two different ways. One can show that there are three different

surgeries (including the trivial one) that produce handlebodies. By changing the way the

curve winding around the left hand side handle one can get many different knots with this

property. This should be compare with the solid torus case. It has been shown by Berge [1]

that there is exactly one nontrivial knot which admits three different surgeries producing

solid tori.

Figure 3

8.3. A consequence of the results of Berge [1], Gabai [4] and Scharlemann [10] is that

if K is a 1-bridge knot in a solid torus but is not a closed braid, then there is no nontrivial
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∂-reducing surgeries. By cutting along a good disk one gets a graph with two fat vertices

which looks like that in Figure 2, where the thick line represents a nonempty set of parallel

lines. The following is a similar result for handlebodies. The proof is similar to that of

Theorem 6.2 and is omitted. One can use the theorem to show that the knot in Figure 3

admits no nontrivial ∂-reducing surgeries. The cutting disks are shown in the picture.

Theorem. Suppose D is a set of disks disjoint from β, cutting H into two 3-balls B1 and

B2. Let Γ(α,D) be defined as in Section 3, and let Γi = Γ(α,D)∩Bi. If Γ1 is 2-connected,

and Γ2 is the graph in Figure 2, then K admits no nontrivial ∂-reducing surgeries.
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