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1. Introduction

A knot K is called an arborescent knot if it can be obtained by summing and gluing

several rational tangles together, see [7] or below for more detailed definitions. Recall

that a 3-manifold is called a Haken manifold if it is irreducible and contains an incom-

pressible surface. Following Hatcher [14] we say that a 3-manifold M is laminar if it

contains an essential lamination. The purpose of this paper is to study Dehn surgeries

on arborescent knots, and see which of these surgered manifolds are laminar, Haken,

or hyperbolic.

There has been some study on these problems for Montesinos knots. Denote by

K = K(p1/q1, . . . , pn/qn) a Montesinos knot obtained by gluing rational tangles cor-

responding to the rational numbers pi/qi together in a cyclic way, see for example [24]

for more details. To avoid the trivial case, we always assume that |qi| ≥ 2. We call n

the length of K. Oertel [24] showed that if n ≤ 3 then there are no closed essential

surfaces in the knot exterior E(K) = S3 − IntN(K), and if n ≥ 4 and |qi| ≥ 3, then

there are incompressible surfaces which remain incompressible after all nontrivial surg-

eries. Delman [4, 5] studied essential laminations in E(K), the exterior of K, showing

that for most Montesinos knots there are essential laminations in E(K) which remain
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essential after all nontrivial surgeries. The result is particularly interesting for those

K with n ≤ 3, because by the results of Oertel [24] and Hatcher [13] most of these

surgered manifolds are non Haken manifolds.

For our purpose we divide arborescent knots into three types. Type I knots are

those Montesinos knots which have length at most 3. A knot is of type II if it is of the

form shown in Figure 1.1, where R(pi/qi) are rational tangles with |qi| ≥ 2, and B is

any 4-string braid from the left to the right such that the resulting link is a knot. In

other words, a knot is of type II if it is the union of two tangles, each of which is a sum

of a (1/2)-tangle and a rational tangle. All the other arborescent knots are called type

III knots. We will mainly study surgeries on type II or III knots.

R(p /q )
1 1

B

R(p /q )
2 2

Figure 1.1

Theorem 2.4. Let K be an arborescent knot. If K is not a Montesinos knot of length

at most 3, then K(γ) is laminar for all non-trivial slopes γ.

Remark. The following knots in the knot table [25] satisfy the hypothesis of Theorem

2.4: 816, 817, 929, 932, 933, 938, 1079 – 1097, and 10148 – 10154.

Corollary 2.5. All arborescent knots K have property P, i.e, π1(K(γ)) 6= 1 for all

nontrivial γ.

Corollary 2.6. The cabling conjecture is true for arborescent knots, that is, if K is a

non torus arborescent knot, then K(γ) is irreducible for all γ.
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Remark. The property P conjecture says that all nontrivial knots have property P.

Modulo the Poincare conjecture, this would follow from the Gordon-Luecke theorem

that knots are determined by their complements [11]. Other classes of knots for which

the conjecture has been proved include satellite knots [8], and symmetric knots [3].

Recently Delman and Roberts proved it for alternating knots.

The cabling conjecture says that if K is not a cable knot or torus knot, then all

surgeries on K produce irreducible manifolds. It has been proved for satellite knots

[26], alternating knots [22], strongly invertible knots [6], and those knots with bridge

number at most 4 [12].

In most cases, a stronger result than Theorem 2.4 holds.

Theorem 3.6. If K is a type III arborescent knot then K(γ) is a hyperbolic Haken

manifold for all nontrivial γ. In particular, this is true for all Montesinos knots K =

K(p1/q1, . . . , pn/qn) with qi ≥ 2 and n ≥ 4.

Theorem 4.4. If K is a type II arborescent knot, then K(γ) is a hyperbolic Haken

manifold for all non-integral slopes γ.

Theorem 4.4 is not true for integral surgeries on type II knots. There are infinitely

many isotopy classes of connected, closed, incompressible surfaces in any type II knot

complement, but none of them can survive under any integral surgery.

Theorem 4.8. If K is a type II arborescent knot, then all closed incompressible sur-

faces in E(K) are compressible in K(γ) for all integral slopes γ.

Remark. Theorem 4.8 was proved by Lopez [20] for a subclass of type II knots. The

proof there is not complete, as the author does not seem to have noticed that there are

infinitely many incompressible surfaces in the knot complement.

Combining Theorem 4.8 with a theorem of Hatcher [13], we see that all but finitely

many integral surgeries on a type II knot produce non Haken laminar manifolds.
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We will use tangles to prove the above theorems. Theorem 2.4 follows from a more

general result: If K is the union of two nonsplit tangles, then either K is some (2, q)

cable of a composite knot, or E(K) has essential laminations which remain essential

after all nontrivial surgeries. Note that in the first case an incompressible torus in

E(K) remains incompressible after all nontrivial surgeries, but the surgery along the

cabling slope produces a reducible manifold, so it is not laminar. But clearly this is the

only “bad” surgery besides the trivial one. Theorem 3.6 is a consequence of Theorem

3.3, which says that if K is the union of two nontrivial atoroidal tangles, and if at least

one of the tangles is ∂-irreducible, then all surgeries on K are hyperbolic and Haken.

The purpose of the remaining part of this section is to give some definitions and

conventions. We refer the reader to [17] for basic concepts about 3-manifolds.

If X is a subset of a 3-manifold M , we use N(X) to denote a regular neighborhood

of X, and use |X| to denote the number of components in X. Let K be a knot in M .

A slope γ is an isotopy class of simple closed curves on ∂N(K). A slope γ is nontrivial

if it is not the meridional slope of K. It is called an integral slope if it intersects the

meridional slope of K just once. We use (M, K; γ) to denote the manifold obtained

from M by surgery on K along γ, that is, (M, K; γ) = (M − IntN(K)) ∪ (S1 × D2),

where γ bounds a disk in the solid torus S1×D2. When M = S3, the surgered manifold

(M, K; γ) is simply denoted by K(γ).

We define a tangle to be a pair (B, T ), where B is a 3-ball, and T = t1 ∪ t2 is a pair

of arcs, called strings, properly embedded in B. When there is no confusion we also

call T a tangle. T is called a trivial tangle if it is properly isotopic to a pair of arcs

on ∂B. Denote by E(T ) the tangle space B − IntN(T ). We say that T is ∂-reducible

if E(T ) has compressible boundary. Otherwise it is ∂-irreducible. Recall that a closed

or properly embedded surface in a 3-manifold M is called an essential surface if it is

incompressible, ∂-incompressible, and is not parallel to a surface on ∂M . A 3-manifold
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M is atoroidal if it contains no essential tori. A tangle T is said to be atoroidal if E(T )

is atoroidal.

