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A new class of fractional differential

hemivariational inequalities with application

to an incompressible Navier–Stokes system

coupled with a fractional diffusion equation

S. D. Zeng, S. Migórski, and W. Han

Abstract. This paper is devoted to the study of a new and complicated
dynamical system, called a fractional differential hemivariational inequality,
which consists of a quasilinear evolution equation involving the fractional
Caputo derivative operator and a coupled generalized parabolic hemivaria-
tional inequality. Under certain general assumptions, existence and regular-
ity of a mild solution to the dynamical system are established by employing
a surjectivity result for weakly–weakly upper semicontinuous multivalued
mappings, and a feedback iterative technique together with a temporally
semi-discrete approach through the backward Euler difference scheme with
quasi-uniform time-steps. To illustrate the applicability of the abstract
results, we consider a nonstationary and incompressible Navier–Stokes sys-
tem supplemented by a fractional reaction–diffusion equation, which is
studied as a fractional hemivariational inequality.

Keywords: fractional differential hemivariational inequality, Clarke sub-
gradient, C0-semigroup, existence, Navier–Stokes system.

§ 1. Introduction

In 2008, Pang–Stewart [1] introduced and systematically studied a new kind
of coupled dynamical systems on finite-dimensional spaces, called differential vari-
ational inequalities (DVIs, for short), which are formulated as a combination of
(partial) differential equations and time-dependent variational inequalities. It was
shown that DVIs can serve as a powerful and useful mathematical tool to model
and solve a variety of problems in engineering areas, such as dynamic vehicle
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routing problems, electrical circuits with ideal diodes, Coulomb frictional prob-
lems for bodies in contact, economical dynamics, dynamic traffic networks, and
so on. Since then, more and more researchers have been attracted to investigate
both theoretical and numerical aspects of DVIs as well as their applications in
economical dynamical systems and contact problems in mechanics. Let us men-
tion a few representative results in this area. Liu–Motreanu–Zeng [2]–[4] and
Liu–Migórski–Zeng [5] used the theory of semigroups, the Minty trick, the Filip-
pov implicit function lemma and fixed point theorems for condensing multivalued
operators to examine the existence of solutions and compactness of the solution
set to a class of mixed differential variational inequalities in Banach spaces. By
using Hamiltonian and Bellman’s principle of optimality, Chen–Wang [6] formu-
lated a dynamic Nash equilibrium problem of multiple players with shared con-
straints and dynamic decision processes (NEPSC, for short) as a differential vari-
ational inequality, and developed a regularized smoothing method to find a solu-
tion of dynamic NEPSC. Ke–Loi–Obukhovskii [7] introduced a new kind of frac-
tional differential variational inequalities, and proved the existence of a delay solu-
tion to the inequality problem via a fixed point argument. Gwinner [8] used
the monotonicity method of Browder and Minty, combined with the technique of
Mosco convergence, to deliver a stability result for a class of differential variational
inequalities. Employing topological methods from the theory of multivalued maps
and some versions of the method of guiding functions, Liu–Loi–Obukhovskii [9]
proved an existence theorem for periodic solutions of a global bifurcation prob-
lem described by a differential variational inequality in finite-dimensional spaces.
For other results on DVIs the reader is referred to [10]–[21] and the references
therein.

On the other hand, hemivariational inequalities were introduced by Panagioto-
poulos [22], [23] in early 1980s to study engineering problems involving nonsmooth,
nonmonotone and possibly multivalued constitutive relations and boundary con-
ditions for deformable bodies. Since multivalued and nonmonotone constitutive
laws appear often in applications, recently, Liu–Zeng–Motreanu [24] introduced the
new notion of a differential hemivariational inequality (DHVI, for short). DHVI
is a valuable and efficient mathematical modeling tool to explore the nonsmooth
contact problems in mechanics, semipermeability problems, abnormal diffusion phe-
nomena, etc. For example, Migórski–Zeng [25] used the idea of DHVIs to exam-
ine a dynamic adhesive viscoelastic contact problem with friction and nonlinear
Kelvin–Voigt viscoelastic constitutive law. More recently, Zeng–Liu–Migórski [26]
combined the Rothe method with the surjectivity of multivalued pseudomonotone
operators and properties of the Clarke generalized subgradient to establish the exis-
tence of solutions to a class of fractional differential hemivariational inequalities in
Banach spaces, and applied their abstract results to study a frictional quasistatic
contact problem for viscoelastic materials with adhesion. For more details on these
topics, we refer to [27]–[35] and the references therein.

Let α ∈ (0, 1) be fixed, H a Hilbert space with the inner product ( · , · )H ,
and E and V Banach spaces such that (V,H, V ∗) becomes an evolution triple of
spaces. Given z0 ∈ E and w0 ∈ V , we formulate the following fractional differential
hemivariational inequality of parabolic–parabolic type.
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Problem 1.1. Find functions w : [0, T ] → V and z : [0, T ] → E such that

C
0D

α
t z(t) = Sz(t) + g(t, z(t), w(t)) for a.e. t ∈ [0, T ], (1.1)

w ∈ SOL(V, F, J,G)(z), (1.2)

z(0) = z0, (1.3)

where C
0D

α
t stands for the fractional derivative operator in the sense of Caputo (see

Definition 2.1) and SOL(V, F, J,G)(z) is the solution set of the generalized parabolic
hemivariational inequality: given a function z : [0, T ] → E, find w : [0, T ] → V such
that

(w′(t), v)H + 〈F (z(t), w(t)), v〉+ J0(z(t), γw(t); γv) > 〈G(t, z(t)), v〉 (1.4)

for all v ∈ V and a.e. t ∈ [0, T ], and

w(0) = w0. (1.5)

Unlike the existing literature on differential hemivariational inequalities, in the
present paper, the subsystem (1.4) is of parabolic type rather than elliptic.

The goal of the present work is twofold. The first aim is to establish the existence
of a mild solution to Problem 1.1, based on a surjectivity result for weakly–weakly
upper semicontinuous multivalued mappings, and a feedback iterative technique
together with a temporally semi-discrete approach based on the backward Euler
difference scheme with quasi-uniform time-steps. The second aim of the paper
is to study, through our theoretical findings, a nonstationary and incompressible
Navier–Stokes system described by a fractional reaction-diffusion equation.

The rest of the paper is organized as follows. In Section 2 we survey prelim-
inary material needed later in the paper. In Section 3 we deliver an existence
theorem of mild solutions to Problem 1.1 by using a surjectivity theorem and
a feedback iterative approximation method. To illustrate the applicability of our
results, in Section 4 we investigate a nonstationary Navier–Stokes equation with
nonmonotone and multivalued frictional boundary condition driven by a fractional
reaction–diffusion equation.

§ 2. Mathematical background

In this section we review preliminary materials needed later in the paper. More
details can be found in [36]–[42].

Throughout the paper, the symbols “⇀” and “→” stand for the weak and the
strong convergences in various spaces, respectively. Let X be a Banach space with
its dual space X∗. A single-valued mapping A : X → X∗ is said to be weakly

continuous if Aun ⇀ Au in X∗ as n→ ∞ whenever the sequence {un} is such that
un ⇀ u in X as n→ ∞ for some u ∈ X.

Definition 2.1. Let E be a Banach space, α ∈ (0, 1) and 0 < T < +∞.
(i) The Riemann–Liouville fractional integral of order α of f : [0, T ] → E is

defined by

0I
α
t f(t) =

1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds for a.e. t ∈ [0, T ],

where Γ is the Gamma function, Γ(α) =
∫∞

0
tα−1e−t dt.
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(ii) The Caputo fractional derivative of order α of f : [0, T ] → E is defined by

C
0D

α
t f(t) = 0I

1−α
t f ′(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s) ds for a.e. t ∈ [0, T ].

Let E be a reflexive Banach space and S : D(S) ⊂ E → E be the infinitesimal
generator of a C0-semigroup {S (t)}t>0 in E. Given two constants 0 < T < +∞
and α ∈ (0, 1), a function f : [0, T ] × E → E and an element x0 ∈ E, we say that
a function x ∈ C([0, T ];E) is a mild solution to the following fractional Cauchy
problem (cf. e.g. [43])

{
C
0D

α
t x(t) = Sx(t) + f(t, x(t)) for a.e. t ∈ [0, T ],

x(0) = x0,

if

x(t) = E (t)x0 +

∫ t

0

(t− s)α−1
F (t− s)f(s, x(s)) ds for all t ∈ [0, T ],

where E (t) and F (t) are defined by

E (t) =

∫ ∞

0

ξα(θ)S (tαθ) dθ, F (t) = α

∫ ∞

0

θξα(θ)S (tαθ) dθ, (2.1)

with

ξα(θ) =
1

α
θ−1−1/αωα(θ

−1/α),

ωα(θ) =
1

π

∞∑

n=1

(−1)n−1θ−αn−1Γ(αn+ 1)

n!
sin(nπα), θ ∈ (0,∞).

It can be shown that ξα(θ) > 0 for θ ∈ (0,+∞) with
∫∞

0
ξα(θ) dθ = 1 ([44] or [45],

p. 4467). This means that ξα is a probability density function on (0,∞). Besides
([43], Remark 2.8),

∫ ∞

0

θβξα(θ) dθ =

∫ ∞

0

θ−αβωα(θ) dθ =
Γ(1 + β)

Γ(1 + αβ)
for β ∈ [0, 1].

For functions E and F , we have the following result ([43], Lemma 2.9).

Lemma 2.2. Let S : D(S) ⊂ E → E be the infinitesimal generator of a C0-semi-

group {S (t)}t>0 in a Banach space E such that ‖S (t)‖ 6MS for all t > 0, where

MS > 0 is a constant. Then the functions E and F defined in (2.1) have the

following properties.
(i) For any t > 0, E (t) and F (t) are both linear such that ‖E (t)‖ 6 MS and

‖F (t)‖ 6MS/Γ(α).

