Abstract: The classical Wecken theorem claims that any self-map \(f : M \to M \) of a compact manifold of dimension \(\geq 3 \) is homotopic to a map having exactly \(N(f) \) fixed points where \(N(f) \) denotes the Nielsen number. In 1983 Boju Jiang introduced an algebraically computable number \(NF_n(f) \) which is an estimate of the cardinality of \(n \)-periodic point set \(\{ x \in M; g^n(x) = x \} \) for each \(g \) homotopic to \(f \).

We prove that every self-map \(f : M \to M \) of a compact PL-manifold of dimension \(\geq 3 \) is homotopic to a map realizing this number i.e. there exists a \(g \) homotopic to the given map \(f \) and having exactly \(NF_n(f) \) \(n \)-periodic points. In particular (for \(NF_n(f) = 0 \)) the map \(f \) is homotopic to map with no \(n \)-periodic points iff all Nielsen numbers \(N(f^k) \), for all \(k \) dividing \(n \), disappear.