A marked tangle is a triple (B, T, ∆), where (B, T ) is a tangle, and ∆ is a disk on

∂B containing two endpoints of T . A marked tangle is called a rational tangle if its

underlying tangle (B, T ) is trivial. We assign a rational number or ∞ to the tangle

as follows. Suppose the string t1 of T is rel ∂t1 isotopic (in B − t2) to an arc α on

∂B. Let F be a torus which double branch covers ∂B with branch set ∂T . Let m be a

component of the lifting of ∂∆, and let l be a curve on F intersecting m once. Orient

m, l so that the intersection number of m with l is +1 with respect to the orientation

of F induced from a fixed orientation of ∂B.. Then the lifting of α represents some

pl + qm in H1(F ). We say that (B, T, ∆) is a p/q rational tangle, and use R(p/q) to

denote it. Because of the ambiguity of the choice of l, the number p/q is defined mod

Z. Thus R(r) = R(r′) if and only if r = r′ mod Z. The tangles in Figure 1.2 are the

0-tangle, ∞-tangle and (1/5)-tangle, respectively. One can check that if a tangle is a

(p, q) rational tangle in the usual sense (see e.g. [2] or [16]), and if we choose the left

hand side disk as the disk ∆, then it is an R(p/q) according to our definition.

Figure 1.2

Given two tangles (B1, T1) and (B2, T2), we can choose a disk ∆i on ∂Bi to form

marked tangles (Bi, Ti, ∆i), then glue the two disks ∆i together to form a new tangle

(B, T ). We say that (B, T ) is the sum of (B1, T1, ∆1) and (B2, T2, ∆2), and write

(B, T ) = (B1, T1, ∆1) + (B2, T2, ∆2) or simply T = T1 + T2. This process depends on
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the choice of ∆i and the gluing map. When neither of (Bi, Ti, Di) is R(0) or R(∞),

we say that the sum is a nontrivial sum. A tangle is called an algebraic tangle if it is

obtained by nontrivially summing rational tangles together in various ways. Thus a sum

of algebraic tangles is still an algebraic tangle. Define the length L(T ) of an algebraic

tangle T as follows. L(T ) = 1 if T is a rational tangle. In general, if T = T1 + T2 is

a nontrivial sum, then L(T ) = L(T1) + L(T2). It can be shown that the length of an

algebraic tangle is well defined.

Given two tangles (B1, T1) and (B2, T2), we may glue the boundaries of the Bi

together to get a knot or link K in S3. In this case K is called a union of T1 and T2,

and we write K = T1 ∪ T2. Again, K depends on the gluing map ∂B1 → ∂B2. From

Figure 1.1 one can see that an arborescent knot K is of type II if and only if it is a

union of two tangles T1 and T2, and each Ti is a sum R(1/2) + R(pi/qi).

A knot K is called an arborescent knot if it is the union of two algebraic tangles. This

is equivalent to the definition given in [7]. Note that Montesinos knots [23], which are

also called star knots [24], are a special kind of arborescent knots. A Montesinos knot

K(p1/q1, . . . , pn/qn) is obtained by gluing n rational tangles with associated rational

numbers p1/q1, . . . , pn/qn together in a cyclic way, where qi ≥ 2. We call n the length

of K.

2. Essential laminations after surgery

A tangle (B, T ) is a split tangle if there is a disk in B separating the two strings.

(B, T ) is called a parallel tangle if T is a pair of parallel knotted arcs. Suppose a knot

K in S3 is a union of two nonsplit tangles T1 and T2. In this section we will show

that in most cases there are essential laminations in K(γ). More explicitly, if K is not

a (2, q) cable of a composite knot, then all nontrivial surgeries on K produce laminar

manifolds. See [9] for definitions and properties of essential laminations.
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We first consider the case that one of the Ti is toroidal.

Lemma 2.1. Suppose K = T1 ∪ T2, where Ti are non-split tangles. If T1 is toroidal,

then one of the following holds.

(a) Both Ti are parallel tangles, so K is some (2, q) cable of a composite knot;

(b) K(γ) is a Haken manifold for all γ 6= ∞.

Proof. As before, we use E(Ti) to denote the tangle space B3− IntN(Ti). Let P be the

punctured sphere E(T1)∩E(T2) in the knot exterior E(K) = S3 − IntN(K). Let F be

an essential torus in E(T1). Since the Ti are nonsplit, P is incompressible in E(K), so

F is also incompressible in E(K). Let V be the (knotted) solid torus in S3 bounded by

F . Then K is a knot in V , and P is an incompressible surface in V − IntN(K). One

can show that this implies that K is not a closed braid in V . By a theorem of Gabai

[8], F remains incompressible after all nontrivial surgeries on K. Hence (b) follows

unless (V, K; γ) is reducible. If (V, K; γ) is reducible, by a theorem of Scharlemann

[26], K is some (p, q) cable of a knot K ′ in V . Let V ′ be a regular neighborhood of

K ′ containing K. Isotope P to minimize its intersection with ∂V ′. Since K is a closed

braid in V ′, P can not lie in V ′, so k = |P ∩ ∂V ′| ≥ 2. Each component of P ∩ V ′

intersects ∂N(K) just p times, so |P ∩ ∂N(K)| = kp. As P is a four punctured sphere,

we have k = p = 2. It is now easy to see that conclusion (a) holds. �

Lemma 2.2. Suppose (B, T ) is a nontrivial atoroidal tangle with t1, t2 as the strings.

Let mi be a meridian of the string ti on ∂E(T ). Then at least one of the ∂E(T )− mj

(j = 1, 2) is incompressible.

Proof. If ∂E(T ) is incompressible, then both ∂E(T ) − mj are incompressible. So

assume ∂E(T ) is compressible. Cutting along a compressing disk D, we get a manifold

with one or two tori as boundary , depending on whether D is separating. Since T

is assumed atoroidal and E(T ) is irreducible, each of the tori bounds a solid torus.
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Therefore, E(T ) is a handlebody of genus two.

Suppose ∂E(T ) − m1 is compressible. After cutting along a compressing disk, we

get one or two solid tori, so m1 lies on the boundary of a solid torus V . We claim that

m1 is a primitive curve of ∂V , i.e, it intersects a meridian disk of V just once. For if

m1 were not primitive, by attaching a 2-handle along m1 we would get a manifold W

with ∂W = S2 and π1W 6= 1. But attaching a 2-handle along m1 is the same as to

refill N(t1) back into V , so W would be a summand of the 3-ball B, which is absurd.

Thus, if both ∂E(T ) − m1 and ∂E(T ) − m2 are compressible, then m1 and m2 are

primitive curves on the boundary of the handlebody E(T ). Moreover, when attaching

2-handles to both m1 and m2, we get the 3-ball B. It now follows from Lemma 2.3.2

of [3] or Theorem 1 of [10] that the set m1 ∪ m2 is standard, in the sense that there

is a disk D cutting E(T ) into two solid tori, each containing an mi as a primitive

curve. But this implies that T is a trivial tangle, contradicting the assumption of the

lemma. �

Theorem 2.3. Let K ⊂ S3 be the union of two nonsplit tangles T1 and T2. Suppose

that at least one of the Ti is not a parallel tangle. Then there is an essential lamination

L in E(K) which remains essential after all nontrivial surgeries on K.