(ii) {E (t)}t>0 and {F (t)}t>0 are both strongly continuous.

(iii) For each t > 0, E (t) and F (t) are also compact provided that S (t) is

compact.

Next, we recall a convergence theorem ([41], Theorem 3.13), which provides
a powerful tool in the study of evolutionary inclusion problems.
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Theorem 2.3. Let 0 < T < ∞ and F : X → 2Y be an upper semicontinuous

multivalued mapping from a Hausdorff locally convex space X to the closed convex

subsets of a Banach space Y endowed with the weak topology. Let {xn} and {yn}
be sequences of functions such that

(i) xn : [0, T ] → X and yn : [0, T ] → Y are measurable functions for all n ∈ N;

(ii) for a.e. t ∈ (0, T ) and for every neighborhood N (0) of 0 in X × Y , there

exists an n0 ∈ N such that (xn(t), yn(t)) ∈ Gr(F ) +N (0) for all n > n0 ;

(iii) there is a function x : [0, T ] → X such that xn(t) → x(t) for a.e. t ∈ (0, T );

(iv) yn ∈L1(0, T ;Y ) and yn → y weakly in L1(0, T ;Y ), for some y ∈L1(0, T ;Y ).

Then (x(t), y(t)) ∈ Gr(F ), i.e., y(t) ∈ F (x(t)) for a.e. t ∈ (0, T ).

Let X be a Banach space. A function J : X → R is said to be locally Lipschitz

at u ∈ X if there exist a neighborhood N(u) of u in X and a constant Lu > 0,
depending on the neighborhood N(u), such that

|J(w)− J(v)| 6 Lu‖w − v‖X for all w, v ∈ N(u).

Definition 2.4 ([37]). Given a locally Lipschitz function J : X → R, we denote
by J0(u; v) the generalized directional derivative of J at the point u ∈ X in the
direction v ∈ X defined by

J0(u; v) = lim sup
λ→0+, w→u

J(w + λv)− J(w)

λ
.

The generalized gradient of J : X → R at u ∈ X is given by

∂J(u) = {ξ ∈ X∗ | J0(u; v) > 〈ξ, v〉 for all v ∈ X}.

Basic properties of the generalized directional derivative and the generalized
subgradient are collected in the result below, see e.g. [41], Proposition 3.23.

Proposition 2.5. Assume that the function J : X → R is locally Lipschitz. Then

the following assertions hold.
(i) For every x ∈ X , the function X ∋ v 7→ J0(x; v) ∈ R is positively homo-

geneous and subadditive, i.e., J0(x;λv) = λJ0(x; v) for all λ > 0, v ∈ X and

J0(x; v1 + v2) 6 J0(x; v1) + J0(x; v2) for all v1, v2 ∈ X .

(ii) For every v ∈ X we have J0(x; v) = max{〈ξ, v〉 | ξ ∈ ∂J(x)}.

(iii) The function X ×X ∋ (u, v) 7→ J0(u; v) ∈ R is upper semicontinuous.

The next result is proved in [25], Lemma 7.

Lemma 2.6. Let E and X be Banach spaces. Let J : E × X → R be such that

(i) for each z ∈ E , the function u 7→ J(z, u) is locally Lipschitz;
(ii) for each v ∈ X , the function E × X ∋ (y, u) 7→ J0(y, u; v) ∈ R is upper

semicontinuous.
Then the generalized gradient E×X ∋ (y, u) 7→ ∂J(y, u) ⊂ X∗ is upper semicon-

tinuous from E×X endowed with the norm topology to the subsets of X∗ endowed

with the weak topology.
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Furthermore, we state a compactness result for an embedding between the
Bochner–Lebesgue spaces. Its proof can be found in [46], Proposition 2.8. Let
0 < T < ∞ and I = [0, T ]. Let us denote by χ a finite partition of the interval I
such that [0, T ] =

⋃n
i=1 ηi, where {ηi}16i6n is a family of disjoint subintervals

ηi = (li, ri). Let H be the family of all such partitions, X be a Banach space and
1 6 q <∞. We introduce the function space BVq(0, T ;X) defined by

BVq(0, T ;X) =

{
v : [0, T ] → X

∣∣∣∣ sup
χ∈H

∑

ηi∈χ

‖v(ri)− v(li)‖qX <∞
}
.

The seminorm on the space BVq(0, T ;X) is defined by

‖v‖qBVq(0,T ;X) = sup
χ∈H

∑

ηi∈χ

‖v(ri)− v(li)‖qX for all v ∈ BVq(0, T ;X).

Suppose that 1 6 p 6 ∞, 1 6 q < ∞, and X, Z are Banach spaces such that
the embedding of X to Z is continuous. Put Mp,q(0, T ;X,Z) = Lp(0, T ;X) ∩
BVq(0, T ;Z). Then the space Mp,q(0, T ;X,Z) endowed with the norm

‖v‖Mp,q(0,T ;X,Z) = ‖v‖Lp(0,T ;X) + ‖v‖BVq(0,T ;Z) for all v ∈Mp,q(0, T ;X,Z)

is a Banach space.

Proposition 2.7. Let 1 6 p, q < ∞, and let X ⊂ Y ⊂ Z be Banach spaces such

that X is reflexive, the embedding X ⊂ Y is compact, and the embedding Y ⊂ Z
is continuous. Then any bounded set in the space Mp,q(0, T ;X,Z) is relatively

compact in Lp(0, T ;Y ).

We end the section by recalling a surjectivity result for weakly–weakly upper
semicontinuous multivalued mappings (see [47], Theorem 8). This result will play
an important role for solvability analysis of the discrete approximate problem, see
Problem 3.3 in Section 3. Given a normed space X with dual X∗, a multivalued
mapping F : X → 2X

∗

is said to be coercive if

lim
‖u‖X→∞

1

‖u‖X
inf

u∗∈F (u)
〈u∗, u〉 = ∞.

Theorem 2.8. Let X be a reflexive Banach space with its dual X∗ and F : X→ 2X
∗

be a multivalued mapping with nonempty, bounded, closed, and convex values. If F
is coercive and upper semicontinuous from X endowed with the weak topology to

the subsets of X∗ endowed with the weak topology, then F is surjective.

§ 3. Fractional differential hemivariational

inequalities of parabolic–parabolic type

This section is devoted to exploring an abstract dynamical system called a frac-
tional differential hemivariational inequality of parabolic–parabolic type, which
consists of a quasilinear evolution equation involving the fractional Caputo deriva-
tive operator coupled with a generalized parabolic hemivariational inequality. Our
goal is to establish the existence of a mild solution to the dynamical system. The
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proof method is based on a surjectivity result for weakly–weakly upper semicontin-
uous multivalued mappings, and a feedback iterative technique together with a tem-
porally semi-discrete approach based on the backward Euler difference with quasi-
uniform time-steps. It should be mentioned that the main results established in
this section provide not only the existence of a mild solution, but also an iterative
algorithm to obtain an approximation sequence for a mild solution.

The functional setting of the abstract dynamical system, Problem 1.1, is as
follows. Let V →֒ H →֒ V ∗ be an evolution triple of spaces (or Gelfand triple
of spaces), i.e., (V, ‖ · ‖V ) is a reflexive and separable Banach space with its dual
space (V ∗, ‖ · ‖V ∗) and (H, ‖ · ‖H) is a separable Hilbert space such that the embed-
ding of V to H is continuous and V is dense in H. In addition, we need two reflexive
Banach spaces (E, ‖ · ‖E), (X, ‖ · ‖X). Also, we suppose that the embedding of V
to H is compact, and the operator γ : V → X is bounded, linear and compact. For
0 < T < +∞ fixed, we denote by C([0, T ];E) the space of continuous functions
from [0, T ] into E, and introduce the following Bochner–Lebesgue spaces:

V := L2(0, T ;V ), H := L2(0, T ;H), V∗ := L2(0, T ;V ∗),

X := L2(0, T ;X), X ∗ := L2(0, T ;X∗), E := L2(0, T ;E),

E∗ := L2(0, T ;E∗), W := {u ∈ V | v′ ∈ V∗},
where u′ = ∂u/∂t stands for the time derivative of u, which is understood in the
sense of distributions. In what follows, we adopt the symbols 〈 · , · 〉, 〈 · , · 〉X∗×X ,
〈 · , · 〉V∗×V , and L(V ;X) for the duality pairing between V ∗ and V , that betweenX∗

and X, that between V∗ and V , and the space of bounded linear operators from V
toX, respectively. We set Lp(0, T )+ := {u ∈ Lp(0, T ) | u(t) > 0 for a.e. t ∈ (0, T )}.

For convenience, in the rest of the paper, we denote by C > 0 a generic constant
whose value may change from line to line.

The mild solutions of Problem 1.1 are understood as follows.

Definition 3.1. A pair of functions (z, w) with z ∈ C([0, T ];E) and w ∈ W is
called a mild solution of Problem 1.1 if

z(t) = E (t)z0 +

∫ t

0

(t− s)α−1
F (t− s) g(s, z(s), w(s)) ds for all t ∈ [0, T ], (3.1)

∫ T

0

(w′(t), v(t))H dt+

∫ T

0

J0(z(t), γw(t); γv(t)) dt+

∫ T

0

〈F (z(t), w(t)), v(t)〉 dt

>

∫ T

0

〈G(t, z(t)), v(t)〉 dt for all v ∈ V ,
(3.2)

w(0) = w0, (3.3)

where {E (t)}t>0 and {F (t)}t>0 are given in (2.1).

To explore the existence of a mild solution for Problem 1.1, we impose the
following assumptions.