Proof. If one of the tangles Ti is toroidal, the result follows from Lemma 2.1 because

a Haken manifold is laminar. So we assume that both Ti are atoroidal. Let t1, t2 be

the strings of T1. Let Ui be the annulus ∂N(ti) ∩ ∂E(T1). Similarly, let Vi be the

annulus ∂N(si)∩ ∂E(T2), where s1, s2 are the strings of T2. By Lemma 2.2, one of the

∂E(T1)−Uj (resp. ∂E(T2)− Vj) is incompressible. Without loss of generality we may

assume that ∂E(T1) − U1 and ∂E(T2) − V1 are incompressible.

The proof of Theorem 2.3 is divided into four steps. In Step 1 we construct a

branched surface B in E(K). Step 2 shows that it fully carries a lamination. We then

prove in Step 3 that B is essential in E(K). Finally in Step 4 it will be shown that
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B remains essential after all nontrivial surgeries on K. This will complete the proof

of Theorem 2.3 because by [9] any lamination fully carried by an essential branched

surface is essential.

Step 1. Construction of essential branched surfaces.

Figure 2.1 indicates a part of N(K) and the part of the surface P in a neighborhood

of N(K). The surface P cuts E(K) into E(T1) and E(T2), and cuts the torus ∂N(K)

into the four annuli U1, V1, U2, V2, as shown in the figure 2.1.

P PPP

1U V1 U V
22

V
2

Figure 2.1

P PPP

c1 c2

N(K)

Figure 2.2

We take the branched surface B to be the same as P outside of some neighborhood

of N(K). Inside of this neighborhood B is as shown in Figure 2.2. It can be constructed

as follows. Take the union of P with U1 ∪V1 ∪U2. There are two branch curves c1 and
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c2, where c1 = U1∩V1∩P , and c2 = V1∩U2∩P . Smooth this branched surface so that

at c1 the cusp is in the corner between P and U1, and the cusp at c2 is in the corner

between P and V1. We then push the resulting branched surface into the interior of

E(K) to obtain the required branched surface B.

Step 2. B fully carries a lamination.

Cutting the branched surface B along the branch curves c1 and c2, we get a surface

F which is homeomorphic to the disjoint union of P and V1. We can construct a regular

neighborhood N(B) as follows. Let F × I be a product neighborhood of F . The three

branches at c1 give rise to three boundary components of F , which in turn determines

three annulus components H1, H2, H3 of ∂F × I. Write Hi as S1 × Ii. Let H3 be the

component on ∂V1 × I. Choose an injective map ϕ : I1 ∪ I2 → I3. Then we can glue

the two annuli H1 ∪ H2 to H3 using id × ϕ : H1 ∪ H2 → H3. Gluing the three annuli

near c2 together in a similar way, we obtaining a manifold homeomorphic to a regular

neighborhood of B. Clearly, the I-bundle structure of F × I gives rise to the I-bundle

structure of N(B).

Now let L′ be the set F ×K ⊂ F × I, where K is a Cantor set in I. On the annulus

Hi, L
′ is a product S1 ×Ki, where Ki is a Cantor set in Ii. By the property of Cantor

set, we can choose the map ϕ : I1 ∪ I2 → I3 in such a way that ϕ(K1 ∪ K2) = K3.

Choose the gluing map near c2 in a similar way. Then the quotient of L′ in N(B) is a

lamination L which is transverse to the I-bundle structure, and intersects all I-fibers.

Hence L is a lamination fully carried by the branched surface B.

Step 3. B is essential in E(K).

Recall the construction of B. Outside of a neighborhood of N(K) B is the same as

P , and inside of the neighborhood B is as shown in Figure 2.2. There is a torus T

parallel to ∂N(K), containing the part of B in Figure 2.2 which is parallel to ∂N(K).

The surface B ∪T is topologically the same as the surface P ∪ ∂N(K) shown in Figure
10



2.1. Let V ′

2 be the part of T which does not lie on B. Let X be the manifold obtained

by cutting E(K) along the branched surface B. Then topologically X is obtained by

cutting E(K) along B ∪ T , then gluing back along the annulus V ′

2 . The first step

cut E(K) into three pieces. The part inside of T is a product T × I. The other two

components are homeomorphic to E(T1) and E(T2), and will still be denoted by E(T1)

and E(T2) respectively. The second step glues T × I to E(T2) along the annulus V ′

2 .

Note that V ′

2 is identified with V2 on ∂E(T2), and is a meridional annulus on T ×I (i.e,

an essential curve of V ′

2 is isotopic to a meridian of K.) Thus, X has two components:

E(T1), and Y = E(T2) ∪V2
(T × I).

Let Fh and Fv be the horizontal and vertical surfaces on ∂X respectively, (see

[9] for definitions). Since B has two branch loci c1 and c2, Fv has two components.

One can see from Figure 2.2 that the component corresponding to c1 lies on ∂E(T1)

and is isotopic to U1, while the one corresponding to c2 lies on E(T2) ⊂ Y and is

isotopic to V1. By definition the horizontal surface is Fh = ∂N(B) − Fv. Therefore

Fh∩E(T1) = ∂E(T1)−U1, and Fh∩Y is the component of ∂Y −V1 other than ∂N(K).

According to [9], B is essential if the following conditions hold. (We split condition

(ii) of [9] into (ii) and (ii′) below.)

(i) B has no disk of contact;

(ii) Fh is incompressible, and has no sphere component;

(ii′) Fh has no monogons;

(iii) X is irreducible;

(iv) B contains no Reeb branched surface;

(v) B fully carries a lamination.

We remark that condition (ii′) can be replaced by

(ii′′) No component X ′ of X is a solid torus with Fv ∩ X ′ a longitudinal annulus.
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One is referred to the Proposition in section 2 of [1] for a proof of this fact. (ii′′) is

much easier to check than (ii′).

If B had a disk of contact, the central curve of some component of Fv would bound a

disk in E(K). In our case both components of Fv are isotopic to a meridional annulus

in E(K), so their central curves are homotopically nontrivial. This proves (i).

Since E(T1) is a tangle space, it is irreducible. Also, by our assumption at the

beginning of the section, ∂E(T1) − U1 is incompressible. Therefore (ii) and (iii) are

true for the component E(T1) of X. To prove them for the component Y of X, we use

the following well known fact: If W is a 3-manifold, and S is an essential surface in W ,

then W is irreducible and ∂-irreducible if the manifold obtained by cutting W along

S is. Consider the (noncompact) manifold Y − V1. Since Fh ∩ Y is a component of

∂(Y −V1), conditions (ii) and (iii) will follow if Y −V1 is irreducible and ∂-irreducible.

Now Y − V1 = (E(T2) − V1) ∪V2
(T × I). One can easily show that V2 is essential in

Y − V1. Since both E(T2) − V1 and T × I are irreducible and ∂-irreducible, (ii) and

(iii) are proved.

In our case, both components of X have some genus two boundary components, so

they can not be solid tori. This proves (ii′′).

Since no component of Fh is a disk, by Remark 1.3 of [9] (iv) is true.

(v) was proved in Step 2.

Step 4. B remains essential after surgery.

As before, we use K(γ) to denote the manifold obtained from S3 by Dehn surgery on

K along the slope γ. Let X(γ) (resp. Y (γ)) be the manifold obtained by Dehn filling

on X (resp. Y ) with slope γ. Thus X(γ) = K(γ)− IntN(B). We want to show that B

is essential as a branched surface in K(γ). Some of the conditions listed in Step 3 are

quite easy to check. Conditions (i) and (v) depend only on the branched surface B, not

on the manifold in which it is embedded, so they still hold for B in K(γ). (ii′′) is also
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obvious because each component of X(γ) still has a non torus boundary component.

(iv) again follows from Remark 1.3 of [9] and the fact that Fh has no disk components.

The component E(T1) of X is unchanged in X(γ), so (ii) and (iii) are true for this

component of X(γ). It remains to show that Y (γ) is irreducible, and F ′ = Fh ∩ Y (γ)

is incompressible in Y (γ). Note that F ′ = (∂Y − V1) − ∂N(K) = ∂Y (γ)− V1.

Consider the trivial surgery Y (m), where m is the meridional slope of K. Since

Y = E(T2) ∪V2
(T × I) and V2 is a meridional annulus on T × I, a meridian disk of K

extends to a compressing disk D′ of F ′ in Y (m). Since |D′ ∩ K| = 1, K can not be

a cable knot in Y (m). By a theorem of Scharlemann [26], Y (γ) is irreducible for all

γ 6= m. There is annulus in Y with one boundary on F ′ and the other a meridian m

on ∂N(K), so by [28] the surface F ′ is incompressible in Y (γ) if ∆(γ, m) ≥ 2.

It remains to show that F ′ is incompressible in Y (γ) if ∆(γ, m) = 1. Recall that

Y = E(T2)∪V2
(T ×I). We have Y (γ) = E(T2)∪V2

((T ×I)(γ)). Clearly, (T ×I)(γ) is a

solid torus. Since the central curve of V2 is isotopic to the meridian m of K, it intersects

a meridian of the new solid torus (T × I)(γ) just once, so V2 is a longitudinal annulus

on (T × I)(γ). Therefore gluing (T × I)(γ) to E(T2) does not affect the manifold. In

other words, Y (γ) is homeomorphic to E(T2). Under this homeomorphism, the surface

F ′ = ∂Y (γ) − V1 is mapped to ∂E(T2) − V1. By the assumption at the beginning of

the section, ∂E(T2)−V1 is incompressible in E(T2). Therefore, F ′ is incompressible in

Y (γ). �

Theorem 2.4. Let K be an arborescent knot. If K is not a Montesinos knot of length

at most 3, then K(γ) is laminar for all non-trivial slopes γ.

Proof. We claim that if K is not a Montesinos knot of length at most 3, then it is a

union of two nontrivial algebraic tangles.

By definition K is the union of two algebraic tangles T1 and T2. If T1 is trivial, and

T2 has length at most 2, then K is a Montesinos knot of length at most 3. If T2 has
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length at least 3, then T2 can be written as T ′ + T ′′, with 2 ≤ L(T ′′) < L(T2). Since

T1 intersects T ′ in two points, we have K = (T1 + T ′) + T ′′. If T1 + T ′ is still a trivial

tangle, we can proceed by induction, since L(T ′′) < L(T2). This proves the claim.

Now suppose K = T1 ∪ T2 and both Ti are nontrivial. By Lemma 3.2 of [31], a

sum of atoroidal tangles is still atoroidal. Thus all algebraic tangles are atoroidal. In

particular, they can not be parallel tangles. Since a nontrivial split tangle is toroidal,

Ti must be nonsplit, so the result follows from Theorem 2.3. �

Corollary 2.5. All arborescent knots K have property P, i.e, π1(K(γ)) 6= 1 for all

nontrivial γ.

Proof. If K is of type I, then it is a Montesinos knot, which admits an involution.

Hence K is a symmetric knot. By Corollary 7 of [3], K has property P. If K is of type

II or III, by Theorem 2.4 K(γ) is laminar, so it has infinite fundamental group [9]. �

Corollary 2.6. The cabling conjecture is true for arborescent knots, that is, if K is a

non torus arborescent knot, then K(γ) is irreducible for all γ.

Proof. If K is of type II or III, this follows from Theorem 2.3 because a laminar manifold

is irreducible. So suppose K = K(p1/q1, p2/q2, p3/q3). Delman [5] shows that if all qi

are odd, then K(γ) is laminar for all nontrivial γ. If one of the qi is even, K is strongly

invertible, in which case the result has been proved by Eudave-Muñoz [6]. �

3. Surgery on type III knots

Suppose (B, T ) is a tangle. We use ∂0E(T ) to denote the punctured sphere ∂B ∩

E(T ), and use ∂1E(T ) to denote the two annuli ∂N(T ) ∩ ∂E(T ). Thus ∂E(T ) =

∂0E(T ) ∪ ∂1E(T ).

Lemma 3.1. Let (B, T ) be an atoroidal tangle. Let A be an incompressible annulus

in E(T ) so that ∂A ⊂ ∂E(T ) can be isotoped to be disjoint from ∂1E(T ). Then A is
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parallel to an annulus on ∂E(T ).

Proof. After an isotopy if necessary we may assume that ∂A is on ∂0E(T ). For ho-

mological reasons, ∂A either bounds an annulus on ∂0E(T ), or it bounds an annulus

on ∂E(T ) containing a component Ui of ∂1E(T ). In the second case, after isotoping

a component of ∂A through Ui, we get an annulus with boundary a pair of parallel

curves on ∂0E(T ). Therefore, we may assume that this is already true for A. Let A′

be the annulus on ∂0E(T ) bounded by ∂A.

Since E(T ) is atoroidal, the torus A ∪ A′ bounds a solid torus V . Since A is in-

compressible in E(T ), it can not be meridional on V . Note that a component of ∂A

bounds a disk D on ∂B, so if A is not longitudinal on V , then V ∪ N(D) would be a

punctured lens space in the 3-ball B, which is absurd. Therefore, A is longitudinal, so

it is parallel to the annulus A′ on ∂E(T ). �

Note that the annulus A in the lemma is not assumed essential. The condition that

∂A can be isotoped into ∂0E(T ) can not be omitted, otherwise there would be many

counter examples.

A disk D in E(T ) is called a monogon if ∂D∩ ∂iE(T ) is an essential arc for i = 0, 1.

It is called a bigon if ∂D ∩ ∂iE(T ) consists of two essential arcs.

Lemma 3.2. If T is a nontrivial atoroidal tangle, then ∂0E(T ) is incompressible, and

the tangle space E(T ) has no monogons or bigons.