Assumption H(S). S :D(S)⊂E→E is the infinitesimal generator of a C0-semi-
group {S (t)}t>0 in E such that S (t) is compact for each t > 0.
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Assumption H(F ). The operator F : E × V → V ∗ is such that
(i) for each y ∈ E, u 7→ F (y, u) is weakly continuous;
(ii) one of the following conditions holds

(ii)1 there exists a constant cF > 0 such that

‖F (y, u)‖V ∗ 6 cF (1 + ‖u‖V ) for all u ∈ V and y ∈ E; (3.4)

(ii)2 there exists a constant cF > 0 such that

‖F(y, u)‖V∗ 6 cF‖u‖V(1 + ‖u‖L∞(0,T ;H)) (3.5)

for all u ∈ V ∩ L∞(0, T ;H) and all y ∈ E , where F : E × V → V∗

is the Nemytskii operator corresponding to F given by F(y, u)(t) =
F (y(t), u(t)) for all t ∈ [0, T ], u ∈ V and y ∈ E ;

(iii) there are constants mF > 0, lF , dF > 0 and eF ∈ R such that

〈F (y, u), u〉 > mF ‖u‖2V − lF ‖u‖2H − dF ‖u‖V + eF for all u ∈ V and y ∈ E;

(iv) for any sequences {un} ⊂ V ∩ L∞(0, T ;H) and {yn} ⊂ E such that {un} is
bounded in L∞(0, T ;H), yn → y in E for some y ∈ E , and un ⇀ u in V and H for
some u ∈ V , we have F(yn, un)⇀ F(y, u) in V∗.

Assumption H(J). J : E ×X → R has the following properties:
(i) for each y ∈ E, the function X ∋ w 7→ J(y, w) ∈ R is locally Lipschitz;
(ii) for each y ∈ E, w ∈ X and ξ ∈ ∂J(y, w), we have ‖ξ‖X∗ 6 cJ + dJ‖w‖X

with cJ > 0 and dJ > 0;
(iii) for each v ∈ X, the function E × X ∋ (y, u) 7→ J0(y, u; v) ∈ R is upper

semicontinuous;
(iv) there is a θ ∈ [1, 2) such that J0(y, w;−w) 6 LJ +MJ‖w‖θX for all y ∈ E

and w ∈ X with LJ > 0 and MJ > 0.

Assumption H(γ). γ : V → X is bounded, linear, and compact such that its
Nemytskii operator γ : V → X , defined by (γw)(t) = γ(w(t)) for all t ∈ [0, T ] and
w ∈ V , is compact from M2,2(0, T ;V, V ∗) to X .

Assumption H(G). G : [0, T ]× E → V ∗ is such that
(i) for each z ∈ E, the function t 7→ G(t, z) is measurable on [0, T ];
(ii) for every t ∈ [0, T ], the function z 7→ G(t, z) ∈ V ∗ is continuous;
(iii) there exists a function ρG ∈ L2(0, T )+ such that ‖G(t, z)‖V ∗ 6 ρG(t) for

all (t, z) ∈ [0, T ]×E.

Assumption H(g). g : [0, T ]× E ×H → E is such that
(i) for each (z, w) ∈ E ×H, t 7→ g(t, z, w) is measurable on [0, T ];

(ii) for all z ∈ E and a.e. t ∈ [0, T ], the functionH ∋ w 7→ g(t, z, w) is continuous;

(iii) there exists a function ρg ∈ L1/β(0, T )+ with 0 < β < α satisfying

MS‖ρg‖L1/β(0,T )T
(1+ζ)(1−β) < Γ(α)(1 + ζ)1−β

with ζ = (α − 1)/(1− β) and ‖g(t, z1, w)− g(t, z2, w)‖E 6 ρg(t)‖z1 − z2‖E , for all
z1, z2 ∈ E, w ∈ H and a.e. t ∈ [0, T ], and for each bounded set D in H, we can
find a function ψD ∈ L1/β(0, T )+ such that ‖g(t, 0, w)‖E 6 ψD(t) for all w ∈ D
and a.e. t ∈ [0, T ].
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Remark 3.2. An operator N : V → V ∗ is said to be of generalized Navier–Stokes

type (see e.g. [48]) if N(v) = Av +B[v] for all v ∈ V , where

(i) A ∈ L(V ;V ∗) is a symmetric operator satisfying

〈Av, v〉>αA‖v‖2V −βA‖v‖2H for all v ∈V with some constants αA> 0 and βA > 0;

(ii) B : V × V → V ∗, B[v] := B(v, v) is a bilinear continuous function such that

〈B(u, v), v〉 = 0 for all u, v ∈ V, and B[ · ] : V → V ∗ is weakly continuous.

Let µ : R+ → (0,+∞) be a continuous function such that cµ 6 µ(s) 6 dµ for
all s ∈ R+ with two constants dµ > cµ > 0. It can be shown that the operator
F : E × V → V ∗ defined by F (y, u) = µ(eµ‖y‖E)Au + B[u] satisfies the hypoth-
esis H(F ) with dF = eF = 0 and eµ > 0, where A( · ) + B[ · ] is a generalized
Navier–Stokes type operator; see Lemma 4.9 below.

Since {S (t)}t>0 is a C0-semigroup, in what follows, let MS > 0 be such that
‖S (t)‖ 6 MS for all t > 0. We are now in a position to invoke an iterative
approximation approach together with a temporally semi-discrete technique based
on the backward Euler difference with a variable time step length for Problem 1.1.
For n ∈ N, we use the symbol Tn to denote a partition of the time interval [0, T ]:

Tn = {0 = t0n < t1n < · · · < tnn = T}.
We write τkn = tkn − tk−1

n , 1 6 k 6 n, for the lengths of the time subintervals. Note
that the quantity max16k6n τ

k
n represents the mesh-size of Tn. We will assume the

sequence of time grids {Tn} to be quasi-uniform.

Assumption H(T ). The sequence of time grids {Tn} satisfies two conditions:

(i) max16k6n τ
k
n → 0 as n→ ∞;

(ii) there exists a constant cT > 0 such that max16k6n τ
k
n 6 cT min16k6n τ

k
n for

all n ∈ N.

Given a sequence of time grids {Tn}, we propose a feedback iterative approxi-
mated system corresponding to Problem 1.1 as follows.

Problem 3.3. Find sequences {wk
n}nk=0 ⊂ V , {ξkn}nk=1 ⊂ X∗, and a function zn ∈

C([0, T ];E) such that w0
n = w0, zn(0) = z0,

wk
n − wk−1

n

τkn
+ F (zn(t

k−1
n ), wk

n) + γ∗ξkn = Gk
n for k = 1, . . . , n (3.6)

with ξkn ∈ ∂J(zn(t
k−1
n ), γwk

n), and

zn(t) = E (t)z0+

∫ t

0

(t−s)α−1
F (t−s)g(s, zn(s), wn(s)) ds for all t ∈ [0, tkn], (3.7)

for k = 1, . . . , n, where the element Gk
n and function t 7→ wn(t) are defined by

Gk
n =






G(0, z0) if k = 1,

1

τk−1
n

∫ tk−1
n

tk−2
n

G(s, zn(s)) ds if k > 2,

wn(t) = wk
n +

t− tkn
τkn

(wk
n − wk−1

n )

(3.8)

for all t ∈ (tk−1
n , tkn] and k = 1, . . . , n, respectively.
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The following lemma provides a basic result on the solvability of Problem 3.3.

Lemma 3.4. Let n ∈ N be fixed. Assume that H(S), H(F ), H(J), H(G), H(g),
H(γ) and H(T ) are fulfilled. Then there exists an n0 ∈ N such that Problem 3.3
has at least one solution for all n > n0 .

Proof. Let n0 ∈ N be a fixed integer such that n0 > cT lFT , and let n > n0. Since
nmin16k6n τ

k
n 6 T , we have max16k6n τ

k
n 6 cT T/n by the quasi-uniformity of Tn.

Hence, for 1 6 k 6 n,
1

τkn
>

n

cT T
>

n0
cT T

> lF .

For every fixed n > n0, we prove the result by induction on k.

First, for k = 1, G1
n = G(0, z0). Let us introduce a set-valued mapping G1 :

V → 2V
∗

defined by

G1(w) =
i∗i

τ1n
w + F (zn(t0), w) + γ∗ ∂J(zn(t0), γw) for all w ∈ V, (3.9)

where i : V → H denotes the embedding operator from V to H with its dual
operator i∗ : H → V ∗. Observe that if we are able to show that G1 is onto V ∗, then
there exist w ∈ V and ξ1n ∈ ∂J(zn(t0), γw) satisfying (3.6) with k = 1. Hence, we
will apply the surjectivity result of Theorem 2.8 to G1. This requires verification of
all the assumptions stated in Theorem 2.8, i.e., G1 is a coercive and weakly–weakly
upper semicontinuous multivalued mapping with nonempty, bounded, closed, and
convex values in V ∗. By the hypotheses H(J) and [41], Proposition 3.23, (iv), we
know that for each w ∈ V fixed, the set γ∗ ∂J(z0, γw) is nonempty, bounded, closed,
and convex in V ∗. Moreover, Lemma 2.6 shows that the multivalued mapping X ∋
x 7→ ∂J(z0, x) ⊂ X∗ is strongly–weakly upper semicontinuous. The latter combined
with the compactness of γ and [49], Theorem 1.2.8, shows that w 7→ γ∗∂J(z0, γw)
is weakly–weakly upper semicontinuous. In addition, using the fact that i∗i/τ1n is
a bounded and linear operator, we conclude from H(F ) (i) that the mapping G1

is also weakly–weakly upper semicontinuous.
Next, we verify that G1 is coercive. Let w ∈ V and w∗ ∈ G1(w) be arbitrary.

Then there exists a ξ ∈ ∂J(z0, γw) such that

w∗ =
i∗i

τ1n
w + F (z0, w) + γ∗ξ.