Proof. A compressing disk of ∂0E(T ) cuts B into two 3-balls B1, B2, each Bi containing

a string ti of T . Since E(T ) is atoroidal, ti is a trivial arc in Bi, so T is a trivial tangle.

A monogon of E(T ) can be extended to a disk D in B with ∂D = ti ∪ α, where

α ⊂ ∂B. The frontier of N(D) is then a compressing disk of ∂0E(T ).

Now consider a bigon D. If the two components of ∂D ∩ ∂1E(T ) are on different

components of ∂1E(T ), then D extends to a band D′ in B connecting the two strings.
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The frontier of N(D′) is an incompressible annulus in E(T ) with boundary on ∂0E(T ),

so by Lemma 3.1 it is ∂-parallel. Since T can be isotoped into ∂N(D′), T is trivial.

If the two components of ∂D ∩ ∂1E(T ) are on the same component of ∂1E(T ), then

D extends to an annulus A in B containing a string t1 of T . Since ∂D ∩ ∂0E(T ) are

essential arcs, the other string of T is in the ball component of B − A. Pushing A off

this component, we get an incompressible annulus in E(T ). By Lemma 3.1 this annulus

is ∂-parallel, therefore t1 is also ∂-parallel, which implies that ∂0E(T ) is compressible,

so by the above T is trivial. �

Theorem 3.3. Suppose (S3, K) is a union of nontrivial atoroidal tangles (B1, T1) and

(B2, T2). If T1 is ∂-irreducible, then all nontrivial surgeries on K produce hyperbolic

Haken manifolds.

Proof. Decompose S3 as the union of the tangle space E(T1) and the handlebody

H = B2 ∪ N(T1). Then K is a knot in H intersecting each meridian disk of N(T1)

once. Denote by M the manifold H − IntN(K). Let D1, D2 be the two disks in H

which are meridian disks of T1, so that H−IntN(D1∪D2) = B2. Let Ui be the annulus

M ∩ Di. Clearly, Ui is essential in M . So ∂H is compressible in M if and only if after

cutting along Ui, the surface ∂0E(T ) is compressible in E(T ), which is the closure of

M − IntN(U1 ∪ U2). Hence by Lemma 3.2 ∂H is incompressible in M . By Menasco’s

result [21] it remains incompressible after all nontrivial surgeries.

Let γ be a nontrivial slope on ∂N(K). Clearly, both E(T1) and H − IntN(K) are

irreducible. Since K intersects a disk of H just once, it can not be a cabled knot

in H, so by Scharlemann’s theorem [26] (H, K; γ) is irreducible. Thus (S3, K; γ) =

E(T1) ∪ (H, K; γ) is a Haken manifold. Moreover, the incompressible surface ∂H in

(S3, K; γ) is separating, so (S3, K; γ) is not a small Seifert fiber space, i.e a Seifert fiber

space with orbifold a 2-sphere having at most 3 singular points. In the following we will

show that (S3, K; γ) is atoroidal. It will then follow from Thurston’s hyperbolization
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theorem [30] that (S3, K; γ) is a hyperbolic manifold. In general both E(T1) and

(H, K; γ) may contain some essential annuli. What we will show below is that the

boundaries of these annuli will never match up to produce an essential torus.

Lemma 3.4. The manifold (H, K; γ) is atoroidal.

Proof. Let T be an essential torus in (H, K; γ), isotoped to have least intersection with

∂N(K). Then P = T ∩ M is a punctured torus such that ∂P is a set of curves on

∂N(K) parallel to γ. Since T is an essential torus, such P is an essential surface in M .

Isotop P so that it has least intersection with Ui. By an innermost circle – outermost

arc argument one can show that P ∩Ui has no trivial circles or ∂-parallel arcs. Since P

has no intersection with the component of ∂A that lies on ∂H, this implies that P ∩Ui

is a set of essential circles. In particular, P = T , so T lies in M .

If T ∩ (U1 ∪ U2) = ∅, T would be an essential torus in the tangle space E(T2) =

M − IntN(U1 ∪ U2), contradicting the assumption that T2 is atoroidal. So assume

T ∩E(T2) is a set of annuli. One can show that an inessential component of T ∩E(T2)

is parallel to one of the annuli in ∂N(T2). Thus if none of the annuli in T ∩ E(T2) is

essential, then T is isotopic to ∂N(K) in M , so it would not be an essential torus. If

some component of T ∩E(T2) is an essential annulus, by Lemma 3.1 E(T2) would not

be toroidal. �

Now consider (H, K; γ). Let M1 = N(D1 ∪ D2 ∪ K), and let M2 = H − M1. It is

clear that M2 is homeomorphic to the tangle space E(T2), and the homeomorphism

can be chosen so that the surface F = M1 ∩ M2 is mapped to ∂1E(T2). Use ∂0Mi to

denote the surface ∂Mi − IntF .

Lemma 3.5. An essential annulus A in (H, K; γ) can be isotoped to be disjoint from

F .

Proof. We may assume that A has minimal intersection with F . Then by an innermost
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circle outermost arc argument we may assume that each of A∩F , A∩∂0M1 and A∩∂0M2

consists of essential circles or essential arcs in F , ∂0M1 and ∂0M2, respectively. If

A ∩ F consists of essential circles, then A ∩ M2 is a union of essential annuli which

can be isotoped to be disjoint from ∂1E(T2), contradicting Lemma 3.1. If A ∩ F are

essential arcs, then these arcs cut A into bigons, half of which lie in M2 = E(T2), so

by Lemma 3.2 T2 would be either trivial or toroidal, contradicting the assumption of

the theorem. �

We remark that in general (H, K; γ) may contain some essential annuli, but the

above lemma says that the annuli can be pushed off F .

Now suppose T is an essential torus in (S3, K; γ). Since (S3, K; γ) is Haken, we may

isotop T so that T ∩ (H, K; γ) and T ∩ E(T1) consist of essential annuli. By Lemma

3.5 we can choose T to be disjoint from the surface F . Note that ∂F = ∂(∂1E(T1)), so

a component of T ∩ E(T1) can be isotoped off ∂1E(T1). But this contradicts Lemma

3.1, completing the proof of Theorem 3.3. �

Theorem 3.6. If K is a type III arborescent knot then K(γ) is a hyperbolic Haken

manifold for all nontrivial γ. In particular, this is true for all Montesinos knots K =

K(p1/q1, . . . , pn/qn) with qi ≥ 2 and n ≥ 4.

Proof. By the proof of Theorem 2.4, if K is not of type I then it is a union of two

nontrivial algebraic tangles T1 and T2. By Lemma 3.2 and 3.3 of [31], Ti is atoroidal,

and it is ∂-reducible if and only if it is a sum of R(1/2) and R(pi/qi) with |qi| ≥ 2.

Therefore, if both Ti are ∂-reducible, then K is a type II knot. The first part of the

theorem now follows from Theorem 3.3. As for the second part, notice that if there

are two i’s such that pi/qi = 1/2, then K(p1/q1, . . . , pn/qn) is a link of at least two

components. Therefore a type II knot can not be a Montesinos knot. �
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4. Surgery on type II knots

Let (S3, K) = (B1, T1) ∪ (B2, T2) be a type II knot, where each Ti is a sum of a

(1/2) rational tangle and a (pi/qi) rational tangle, as shown in Figure 2.1, where the

4-string braid determines the gluing map ∂B1 → ∂B2. Let P be the planar surface

∂Bi ∩ E(Ti). It cuts E(K) into the two tangle spaces E(Ti). As in Section 2, ∂P

cuts the torus ∂N(K) into four annuli U1, U2, V1, V2, where Ui = ∂N(ti)∩∂E(T1), and

Vi = ∂N(si) ∩ ∂E(T2), ti, si being the strings of T1 and T2 respectively. We choose

the indices so that t1 and s1 are the unknotted strings in T1 and T2. The following are

some basic facts about the tangles Ti and K.

Lemma 4.1. (a) Ti is a nontrivial atoroidal tangle;

(b) E(Ti) is a handlebody;

(c) ∂E(T1) − U1 (resp. ∂E(T2) − V1) is incompressible, and ∂E(T1) − U2 (resp.

∂E(T2) − V2) is compressible;

(d) E(K) is atoroidal.

Proof. One of the strings of Ti has exterior the same as that of a (pi/qi) 2-bridge knot

in S3, so Ti is nontrivial. Since Ti is a nontrivial sum of two atoroidal tangles, it is also

atoroidal, see for example Lemma 3.2 of [31].

As t1 is a trivial string, E(t1) = B1 − IntN(t1) is a solid torus. One can untangle

T1 by sliding t2 over t1, which means that the string t2 is isotopic to a trivial arc in

the solid torus E(t1). Hence E(T1) is a handlebody of genus 2 (this is also proved in

Lemma 3.3 of [31]), and ∂E(T1) − U2 is compressible. By Lemma 2.2, ∂E(T1) − U1 is

incompressible.

Let S be an essential torus in E(K). Since the Ti are atoroidal, we may assume that

P cuts S into incompressible annuli Ai, none of which is parallel to an annulus on P .

By Lemma 3.1 each Ai is parallel to Uj or Vj . Hence S is parallel to ∂N(K). �
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There are 6 surfaces obtained by tubing P along ∂N(K). Two of them are isotopic

to ∂E(T1) and ∂E(T2), and are compressible. Now take a union P ∪U1, and push the

U1 part into E(K), then take the union of this surface with V1 ∪ U1 ∪ V2 and push it

into E(K). We thus obtain a surface, denoted by FU1
. Similarly, we have FU2

, FV1
and

FV2
. Two of these surfaces, FU2

and FV2
, are actually compressible in E(K). We will

see that FU1
(similarly FV1

) remains incompressible after all non-integral surgeries.

Let V ′

1 , V ′

2 be two longitudinal annuli on the boundary of a solid torus W . Construct

a manifold X = E(T2) ∪ W by gluing Vi to V ′

i .

Lemma 4.2. The manifold X is irreducible, ∂-irreducible, and atoroidal. Any essen-

tial annulus in X is isotopic to Vi.

Proof. Consider the surface S = V1 ∪ V2 in X. Clearly, it is incompressible and ∂-

incompressible in the solid torus W . By Lemma 4.1(a) and 3.2, it is also incompressible

and ∂-incompressible in E(T2). Therefore, S is an essential surface in X. It is well

known and easy to prove by an innermost circle outermost arc argument, that if X is

reducible or ∂-reducible, then after cutting along an essential surface, either one of the

components is reducible, or the surface F = ∂X − N(S) is compressible in one of the

components. Now as a tangle space, E(T2) is irreducible. Since W is a solid torus,

it is also irreducible. ∂X ∩ W is a pair of longitudinal annuli, and ∂X ∩ E(T2) is the

surface P , which is already known to be incompressible. Therefore, X is irreducible

and ∂-irreducible.

If X has an essential torus Q, by minimizing its intersection with S, we may assume

that Q ∩ E(T2) is a set of incompressible annuli. Let A be a component of Q ∩ E(T2).

Since S is a pair of annuli, ∂A can be isotoped into P , so by Lemma 3.1, A is parallel

to an annulus on ∂E(T2). Thus we can isotope the torus Q to reduce |Q ∩ S|. Since

both E(T2) and W are atoroidal, this would eventually lead to a contradiction.

Now suppose Q is an essential annulus in X, isotoped so that |Q ∩ S| is minimal.
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Then Q ∩ S is a set of essential arcs or circles in Q. If they are arcs, a component of

Q ∩ E(T2) would be a bigon of E(T2), contradicting Lemma 3.2. If Q ∩ S are circles,

one can reduce |Q∩S| by the same argument as above for an essential torus. So assume

Q is disjoint from S. If Q is in W , one can see that it is parallel to Vi. If Q is in E(T2),

by Lemma 3.1 it is parallel to an annulus Q′ on ∂E(T2). Since Q is essential in X, Q′

must contain one of the Vi. Thus Q is isotopic to Vi. �

Consider a solid torus W . Let U ′

1 be an annulus on ∂W running at least twice along

the longitude of W . Construct a manifold Y = E(T1) ∪ W by gluing U1 to U ′

1.

Lemma 4.3. The manifold Y is irreducible, ∂-irreducible, and atoroidal. There is no

essential annulus in Y with at least one boundary parallel to ∂U2.

Proof. The proof is essentially the same as that of Lemma 4.2. When proving the

∂-irreducibility of Y , use the fact that ∂E(T1)−U1 is incompressible (Lemma 4.1). For

the proof about the annulus, notice that if Q is an essential annulus with one boundary

parallel to ∂U2, then a component of Q∩E(T1) can still be isotoped off U1∪U2, so the

argument in the proof of Lemma 4.2 applies, and one would finally conclude that Q is

isotopic to U1. (It can not be isotopic to U2 because then it would not be essential in

Y .) But since the curves ∂U2 are not isotopic to ∂U1 on ∂Y , this is impossible. �

Theorem 4.4. If K is a type II arborescent knot, then K(γ) is a hyperbolic Haken

manifold for all non-integral slopes γ.

Proof. Let F = FU1
be the surface constructed above by tubing P with some annuli

on ∂N(K). It cuts E(K) into two components. From the construction we can see

that the component Y ′ containing ∂N(K) is homeomorphic to E(T1)∪U1
(∂N(K)× I)

with U1 glued to a meridional annulus on ∂N(K) × I, and the other component X is

homeomorphic to E(T2) ∪ (U1 × I), with V1 ∪ V2 glued to the two annuli (∂U1) × I.

Thus X is the manifold constructed prior to Lemma 4.2.
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Now attach a solid torus W ′ to Y ′ along the slope γ. The resulting manifold Y =

Y ′ ∪ W ′ can be written as E(T1) ∪U1
((∂N(K) × I) ∪ W ′). Let W be the solid torus

(∂N(K)× I)∪W ′. Then Y = E(T1)∪U1
W . Moreover, since γ is a non-integral slope,

U1 runs at least twice along the longitude of W . Hence Y is a manifold as constructed

prior to Lemma 4.3.