Thanks to H(F ) (iii),

〈w∗, w〉 > ‖w‖2H
τ1n

+mF ‖w‖2V − lF ‖w‖2H − dF ‖w‖V + eF − 〈ξ, γw〉X∗×X . (3.10)

By the Young inequality and H(J) (iv), it follows that

〈ξ, γw〉X∗×X > −J0(z0, γw;−γw) > −LJ −MJ‖γw‖θX

> −LJ −MJ‖γ‖θ‖w‖θV > −LJ − (MJ‖γ‖θ)q
qεq

− mF

2
‖w‖2V , (3.11)
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where ε = (mF /θ)
θ/2 and q = 2/(2− θ). Inserting (3.11) into (3.10) yields

〈w∗, w〉 >
(

1

τ1n
− lF

)
‖w‖2H +

mF

2
‖w‖2V − dF ‖w‖V − LJ − (MJ‖γ‖θ)q

qεq
. (3.12)

Since n > n0, 1/τ1n > lF and G1 is coercive.
Hence all the hypotheses of Theorem 2.8 are verified. Applying this result, we

infer that there exist elements w1
n ∈ V and ξ1n ∈ X∗ with ξ1n ∈ ∂J(zn(t0), γw

1
n) such

that (3.6) holds for k = 1. Moreover, the function wn given by (3.8) is well defined
on [0, t1n] and belongs to C([0, t1n];V ) ⊂ L2(0, t1n;V ).

Consider the integral equation (3.7) for k = 1. Following the arguments in
the proof of [43], Theorem 3.1, we know that there exists a unique function zn ∈
C([0, t1n];E) such that (3.7) holds for k = 1.

Now, we assume that there exist zn ∈ C([0, tk−1
n ];E), w0

n, w
1
n, . . . , w

k−1
n ∈ V

and ξ1n, ξ
2
n, . . . , ξ

k−1
n ∈ X∗ such that (3.6) and (3.7) hold with k − 1. The integral

∫ tk−1
n

tk−2
n

G(s, zn(s)) ds is well defined. As in the case k = 1, we can verify that the

multivalued mapping Gk given by

Gk(w) =
i∗i

τkn
w + F (zn(t

k−1
n ), w) + γ∗ ∂J(zn(t

k−1
n ), γw) for all w ∈ V

is surjective. Hence, there exist elements wk
n ∈ V and ξkn ∈ X∗ with ξkn ∈

∂J(zn(t
k−1
n ), γwk

n) such that (3.6) is satisfied. We see that wn ∈ C([0, tkn];E) ⊂
L2(0, tkn;V ). Applying [43], Theorem 3.1, again, we have the existence of a unique
function zn ∈ C([0, tkn];E) satisfying (3.7). This completes the proof of the lemma.

Next, we provide a priori bounds for the solutions to the feedback iterative
approximate system, Problem 3.3.

Lemma 3.5. Let n1 ∈ N be such that n1 > 2c3cT T , where

c3 = max

{
8d2F
mF

+ |eF |+ LJ +
(MJ‖γ‖θ)q

qεq
, lF

}
, ε =

(
mF

θ

)θ/2

, q =
2

2− θ
.

(3.13)
Under the hypotheses of Lemma 3.4, there exists a constant C > 0 such that the

following bounds hold for each n > max{n0, n1}:

max
16k6n

‖wk
n‖H 6 C, (3.14)

n∑

k=1

‖wk
n − wk−1

n ‖2H 6 C, (3.15)

n∑

k=1

τkn‖wk
n‖2V 6 C. (3.16)

Proof. Let us suppose that ξkn ∈ X∗ with ξkn ∈ ∂J(zn(t
k−1
n ), γwk

n) and (3.6) holds.
We act on (3.6) by the test function wk

n to get
(
wk

n − wk−1
n

τkn
, wk

n

)

H

+ 〈F (zn(tk−1
n ), wk

n)−Gk
n, w

k
n〉+ 〈ξkn, γ(wk

n)〉X∗×X = 0.
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Taking into account the hypothesis H(F ) (iii) and the equality (w,w − v)H =
(‖w‖2H − ‖v‖2H + ‖w − v‖2H)/2 for w, v ∈ H, we have

1

2τkn
(‖wk

n‖2H − ‖wk−1
n ‖2H + ‖wk

n − wk−1
n ‖2H) +mF ‖wk

n‖2V − lF ‖wk
n‖2H

− dF ‖wk
n‖V + eF + 〈ξkn, γ(wk

n)〉X∗×X 6 ‖Gk
n‖V ∗‖wk

n‖V .

It follows from this inequality along with the growth condition H(J) (iv) and (3.11)
with w = wk

n that

‖Gk
n‖2V ∗

mF
+
mF

4
‖wk

n‖2V > ‖Gk
n‖V ∗‖wk

n‖V

>
1

2τkn
(‖wk

n‖2H − ‖wk−1
n ‖2H + ‖wk

n − wk−1
n ‖2H) +mF ‖wk

n‖2V − lF ‖wk
n‖2H

− 8d2F
mF

− mF

8
‖wk

n‖2V + eF − J0
(
zn(t

k−1
n ), γwk

n;−γwk
n

)

>
1

2τkn
(‖wk

n‖2H − ‖wk−1
n ‖2H + ‖wk

n − wk−1
n ‖2H) +

3mF

8
‖wk

n‖2V

− lF ‖wk
n‖2H − 8d2F

mF
+ eF − LJ − (MJ‖γ‖θ)q

qεq
.

Hence,

2τkn
‖Gk

n‖2V ∗

mF
+ c3τ

k
n(1 + ‖wk

n‖2H)

> ‖wk
n‖2H − ‖wk−1

n ‖2H + ‖wk
n − wk−1

n ‖2H + τkn
mF

4
‖wk

n‖2V ,

where c3 > 0 is defined in (3.13). We sum up these inequalities over k from 1 to i
with 1 6 i 6 n to obtain

‖wi
n‖2H − ‖w0

n‖2H +

i∑

k=1

‖wk
n − wk−1

n ‖2H +
mF

4

i∑

k=1

τkn‖wk
n‖2V

6
2

mF

i∑

k=1

τkn‖Gk
n‖2V ∗ + c3

i∑

k=1

τkn + c3

i∑

k=1

τkn‖wk
n‖2H

and

(1− c3τ
i
n)‖wi

n‖2H +
i∑

k=1

‖wk
n − wk−1

n ‖2H +
mF

4

i∑

k=1

τkn‖wk
n‖2V

6
2

mF

i∑

k=1

τkn‖Gk
n‖2V ∗ + c3

i∑

k=1

τkn + c3

i−1∑

k=1

τkn‖wk
n‖2H + ‖w0

n‖2H .
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By making use of the conditionH(G) (iii), the form of Gn and the Hölder inequality,

τkn‖Gk
n‖2V ∗ =

τkn
(τk−1

n )2

(∫ tk−1
n

tk−2
n

‖G(s, zn(s))‖V ∗ ds

)2

6
τkn

(τk−1
n )2

(∫ tk−1
n

tk−2
n

ρG(s) ds

)2

6
τkn
τk−1
n

∫ tk−1
n

tk−2
n

ρG(s)
2 ds.

Then recall H(T ) (ii) to obtain

τkn‖Gk
n‖2V ∗ 6 cT

∫ tk−1
n

tk−2
n

ρG(s)
2 ds. (3.17)

Thus,

2

mF

i∑

k=1

τkn‖Gk
n‖2V ∗ 6

2cT
mF

∫ T

0

ρG(s)
2 ds+

2cT T‖G(0, z0)‖2V ∗

mF
:= mG > 0.

Note that
∑i

k=1 τ
k
n 6 T . Therefore, we have

(1− c3τ
i
n)‖wi

n‖2H +
i∑

k=1

‖wk
n − wk−1

n ‖2H +
mF

4

i∑

k=1

τkn‖wk
n‖2V

6 mG + c3T + c3

i−1∑

k=1

τkn‖wk
n‖2H + ‖w0‖2H . (3.18)

Since n > n1, we have 1 − c3τ
i
n > 1/2. By the discrete version of the Gronwall

inequality ([50], Lemma 7.25), the inequality (3.14) holds. The estimates (3.15)
and (3.16) are consequences of (3.14) and (3.18). This completes the proof.

For every fixed n ∈ N, we introduce piecewise constant interpolating functions
wn, ξn and Gn by

wn(t) =

{
wk

n, t ∈ (tk−1, tk],

w0, t = 0,

ξn(t) = ξkn for t ∈ (tk−1, tk] and Gn(t) = Gk
n for t ∈ (tk−1, tk].

The following lemma provides a priori bounds for these functions.

Lemma 3.6. Keep the assumptions of Lemma 3.4. Then the following bounds

hold:
‖wn‖C([0,T ];H) 6 C, (3.19)

‖wn‖L∞(0,T ;H) 6 C, (3.20)

‖wn‖V 6 C, (3.21)

‖wn‖V 6 C, (3.22)

‖ξn‖X∗ 6 C, (3.23)

‖w′
n‖V∗ 6 C, (3.24)

‖wn‖M2,2(0,T ;V,V ∗) 6 C, (3.25)

where C > 0 is independent of n.



A new class of fractional differential hemivariational inequalities 339

Proof. Obviously, for each n ∈ N, wn belongs to C([0, T ];H). For any t ∈ [0, T ],
there is a k between 1 and n such that t ∈ (tk−1

n , tkn]. Using the boundedness of the
sequence {‖wk

n‖H}nk=1 (see (3.14)), we get

‖wn(t)‖H 6 ‖wk
n‖H +

(tkn − t)

τkn
‖wk

n − wk−1
n ‖H

6 ‖wk
n‖H + ‖wk

n − wk−1
n ‖H 6 2‖wk

n‖H + ‖wk−1
n ‖H 6 C

for all t ∈ (tk−1
n , tkn], k = 1, . . . , n. This leads to the bound (3.19). Moreover, the

bound (3.20) is a consequence of (3.14). By the equality

‖wn‖2V =

∫ T

0

‖wn(s)‖2V ds =
n∑

k=1

∫ tkn

tk−1
n

‖wn(s)‖2V ds =
n∑

k=1

τkn‖wk
n‖2V

and (3.16), we obtain (3.21). Concerning the function wn, we have

‖wn‖2V =

∫ T

0

‖wn(s)‖2V ds =
n∑

k=1

∫ tkn

tk−1
n

‖wn(s)‖2V ds

=

n∑

k=1

∫ tkn

tk−1
n

∥∥∥∥w
k
n +

s− tkn
τkn

(wk
n − wk−1

n )

∥∥∥∥
2

V

ds

6 2

n∑

k=1

∫ tkn

tk−1
n

(
‖wk

n‖2V +

(
tkn − s

τkn

)2

‖wk
n − wk−1

n ‖2V
)
ds

6 2

n∑

k=1

τkn
(
‖wk

n‖2V + 2(‖wk
n‖2V + ‖wk−1

n ‖2V )
)
6 10

n∑

k=1

τkn‖wk
n‖2V + 10‖w0‖2V .

So, (3.16) implies the bound (3.22). In addition, we deduce from H(J) (ii), that

‖ξn‖2X∗ =

∫ T

0

‖ξn(s)‖2X∗ ds =

n∑

k=1

∫ tkn

tk−1
n

‖ξn(s)‖2X∗ ds =

n∑

k=1

τkn‖ξkn‖2X∗

6

n∑

k=1

τkn(LJ +MJ‖γwk
n‖X)2 6 2L2

J

n∑

k=1

τkn + 2M2
J‖γ‖2

n∑

k=1

τkn‖wk
n‖2V .

The latter combined with (3.16) guarantees the validity of (3.23). In addition,
we observe that (3.6) can be formulated as follows:

w′
n(t) + F (zn(δn(t)), wn(t)) + γ∗ξn(t) = Gn(t) (3.26)

for a.e. t ∈ [0, T ], where the function δn : [0, T ] → [0, T ] is defined by

δn(t) = tk−1
n for t ∈ [tk−1

n , tkn) and k = 1, 2, . . . , n. (3.27)

Given any v ∈ V , we multiply the equality (3.26) by v(t) and integrate the resulting
equality over [0, T ] to get

〈Gn, v〉V∗×V − 〈F (zn(δn), wn), v〉V∗×V − 〈ξn, γv〉X∗×X = (w′
n, v)H = 〈w′

n, v〉V∗×V ,



340 S. D. Zeng, S. Migórski, and W. Han

where γ : V → X is the Nemytskii operator of γ defined by (γw)(t) = γw(t) for
all t ∈ [0, T ]. This results in

‖w′
n‖V∗ 6 ‖Gn‖V∗ + ‖F (zn(δn), wn)‖V∗ + ‖γ‖‖ξn‖X∗ . (3.28)

The bound (3.17) turns out to be

‖Gn‖2V∗ =
n∑

k=1

∫ tkn

tk−1
n

‖Gn(s)‖2V ∗ ds =
n∑

k=1

τkn‖Gk
n‖2V ∗

6 cT ‖ρG‖L2(0,T ) + T‖G(0, z0)‖2V ∗ . (3.29)

If H(F ) (ii)1 holds, i.e., (3.4) is satisfied, then we see from (3.21) that

‖F (zn(δn), wn)‖2V∗ =

∫ T

0

‖F (zn(δn(t)), wn(t))‖2V ∗ dt

6

∫ T

0

c2F (1 + ‖wn(t)‖V )2 dt 6 2c2FT + 2c2F ‖wn‖2V .

The latter together with (3.23), (3.28) and (3.29) shows the validity of (3.24). Fur-
ther, when H(F ) (ii)2 is satisfied, namely, (3.5) holds, we use (3.20), (3.21), (3.28)
and (3.29) to conclude that the estimate (3.24) holds.

In view of (3.21), to prove the boundedness of wn in M2,2(0, T ;V, V ∗), it remains
to examine the boundedness of {wn} in BV2(0, T ;V ∗). For the BV2(0, T ;V ∗)-semi-
norm of wn, write

‖wn‖2BV2(0,T ;V ∗) =

Mn∑

k=1

∥∥wmk
n−1

n − w
mk−1

n −1
n

∥∥2
V ∗
,

where the equality is attained at a partition whose vertices are located at the grid
intervals indexed by m0

n,m
1
n, . . . ,m

Mn−1
n ,mMn

n with m0
n = 1 and mMn

n = n. Hence,
we have

‖wn‖2BV2(0,T ;V ∗) =

Mn∑

k=1

∥∥wmk
n−1

n − w
mk−1

n −1
n

∥∥2
V ∗

6

Mn∑

k=1

(mk
n −mk−1

n )

mk
n∑

j=mk−1
n +1

‖wj−1
n − wj−2

n ‖2V ∗

6

Mn∑

k=1

(mk
n −mk−1

n ) max
16l6n

τ ln

mk
n∑

j=mk−1
n +1

τ jn

∥∥∥∥
wj−1

n − wj−2
n

τ jn

∥∥∥∥
2

V ∗

6 n max
16l6n

τ ln

n∑

k=2

τkn

∥∥∥∥
wk−1

n − wk−2
n

τkn

∥∥∥∥
2

V ∗

6 cT T‖w′
n‖2V∗ .

Therefore, from (3.24), we derive the bound (3.25). This completes the proof of
the lemma.

We end the section with an examination of critical convergence theorem for
the functions {wn}, {wn}, {ξn} and {zn}, and to reveal that the limit point
of {(zn, wn)} is also a mild solution of Problem 1.1.
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Theorem 3.7. Assume H(S), H(F ), H(J), H(G), H(g), H(γ) and H(T ). Then,
there exist (w, ξ, z) ∈ W × X ∗ × C([0, T ];E), and a subsequence of indices such

that for this subsequence (still denoted by n) we have

wn ⇀ w in V and wn → w weakly-∗ in L∞(0, T ;H), (3.30)

wn ⇀ w in V , (3.31)

w′
n ⇀ w′ in V∗, (3.32)

wn ⇀ w in W , (3.33)

wn → w in H, (3.34)

ξn ⇀ ξ in X ∗, (3.35)

zn → z in C([0, T ];E). (3.36)

Moreover, (z, w) ∈ C([0, T ];E)×W is a solution to the problem (3.1)–(3.3).

Proof. By (3.20) and (3.21), we are able to find an element w∈V ∩L∞(0, T ;H) and
a subsequence of {wn}, still denoted by {wn}, such that (3.30) holds. Moreover,
the boundedness of {wn} in V enables us to assume that wn ⇀ w̃ in V for some
w̃ ∈ V . We claim that w = w̃. Indeed, note that

‖wn − wn‖2V∗ =

∫ T

0

‖wn(t)− wn(t)‖2V ∗ dt =
n∑

k=1

∫ tkn

tk−1
n

‖wn(t)− wn(t)‖2V ∗ dt

=
n∑

k=1

∫ tkn

tk−1
n

(tkn − t)2
∥∥∥∥
wk

n − wk−1
n

τkn

∥∥∥∥
2

V ∗

dt

=

n∑

k=1

(τkn)
3

3

∥∥∥∥
wk

n − wk−1
n

τkn

∥∥∥∥
2

V ∗

6
(τmax

n )2

3
‖w′

n‖2V∗ .

We use (3.24) to see that wn−wn → 0 in V∗. On the other hand, the facts (3.30) and
wn ⇀ w̃ in V imply that wn −wn ⇀ w− w̃ in V . The continuity of the embedding
of V to V∗ shows that wn−wn ⇀ w−w̃ in V∗. Combining this with the convergence
wn−wn → 0 in V∗ proves the claim. So w = w̃, and consequently (3.31) is satisfied.

Thanks to (3.24), by passing to a subsequence if necessary, we find a function
w∗ ∈ V∗ such that w′

n ⇀ w∗ in V∗. Using [42], Proposition 23.19, (3.31), and the
continuity of the embedding of V to H, we have w∗ = w′, which means that
the convergence (3.32) holds. Obviously, the convergence relations (3.31) and (3.32)
guarantee the result (3.33). Since the embedding of V to H is compact, so is the
embedding of W to H. Hence, (3.34) follows directly from (3.33). In addition,
by (3.23), we may suppose that there exist ξ ∈ X ∗ and a subsequence of {ξn}, still
denoted by {ξn}, such that the convergence (3.35) holds.

Let us prove the convergence (3.36). Since the embedding of W to C([0, T ];H)
is continuous, w ∈ C([0, T ];H). Arguing as in the proof of [43], Theorem 3.1,
we deduce from the hypothesis H(g) (iii) that there exists a unique mild solution
z ∈ C([0, T ];E) to the following fractional evolution equation:

{
C
0D

α
t z(t) = Sz(t) + g(t, z(t), w(t)) for a.e. t ∈ [0, T ],

z(0) = z0,
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which means that z satisfies the integral equation

z(t) = E (t)z0 +

∫ t

0

(t− s)α−1
F (t− s)g(s, z(s), w(s)) ds for all t ∈ [0, T ]. (3.37)

Since both {E (t)} and {F (t)} are bounded, we see from H(g) (iii) that

‖zn(t)− z(t)‖E 6
MS

Γ(α)

∫ t

0

(t− s)α−1‖g(s, zn(s), wn(s))− g(s, z(s), w(s))‖E ds

6
MS

Γ(α)

∫ t

0

(t− s)α−1‖g(s, zn(s), wn(s))− g(s, z(s), wn(s))‖E ds

+
MS

Γ(α)

∫ t

0

(t− s)α−1‖g(s, z(s), wn(s))− g(s, z(s), w(s))‖E ds

6
MS

Γ(α)

∫ t

0

(t− s)α−1ρg(s) ‖zn(s)− z(s)‖E ds+ rn(t),

where the function rn : [0, T ] → R+ is defined by

rn(t) =
MS

Γ(α)

∫ t

0

(t−s)α−1‖g(s, z(s), wn(s))−g(s, z(s), w(s))‖E ds for all t∈ [0, T ].