The surgered manifold K(γ) is the union of X and Y , with ∂X = ∂Y = F . There-

fore, by Lemma 4.2 and Lemma 4.3, F is incompressible in K(γ), and K(γ) is irre-

ducible. So K(γ) is a Haken manifold. Since F is separating, K(γ) is not a small

Seifert fiber space.

It remains to show that K(γ) is atoroidal. Assume Q is an essential torus in K(γ).

Since both X and Y are atoroidal, Q ∩ X and Q ∩ Y consist of essential annuli. By

Lemma 4.2, all components of Q ∩ X are parallel to Vi. As each Vi has one boundary

on U1 and the other on U2, it follows that at least one of the essential annuli in Q ∩ Y

has a boundary curve parallel to the curves ∂U2. But this is impossible by Lemma

4.3. �

Let α be a 1-manifold properly embedded in a 3-manifold M , let F be a properly

embedded surface in M . By an isotopy of F in (M, α) we mean an isotopy ϕ : F ×I →

M of F in M such that ϕ((F ∩ α) × I) ⊂ α. A disk D in M is called a peripheral

compressing disk of F if D ∩ F = ∂D, D intersects α just once, and there is no disk

D′ on F such that ∂D = ∂D′, and D′ intersects α at most once. If such a disk exists,

F is peripheral compressible, otherwise it is peripheral incompressible. F is α-essential

if F − α is essential in M − α, and F is peripheral incompressible.

Lemma 4.5. Let M̃ → M be a double cover with branch set α. Let F̃ be the lift of F .

If F is α-essential, then F̃ is incompressible and ∂-incompressible in M̃ .

Proof. If F̃ is compressible, by the Z2-equivariant Dehn’s Lemma [19], there is a com-

pressing disk D̃ of F̃ such that either η(D̃) = D̃, or η(D̃) ∩ D̃ = ∅, where η is the
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covering transformation map. In the first case the image D of D̃ in M is a peripheral

compressing disk, and in the second case it is a compressing disk of F .

If F̃ is ∂-compressible, consider the double 2M̃ of M̃ , i.e. take two copies of M̃ and

glue their boundaries together by the identity map. The double 2F̃ of F̃ is compressible

in 2M̃ , so by the above 2F is compressible in 2M , which implies that F is compressible

or ∂-compressible. �

Lemma 4.6. Suppose (B, T ) = R(1/2) + R(p/q), |q| ≥ 2. Let F be a T -essential sur-

face in B such that F is not a disk intersecting T at most once or a sphere intersecting

T at most twice. Then

(a) the ends of each string ti of T are in the same component of ∂B − ∂F , and

(b) if F ⊂ IntB, then F is isotopic to ∂B in (B, T ).

Proof. (a) Let M̃ be the double cover of B branched over T , and let F̃ be the lift of

F . The conditions of the lemma guarantee that F̃ is not a disk or sphere. By Lemma

4.5, F̃ is an essential surface in M̃ .

Let D be the gluing disk between R(1/2) and R(p/q). By our definition the lift

of the rational tangles are solid tori, and the lift of D is an annulus D̃ representing

m1 + 2l1 and pm2 + ql2 in H1(∂Wi) with respect to some meridian-longitude pairs

(mi, li). Thus M̃ is a Seifert fiber space with two singular fibers of type (1, 2) and

(p, q). Its orbifold is a disk with 2 singular points. So D̃ is the only vertical essential

annulus, and ∂M̃ is the only closed incompressible surface in M̃ .

CLAIM. Each component of ∂F̃ intersects each component of ∂D̃ an even number

of times.

By Theorem VI.34 of [18], F̃ is either vertical (i.e. a union of fibers) or horizontal

(i.e. transverse to all fibers). If it is vertical, it is isotopic to D̃, so the claim is true. Now

assume F̃ is horizontal. Glue a solid torus V to M̃ to get a new manifold X, so that

∂F̃ bounds meridians of V . The Seifert fibration of M̃ extends to a Seifert fibration
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of X in a unique way. Furthermore, if s is the intersection number of a component

of ∂F̃ with a component of ∂D̃, then the center of V is a singular fiber of type (r, s)

for some r relatively prime to s, because ∂D̃ are fibers and ∂F̃ are meridians of V .

Now the union of F̃ and some meridians of V is a horizontal surface. It is well known

that if a Seifert fiber space has a horizontal surface, then its Euler number is zero. By

the formula on P437 of [27] the Euler number of X is (1/2) + (p/q) + (r/s) mod Z.

Therefore, (r/s) = −(q + 2p)/2q mod Z. Since q is odd (otherwise T would have a

closed component), we have s = 2q. This proves the claim.

Now consider a component β of ∂F on ∂B. Since F is peripheral incompressible,

there must be two points of ∂T on each component of ∂B − β. Let α be an arc in

a component of ∂B − β connecting the two points of ∂T in that component. The

conclusion (a) of the lemma is true if and only if ∂α = ∂ti for some string ti of T . Let

u be the intersection number of α with ∂D. Since the two points on each component

of ∂B−∂D belong to the same string of T , we see that ∂α = ∂ti for some i if and only

if u is even. Notice that β is the boundary of a regular neighborhood of α on ∂B, so

|β ∩ ∂D| = 2|α ∩ ∂D| = 2u.

Let β̃ be the lift of β. The 2u points in β ∩ ∂D lift to 4u points of intersection

β̃ ∩ ∂D̃. Each of β̃ and ∂D̃ has two components. Therefore, each component of β̃

intersects each component of ∂D̃ at u points. By the above claim, u is even. We have

just shown that this implies (a).

(b) The only closed incompressible surfaces in M̃ are tori parallel to ∂M̃ . By cal-

culating the Euler number of F , we see that F is either a torus disjoint from T , or a

2-sphere intersecting T at four points. But since E(T ) is atoroidal, the first case can

not happen.

Let D be the disk between R(1/2) and R(p/q) as before. Since F is peripheral

incompressible, by an isotopy in (B, T ) we may assume that F ∩ D consists of circles
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parallel to ∂D on D − T , and each component of F − D is an annulus or a disk

intersecting T twice. By Lemma 3.1, each annuli is parallel to one on D. Thus after

an isotopy in (B, T ) we may assume that F intersects D in a single circle. Let (Bi, Ti),

i = 1, 2, be the tangles R(1/2) and R(p/q). The disk F ∩ B1 cuts (B1, T1) into two

tangles T ′ and T ′′. Since a rational tangle can not be a nontrivial sum, one of T ′ and

T ′′ is trivial, so F ∩B1 is isotopic in (B1, T1) to D or ∂B1− IntD. Similarly for F ∩B2.