It follows from the Hölder inequality that

∫ t

0

(t− s)α−1ρg(s) ds 6

(∫ t

0

ρg(s)
1/β ds

)β(∫ t

0

(t− s)ζ ds

)1−β

6
‖ρg‖L1/β(0,T )T

(1+ζ)(1−β)

(1 + ζ)1−β
(3.38)

and

rn(t) 6
MS

Γ(α)

(∫ t

0

(t− s)ζ ds

)1−β(∫ t

0

‖g(s, z(s), wn(s))− g(s, z(s), w(s))‖1/βE ds

)β

6
MS

Γ(α)

(
T 1+ζ

1 + ζ

)1−β(∫ T

0

‖g(s, z(s), wn(s))− g(s, z(s), w(s))‖1/βE ds

)β

(3.39)

for all t ∈ [0, T ], where ζ := (α− 1)/(1− β) > −1 since 0 < β < α. Hence, we have

(
1−

MS‖ρg‖L1/β(0,T )T
(1+ζ)(1−β)

Γ(α)(1 + ζ)1−β

)
sup

s∈[0,T ]

‖zn(s)− z(s)‖E

6
MS

Γ(α)

(
T 1+ζ

1 + ζ

)1−β(∫ T

0

‖g(s, z(s), wn(s))− g(s, z(s), w(s))‖1/βE dτ

)β

(3.40)

for all t ∈ [0, T ]. We see from (3.19) that

D =

( ⋃

t∈[0,T ]

{wn(t)}
)
∪
( ⋃

t∈[0,T ]

{w(t)}
)

(3.41)
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is a bounded set in H. Note that

‖g(s, z(s), wn(s))− g(s, z(s), w(s))‖E 6 ‖g(s, z(s), wn(s))− g(s, 0, wn(s))‖E
+ ‖g(s, 0, wn(s))‖E + ‖g(s, 0, w(s))− g(s, z(s), w(s))‖E + ‖g(s, 0, w(s))‖E

6 2ρg(t)‖z(s)‖E + 2ψD(s)

for all s ∈ [0, T ]. So the function s 7→ ‖g(s, z(s), wn(s))− g(s, z(s), w(s))‖E belongs
to L1/β(0, T ) (see the hypothesis H(g) (iii)). Since wn → w in H, by passing to
a subsequence if necessary, we have wn(t) → w(t) in H for a.e. t ∈ (0, T ) as n→ ∞.
Then apply the Lebesgue dominated convergence theorem to obtain

lim
n→∞

∫ t

0

‖g(τ, z(τ), wn(τ))− g(τ, z(τ), w(τ))‖1/βE dτ

=

∫ t

0

lim
n→∞

‖g(τ, z(τ), wn(τ))− g(τ, z(τ), w(τ))‖1/βE dτ = 0 (3.42)

for all t ∈ [0, T ]. Passing to the limit as n → ∞ in (3.40) and using (3.42), we
obtain the convergence (3.36).

For any t ∈ [0, T ], we have |δn(t)− t| 6 max16k6n τ
k
n . Thus,

sup
t∈[0,T ]

|δn(t)− t| → 0 as n→ ∞, (3.43)

where we have applied the condition H(T )(i). Therefore, for each t ∈ [0, T ],

‖zn(δn(t))− z(t)‖E 6

∥∥∥∥
∫ δn(t)

0

(δn(t)− s)α−1
F (δn(t)− s)g(s, zn(s), wn(s)) ds

−
∫ t

0

(t− s)α−1
F (t− s)g(s, z(s), w(s)) ds

∥∥∥∥
E

+ ‖E (t)z0 − E (δn(t))z0‖E 6 L1 + L2 + L3 + L4 + L5 + L6,
(3.44)

where L1, . . . , L6 are defined by

L1 := ‖E (t)z0 − E (δn(t))z0‖E ,

L2 :=

∫ δn(t)−ε

0

(δn(t)− s)α−1‖[F (δn(t)− s)− F (t− s)]g(s, zn(s), wn(s))‖E ds,

L3 :=

∫ δn(t)

δn(t)−ε

(δn(t)− s)α−1‖[F (δn(t)− s)− F (t− s)]g(s, zn(s), wn(s))‖E ds,

L4 :=

∫ δn(t)

0

|(δn(t)− s)α−1 − (t− s)α−1| ‖F (t− s)g(s, zn(s), wn(s))‖E ds,

L5 :=

∫ δn(t)

0

(t− s)α−1‖F (t− s)[g(s, zn(s), wn(s))− g(s, z(s), w(s))]‖E ds,

L6 :=

∫ t

δn(t)

(t− s)α−1‖F (t− s)g(s, z(s), w(s))‖E ds,
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respectively, and 0 < ε < δn(t). Since E is continuous, we have

L1 = ‖E (t)z0 − E (δn(t))z0‖E → 0 as n→ ∞. (3.45)

It follows from the condition H(g) (iii) that

‖g(s, zn(s), wn(s))‖E 6 ‖g(s, zn(s), wn(s))− g(s, 0, wn(s))‖E + ‖g(s, 0, wn(s))‖E
6 ρg(s)‖zn(s)‖E + ψD(s),

where D ⊂ H is given in (3.41). This together with (3.36) yields that the sequence
{‖g( · , zn( · ), wn( · ))‖E} is bounded in L1/β(0, T ). Let m3 > 0 be such that
‖g( · , zn( · ), wn( · ))‖L1/β(0,T ) 6 m3 for all n ∈ N. We apply the Hölder inequal-
ity again to deduce that

∫ δn(t)−ε

0

(δn(t)− s)α−1‖g(s, zn(s), wn(s))‖E ds

6

(
δn(t)

ζ+1 − εζ+1

1 + ζ

)1−β

‖g( · , zn( · ), wn( · ))‖L1/β(0,T )

6

(
δn(t)

ζ+1 − εζ+1

1 + ζ

)1−β

m3 6

(
T ζ+1 − εζ+1

1 + ζ

)1−β

m3.

Recall that S (t) is compact for all t > 0. Then we know from Lemma 2.2 that
F(t) is continuous in the uniform operator topology, and so

L2 6 sup
s∈[0,δn(t)−ε]

‖F (δn(t)− s)− F (t− s)‖

×
∫ δn(t)−ε

0

(δn(t)− s)α−1‖g(s, zn(s), wn(s))‖E ds

6 sup
s∈[0,δn(t)−ε]

‖F (δn(t)− s)− F (t− s)‖

×
(
T ζ+1 − εζ+1

1 + ζ

)1−β

m3 → 0 as n→ ∞ and ε→ 0. (3.46)

We put MF =MS/Γ(α). Then

L3 =

∫ δn(t)

δn(t)−ε

(δn(t)− s)α−1‖[F (δn(t)− s)− F (t− s)]g(s, zn(s), wn(s))‖E ds

6 2MF

(
εζ+1

ζ + 1

)1−β

m3 → 0 as n→ ∞ and ε→ 0, (3.47)

and

L4 =

∫ δn(t)

0

[(δn(t)− s)α−1 − (t− s)α−1]‖F (t− s)g(s, zn(s), wn(s))‖E ds

6MF

∫ δn(t)

0

[(δn(t)− s)α−1 − (t− s)α−1][ρg(s)‖zn(s)‖E + ψD(s)] ds

6MF

∫ δn(t)

0

[(δn(t)− s)α−1 − (t− s)α−1][ρg(s)m4 + ψD(s)] ds,
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where the first equality is obtained by using the fact that δn(t) 6 t for all t ∈ [0, T ],
and m4 > 0 is independent of n (see (3.36)). We put

pn(s) =

{
(δn(t)− s)α−1 if s ∈ [0, δn(t)],

0 otherwise,

qn(s) =

{
(t− s)α−1 if s ∈ [0, δn(t)],

0 otherwise.

Then we have

L4 6MF

∫ δn(t)

0

[(δn(t)− s)α−1 − (t− s)α−1][ρg(s)m4 + ψD(s)] ds

=MF

∫ t

0

[pn(s)− qn(s)][ρg(s)m4 + ψD(s)] ds.

It follows from the convergence (3.43) that qn(s) − pn(s) → 0 as n → ∞ for a.e.
s ∈ [0, t]. So applying the Lebesgue dominated convergence theorem, we find

lim
n→∞

L4 6 lim
n→∞

MF

∫ t

0

[pn(s)− qn(s)][ρg(s)m4 + ψD(s)] ds

=MF

∫ t

0

lim
n→∞

[pn(s)− qn(s)][ρg(s)m4 + ψD(s)] ds = 0. (3.48)

For the term L5, we obtain

L5 6MF

∫ δn(t)

0

(t− s)α−1‖[g(s, zn(s), wn(s))− g(s, z(s), w(s))]‖E ds

6
MF (tζ+1 − (t− δn(t))

ζ+1)1−β

(ζ + 1)1−β

×
(∫ δn(t)

0

‖[g(s, zn(s), wn(s))− g(s, z(s), w(s))]‖1/βE ds

)β

6
MF (tζ+1 − (t− δn(t))

ζ+1)1−β

(ζ + 1)1−β

×
(∫ T

0

‖[g(s, zn(s), wn(s))− g(s, z(s), w(s))]‖1/βE ds

)β

.

The convergence relations (3.34), (3.36) and the Lebesgue dominated convergence
theorem guarantee that

lim
n→∞

L5 6 lim
n→∞

MF (tζ+1 − (t− δn(t))
ζ+1)1−β

(ζ + 1)1−β

×
(∫ T

0

‖[g(s, zn(s), wn(s))− g(s, z(s), w(s))]‖1/βE ds

)β

= 0. (3.49)
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Also,

L6 6

(
(t− δn(t))

ζ+1

ζ + 1

)1−β

MF‖g( · , z( · ), w( · ))‖L1/β(0,T ) → 0 as n→ ∞.

(3.50)
Taking (3.44)–(3.50) into account, we have

‖zn(δn(t))− z(t)‖E → 0 as n→ ∞ (3.51)

for all t ∈ [0, T ]. It remains to prove that (z, w) ∈ C([0, T ];E) × W is a mild
solution of Problem 1.1. First, we consider the term with Gn. Note that

∥∥∥∥
1

τk−1
n

∫ tk−1
n

tk−2
n

G(s, zn(s)) ds−
1

τk−1
n

∫ tk−1
n

tk−2
n

G(s, z(s)) ds

∥∥∥∥
V ∗

6
1

τk−1
n

∫ tk−1
n

tk−2
n

‖G(s, zn(s))−G(s, z(s))‖V ∗ ds

6 sup
s∈[0,T ]

‖G(s, zn(s))−G(s, z(s))‖V ∗ ,

and we apply the hypothesis H(G), the convergence (3.36) and [51], Lemma 3.3,
to deduce

Gn → G( · , z( · )) in V∗. (3.52)

Next, we shall show that

F(zn(δn), wn)⇀ F(z, w) in V∗. (3.53)

Since {wn} ⊂ V ∩ L∞(0, T ;H) and {zn(δn)} ⊂ E are such that {wn} is bounded
in L∞(0, T ;H), zn(δn) → z in E (see (3.51)) and wn ⇀ w in V and H, we can
apply the condition H(F ) (iv) to obtain the convergence (3.53). It follows from the
convergence (3.32) that

(w′
n, v)H = 〈w′

n, v〉V∗×V → 〈w′, v〉V∗×V = (w′, v)H (3.54)

for all v ∈ V . Therefore, combining (3.35) and (3.52)–(3.54), we obtain

∫ T

0

(w′(t), v(t))H dt+

∫ T

0

〈F (z(t), w(t)), v(t)〉 dt+
∫ T

0

〈ξ(t), v(t)〉X∗×X dt

=

∫ T

0

〈G(t, z(t)), v(t)〉 dt, (3.55)

w(0) = w0, (3.56)

for all v ∈ V and

z(t) = E (t)z0 +

∫ t

0

(t− s)α−1
F (t− s)g(s, z(s), w(s)) ds for all t ∈ [0, T ]. (3.57)

Evidently, if we can verify that ξ(t) ∈ ∂J(z(t), γw(t)) for a.e. t ∈ [0, T ], then
(z, w) ∈ C([0, T ];E) × W is a solution to the problem (3.1)–(3.3). According
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to H(γ), Proposition 2.7, and (3.25), the sequence {γ wn} is relatively compact
in X . Moreover, it follows from the convergence (3.30) that

γ wn → γ w in X as n→ ∞. (3.58)

Hence, at least along a subsequence, we have γwn(t) → γw(t) in X as n → ∞,
for a.e. t ∈ [0, T ]. Since zn → z in C([0, T ];E), one has zn(t) → z(t) in E for
all t ∈ [0, T ]. Using Theorem 2.3, Lemma 2.6 and (3.58), we conclude that ξ(t) ∈
∂J(z(t), γw(t)) for a.e. t ∈ [0, T ]. Finally, it follows from the definition of the Clarke
subgradient that

∫ T

0

〈ξ(t), v(t)〉X∗×X dt 6

∫ T

0

J0(y(t), γw(t); γv(t)) dt.

The latter combined with (3.55)–(3.57) shows that (z, w) ∈ C([0, T ];E) × W is
a solution to the problem (3.1)–(3.3). This completes the proof.

§ 4. Incompressible Navier–Stokes equations

coupled with fractional diffusion equations

To illustrate the applicability of the theoretical results established in Section 3,
we will study a nonstationary incompressible Navier–Stokes system involving a frac-
tional diffusion equation. The system will be formulated as a fractional hemi-
variational inequality.

We consider an incompressible fluid flow in a bounded, open, and connected
domain Ω in R

d, d = 2, 3, with a C1 boundary Γ = ∂Ω expressed as Γ = ΓC ∪ ΓD

for some disjoint relatively open sets ΓC , ΓD such that meas(ΓD) > 0. Given any
T ∈ (0,∞), we put Q = Ω × (0, T ), Σ = Γ × (0, T ), ΣD = ΓD × (0, T ), and
ΣC = ΓC × (0, T ). Let Sd be the set of real symmetric matrices of dimension d.
The symbols “ · ” and “ : ” stand for the inner products in Rd and Sd which are
given by ξ · η = ξiηi and τ : σ = τijσij , respectively. The corresponding norms
are denoted by ‖ · ‖Rd and ‖ · ‖Sd . The basic notation needed in this section is
provided in Table 1. In the definitions of divergence operators, the index that
follows a comma represents the partial derivative with respect to the corresponding
component of the space variable x.

It is well known that the nonstationary flow of a viscous incompressible fluid is
modeled by the following Navier–Stokes equations with divergence-free condition
(or solenoidal condition)





∂u(x, t)

∂t
− µ∆u(x, t)

+(u(x, t) · ∇)u(x, t) +∇π(x, t) = f(x, t) in Q,
∇ · u(t) = 0 in Q,

where µ represents the kinematic viscosity coefficient. In many studies of the
Navier–Stokes equations, µ is taken to be a constant. In this paper, we allow µ
to depend on the concentration of some chemical solution or chemical substances.
Denoting the concentration field by y = y(t,x), we consider a kinematic viscosity
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Table 1. Nomenclature

Symbol Description

ν = (νi) unit outward normal vector on Γ

x ∈ Ω = Ω ∪ Γ position vector

indices i, j, k, l
they range between 1 and d; the summation convention
over repeated indices is used

u = u(x, t) velocity field of the fluid

π = π(x, t) pressure of the fluid

y = y(x, t) concentration of a chemical solution or a chemical substance

f(y) = f(x, t, y) external force field

Div divergence operator for tensor-valued functions, DivS = (Sij,j)

div divergence operator for vector-valued functions, divu = (ui,i)

σ total stress tensor of the fluid

uν = u · ν normal component of the velocity field u on Γ

uτ = u− uνν tangential component of the velocity field u on Γ

Sν = (Sν) · ν normal component of the extra stress tensor field S on Γ

Sτ = Sν − Sνν tangential component of the extra stress tensor field S on Γ

D(u)
symmetric part of the velocity gradient of the fluid
D(u) = (∇u+ (∇u)⊤)/2

∇π ∇π = (∂π/∂xi)i=1,...,d

∇ · u ∇ · u = divu =
∑d

i=1
∂ui/∂xi

(v · ∇)u (v · ∇)u =
(
∑d

j=1
vj∂ui/∂xj

)

i=1,...,d

coefficient of the form µ(‖y(t)‖L2(Ω)/|Ω|). The constraint ∇ · u(t) = 0 reflects the
fact that the viscous fluid is incompressible. The expression (u(t)·∇)u(t) represents
the convective term. The functions π and f are the pressure field and the density
of external volume forces, respectively. In most references on the Navier–Stokes
equations, f is a given function of x and t only. We consider the case when the
density function f depends on the concentration field y = y(t,x). In other words,
we will study the following Navier–Stokes equations for a viscous incompressible
fluid: 




∂u(x, t)

∂t
− µ

(‖y(t)‖L2(Ω)

|Ω|

)
∆u(x, t)

+(u(x, t) · ∇)u(x, t) +∇π(x, t) = f(x, t, y(t)) in Q,
∇ · u(t) = 0 in Q.

(4.1)

Next, we turn our attention to boundary conditions for the system (4.1). On
the part ΓD of the boundary, we assume that the fluid is adhered to the wall.
In mathematical terms, this refers to the homogeneous Dirichlet condition for the
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velocity field u on ΓD,
u(t) = 0 on ΣD. (4.2)

On the part ΓC of the boundary, we consider the no-flux condition, i.e., the normal
component of the velocity field u vanishes on ΓC :

uν(t) = 0 on ΣC . (4.3)

The total stress tensor for the incompressible fluid is given by σ = −πI + S

in Q, where I ∈ Sd is the identity matrix and the vector-valued function S :
Ω× (0, T )×S

d → S
d denotes the viscous (or extra) response of the total stress ten-

sor σ. We consider a general constitutive law by allowing the viscous stress tensor S
to depend on the concentration field y(t),

S = 2µ

(‖y(t)‖L2(Ω)

|Ω|

)
D(u) in Q.

Regarding the tangential direction on ΓC , we focus on the general multivalued and
non-monotone boundary condition of the form

−Sτ (t) ∈ ∂jτ (x, y(t),uτ (t)) on ΣC , (4.4)

where ∂jτ stands for the generalized gradient in the sense of Clarke of a given
function jτ which is locally Lipschitz with respect to the last variable. From the
mechanical viewpoint, the boundary condition (4.4) can be regarded as a general-
ized multivalued and non-monotone frictional law, and the energy potential func-
tion jτ is considered to depend on the concentration field y(t,x). This friction law
for the fluid is reasonable since in the process of industrial production, the con-
centration of a chemical solution or a chemical substance will directly affect the
friction of the fluid on (a part of) the boundary. The initial velocity of the fluid is
prescribed by u0, i.e.,

u(0) = u0 in Ω. (4.5)

In the model under consideration, a chemical reaction-diffusion effect is involved
in the incompressible fluid flow. On one hand, the underlying stochastic process for
subdiffusion and superdiffusion is usually given by continuous-time random walk
and Lévy process, respectively, and the corresponding macroscopic model for the
probability density function of the particle appearing at certain time instance t and
location x is given by a diffusion model with a fractional-order derivative in time
or in space. On the other hand, we also consider the case when the velocity of the
motion of the fluid will result in a rate change of the reaction–diffusion process.
Thus, we use a fractional reaction-diffusion equation to describe the evolution of
the concentration field (see [52], Sections 4 and 5, and [53], [54]):

C
0D

α
0 y(t)− k∆y = h(x, t, y(t),u(t)) in Q, (4.6)

where α ∈ (0, 1) is given and k > 0 denotes the diffusion coefficient; for convenience,
we take k = 1. The initial concentration of a chemical substance is given by

y(0) = y0 in Ω. (4.7)
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The boundary condition for the concentration field y is

∂y(t)

∂ν
= 0 on Σ. (4.8)

Summarizing the relations (4.1)–(4.8), we have the following initial-boundary
value problem for the coupled system of the nonstationary Navier–Stokes equations
and a fractional reaction–diffusion equation.