If one of the F ∩ Bi is isotopic to D, one can see that F − T would be compressible

in B − T , which is impossible because F is T -essential. Therefore, both F ∩ Bi are

isotopic to ∂Bi − IntD in (Bi, Ti), so F is isotopic to ∂B in (B, T ). �

Lemma 4.7. Suppose (S3, K) = (B1, T1)∪(B2, T2) is a type II arborescent knot, where

(Bi, Ti) = R(1/2) + R(pi/qi), as in the definition. Let F be a K-essential connected

surface in S3, and assume that F is not a sphere intersecting K at most twice. Then

F is isotopic in (S3, K) to the sphere S = ∂B1 ∩ ∂B2.

Proof. Isotop F to minimize |F ∩S|. Clearly, no component of S −F is a disk disjoint

from K. If D is a closed up component of S −F intersecting K just once, then by the

peripheral incompressibility of F , the circle ∂D bounds a disk D′ on F intersecting

K once. D ∪ D′ cuts S3 into two 3-balls W1, W2. Let W1 be the one with interior

disjoint from F . Let Ki = Wi ∩ K. If K2 is a trivial arc in W2, then F − IntN(K2)

is an incompressible surface in the solid torus W2 − IntN(K2), which implies that

F −IntN(K2) is an annulus. But then F is a sphere intersecting K twice, contradicting

our assumption. Therefore K2 is knotted. Since E(K) is atoroidal (Lemma 4.1(d)), K

is not a composite knot, so K1 is a trivial arc in W1. We can then isotop F through

W1 to reduce |F ∩S|. Hence F ∩ S is a set of parallel circles on S, such that each disk

component of S − F contains two points of K.

Let Fi = F ∩ Bi. We want to show that Fi is Ti-essential in Bi. Suppose D is a

compressing disk of F1 − T1 in B1 − T1. Since F is incompressible, ∂D bounds a disk
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D′ on F . D′ can not be in B1, otherwise D would not be a compressing disk. Thus

D′ ∩ S 6= ∅. A disk component of D′ − S would then be a compressing disk of S − K,

contradicting the fact that S −K is incompressible in S3 −K. Similarly, one can show

that F ∩ (Bi − Ti) is peripheral incompressible in (Bi, Ti). It remains to show that

Fi − Ti is ∂-incompressible in Bi − Ti.

Let D be a ∂-compressing disk. If the arc D∩S connects two different components of

F ∩ S, then after isotoping F through D we would get a surface with less components

of intersection with S, contradicting the choice of F . If D ∩ S connects the same

component of F ∩ S, then after isotoping F through D, we get a surface F ′ such that

|F ′∩S| = |F ∩S|+1. But there are two components α1, α2 of F ′∩S which bound disks

on S intersecting K just once. Since F is peripheral incompressible, such components

can be removed by an isotopy, so we will get a surface with less intersection to S than

F , again a contradiction to the minimality of |F ∩ S|. Therefore Fi is Ti-essential in

Bi.

It now follows that F is disjoint from S, for otherwise by Lemma 4.6(a) the two

points of K in a disk component of S − F would belong to the same string in each

(Bi, Ti), which means that K would be a link of two components. Finally, if F is in a

Bi, by Lemma 4.6(b) it is isotopic to S. �

If D is a peripheral compressing disk of F , let D × I be a product neighborhood of

D with (D × I)∩F = ∂D × I. Then the surface F ′ = (F − ∂D × I)∪ (D × ∂I) is said

to be obtained from F by 2-surgery along D. The reverse process of getting F from

F ′ is called tubing along K, or more precisely, along the arc K ∩ (D× I). The annulus

∂D × I is called a tube.

Theorem 4.8. If K is a type II arborescent knot, then all closed incompressible sur-

faces in E(K) are compressible in K(γ) for all integral slopes γ.

Proof. Let F be a connected essential surface in E(K). By 2-surgery of F along
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peripheral compressing disks, we will get a K-essential surface F ′. Since K is atoroidal

(Lemma 4.1(d)), F is not a torus, so no component of F ′ is a 2-sphere intersecting K

at most twice. By Lemma 4.7, F ′ is a union of parallel copies of the sphere S. F can

be obtained by tubing F ′ along K.

Suppose F ′ has n components F ′

1, . . . , F ′

n. Let Fn = F ′

n − IntN(K). Let A be an

annulus in N(K) with one boundary on K, and the other on ∂N(K) representing the

slope γ. We may assume that the tubes are all inside of N(K), with boundary on

∂N(K). Label a point of ∂A ∩ F by i if it is in Fi. Thus, when traveling around ∂A,

the labels of ∂A∩F are 1, 2, . . . , n, n, . . . , 1, 1, . . . , n, n, . . . , 1, as shown in Figure 4.1,

where n = 4. Each tube intersects A in an arc connecting two points of F ∩∂A. Figure

4.1 shows a possible diagram of A∩F . (It can be shown that the surface corresponding

to this diagram is a connected essential surface in E(K), see for example [24]. One can

construct infinitely many connected essential surfaces in this way.)

1

2

3
4

1

1

1

2

2

2

3

3

3

4

4

4

Figure 4.1

CLAIM. An outermost arc α of A ∩ F has the same label at its two ends.

Otherwise, the tube corresponding to α would lie between some F ′

i and F ′

i+1, so

the union Fi, Fi+1 and the tube would be a compressible surface, and its compressing

disks would become compressing disks of F after all the other tubings, so F would be

compressible. This completes the proof of the claim.
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Now let N ′ be a smaller regular neighborhood of K. Perform the γ surgery on this

neighborhood. When removing IntN ′, the effect on A is to remove a small neighborhood

of the inner circle. By our choice of A, the inner circle represents the slope γ on ∂N ′.

Thus after surgery A can be extended to a disk D. By the same reason as in the claim,

one can see that if an outermost arc of A ∩ D has different labels on its ends, then F

is compressible in K(γ) and we are done. So assume that each outermost arc has the

same label on its two ends. Notice that this label must be either 1 or n.

If A∩D has 3 or more outermost arcs, then two of them have the same label at their

4 ends. If A ∩ D has only two outermost arcs, then all the arcs are parallel, so by the

way ∂A ∩ F are labeled, one can see that the two outermost arcs again have the same

label on its 4 ends. This means that the union of the two corresponding tubes and a

component of F ′ would make a closed surface. Since F is assumed connected, this is

impossible unless n = 1. When n = 1, the two arcs F ∩D are isotopic (in K(γ)) to arcs

on ∂D, which implies that after surgery, the two tubes are isotopic to the two annuli

∂N(K) ∩ E(Ti) for some i, so F is isotopic to ∂E(Ti). Since E(Ti) are handlebodies,

F is compressible in K(γ). �

In [13] Hatcher showed that, given a knot K, there are at most finitely many slopes

on ∂N(K) that are the boundary of essential surfaces in E(K). Combining Theorem

2.4, Theorem 4.8 with Hatcher’s theorem, we have the following corollary.

Corollary 4.9. All but finitely many integral surgeries on a type II arborescent knot

produce non-Haken laminar manifolds. �
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