Problem 4.1. Find a velocity field u : Ω × [0, T ] → R
d, a pressure field π : Ω ×

[0, T ] → R, and a concentration field y : Ω× [0, T ] → R such that

∂u(t)

∂t
− µ

(‖y(t)‖L2(Ω)

|Ω|

)
∆u(t) + (u(t) · ∇)u(t) +∇π(t) = f(x, t, y(t)) in Q,

(4.9)

∇ · u(t) = 0 in Q, (4.10)

u(t) = 0 on ΣD, (4.11)

uν(t) = 0 on ΣC , (4.12)

−Sτ (t) ∈ ∂jτ (x, y(t),uτ (t)) on ΣC , (4.13)

u(0) = u0 in Ω, (4.14)

and

C
0D

α
t y(t)−∆y = h(x, t, y(t),u(t)) in Q, (4.15)

∂y(t)

∂ν
= 0 on Σ, (4.16)

y(0) = y0 in Ω. (4.17)

In the study of Problem 4.1, we impose the following conditions.

Condition H(f). f : Ω× [0, T ]× R → Rd is such that

(i) for each r ∈ R, the function (x, t) 7→ f(x, t, r) belongs to L2(Ω× (0, T ));

(ii) for a.e. (x, t) ∈ Ω×(0, T ), the function R ∋ r 7→ f(x, t, r) ∈ Rd is continuous;

(iii) there exists a function cf ∈ L2(Ω×[0, T ])+ such that ‖f(x, t, r)‖Rd 6 cf (x, t)
for all (x, t, r) ∈ Ω× [0, T ]× R.

Condition H(jτ ). jτ : ΓC × R× R
d → R is such that

(i) jτ ( · , r, ξ) is measurable on ΓC for all (r, ξ) ∈ R×Rd and jτ ( · , 0,0) ∈ L1(ΓC);

(ii) jτ (x, r, · ) is locally Lipschitz continuous on Rd for all r ∈ R and a.e. x ∈ ΓC ;

(iii) there exists cjτ > 0 such that ‖∂jτ (x, r, ξ)‖Rd 6 cjτ (1 + ‖ξ‖Rd) for all
(r, ξ) ∈ R× Rd and a.e. x ∈ ΓC ;

(iv) either jτ (x, r, · ) or −jτ (x, r, · ) is regular for a.e. x ∈ ΓC and all r ∈ R;

(v) (r, ξ) 7→ j0τ (x, r, ξ;η) is upper semicontinuous for all η ∈ Rd and a.e. x ∈ ΓC ,
where j0τ denotes the Clarke directional derivative of ξ 7→ jτ (x, r, ξ) in direction η;

(vi) there exist θ ∈ [1, 2), djτ > 0 and ejτ > 0 such that j0τ (x, r, ξ;−ξ) 6

djτ + ejτ ‖ξ‖θRd for a.e. x ∈ ΓC , all r ∈ R and all ξ ∈ Rd.
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Condition H(h). h : Ω× [0, T ]× R× Rd → R is such that

(i) for all (r, ξ) ∈ R × R
d, the function (x, t) 7→ h(x, t, r, ξ) is measurable on

Ω× [0, T ];

(ii) there exists a function ϕ ∈ L
1/β
+ (0, T ) with β ∈ (0, α) such that

‖ϕ‖L1/β(0,T )T
(1+ζ)(1−β) < Γ(α)(1 + ζ)1−β

with ζ = (α− 1)/(1− β), ξ 7→ h(x, t, r, ξ) is continuous on Rd, and

|h(x, t, r1, ξ)− h(x, t, r2, ξ)| 6 ϕ(t)|r1 − r2|

for all r1, r2 ∈ R, ξ ∈ Rd, a.e. (x, t) ∈ Ω× [0, T ];

(iii) there exist ch ∈ L2(Ω)+ and dh ∈ L∞(0, T )+ such that |h(x, t, 0, ξ)| 6

ch(x) + dh(t)‖ξ‖Rd for all ξ ∈ Rd and a.e. (x, t) ∈ Ω× [0, T ].

Condition H(µ). µ : R+ → (0,+∞) is continuous and cµ 6 µ(s) 6 dµ for all
s ∈ R+ with constants 0 < cµ 6 dµ.

To present a variational formulation of Problem 4.1, we need function spaces

V = U
H1(Ω;Rd)

, H = K
L2(Ω;Rd)

,

where

U = {u ∈ C∞(Ω;Rd) | ∇ · u = 0 in Ω, u = 0 on ΓD, uν = 0 on ΓC},
K = {u ∈ C∞(Ω;Rd) | ∇ · u = 0 in Ω, uν = 0 on ΓC}.

It is well known that V with the standard norm ‖ · ‖H1(Ω;Rd) is a separable and

reflexive Banach space. The Korn inequality ‖u‖H1(Ω;Rd) 6 c‖D(u)‖L2(Ω;Rd) for

all u ∈ V with some constant c > 0, shows that the norm ‖ · ‖V defined by ‖u‖V =
‖D(u)‖L2(Ω;Rd) for u ∈ V , is equivalent to the norm ‖u‖. In the following, we adopt
‖ · ‖V as the norm in the space V , and the duality pairing between V ∗ and V is
defined by 〈u,v〉V ∗×V =

∫
Ω
D(u) : D(v) dx for u,v ∈ V . Moreover, the space H,

equipped with the norm ‖u‖H = ‖u‖L2(Ω;Rd) for u ∈ H, is a separable Hilbert
space. We have V ⊂ H ≃ H∗ ⊂ V ∗, and the embedding of V to H is dense,
continuous, and compact. This means that (V,H, V ∗) forms an evolution triple of
spaces.

To derive the variational formulation of Problem 4.1, we assume that the problem
has a sufficiently smooth solution (u, π, y). Let v ∈ V , t ∈ [0, T ]. A standard
procedure based on (4.9)–(4.14) gives

∫

Ω

∂u(t)

∂t
· v dx+

∫

Ω

µ

(‖y(t)‖L2(Ω)

|Ω|

)
∇u(t) : ∇v dx

+

∫

ΓC

j0τ (x, y(t),uτ (t);vτ ) dΓ +

∫

Ω

(
(u(t) · ∇)u(t)

)
· v dx

>

∫

Ω

f(t, y(t)) · v dx for all v ∈ V and a.e. t ∈ [0, T ]. (4.18)
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Let E = L2(Ω). We introduce an operator S : D(S) ⊂ E → E and a function g :
[0, T ]× E ×H → E by

Su = ∆u for all u ∈ D(S), (4.19)

g(t, y,v)(x) = h(x, t, y(x),v(x)) in Ω (4.20)

for all t ∈ [0, T ], y ∈ E and v ∈ H, where the domain D(S) of S is defined by

D(S) =

{
y ∈ H2(Ω) =W 2,2(Ω)

∣∣∣∣
∂y

∂ν
= 0 on Γ

}
.

With the above notation, the reaction-diffusion system (4.15)–(4.17) can be refor-
mulated as

{
C
0D

α
t y(t) = Sy(t) + g(t, y(t),u(t)) for a.e. t ∈ [0, T ],

y(0) = y0.
(4.21)

Remark 4.2. Since Ω is a C1 domain, by [55], Theorem 4.2.2, the operator S :
D(S) ⊂ E → E defined in (4.19) is the generator of a C0-semigroup {S (t)}t>0 of
contractions on E, i.e. ‖S (t)‖ 6 1 for all t > 0, and for each t > 0 the operator
S (t) is compact.

Next, let Z = H1−δ(Ω;Rd) for any δ ∈ (0, 1/2). We need the following operators:
the embedding operator γ1 : V → Z; the trace operator γ2 : Z → H1/2−δ(ΓC ;R

d);
the embedding operator γ3 : H

1/2−δ(ΓC ;R
d) → L2(ΓC ;R

d); the trace operator
γ : V → L2(ΓC ;R

d) defined by γ = γ3 ◦ γ2 ◦ γ1.

Remark 4.3. The embedding operator γ1 : V → Z is compact, and both γ2 : Z →
H1/2−δ(ΓC ;R

d) and γ3 : H
1/2−δ(ΓC ;R

d) → L2(ΓC ;R
d) are continuous. Thus, the

trace operator γ : V → L2(ΓC ;R
d) := X is also compact.

Combining (4.14), (4.17), (4.18), and (4.21), we arrive at the following variational
formulation of Problem 4.1.

Problem 4.4. Find a velocity field u : Ω × [0, T ] → Rd and a concentration field
y : Ω× [0, T ] → R such that





∫

Ω

∂u(t)

∂t
· v dx+ µ

(‖y(t)‖L2(Ω)

|Ω|

)∫

Ω

∇u(t) : ∇v dx

+

∫

ΓC

j0τ (x, y(t),uτ (t);vτ ) dΓ +

∫

Ω

(
(u(t) · ∇)u(t)

)
· v dx

>

∫

Ω

f(t, y(t)) · v dx for all v ∈ V and for a.e. t ∈ [0, T ],

u(0) = u0,

C
0D

α
t y(t) = Sy(t) + g(t, y(t),u(t)) for a.e. t ∈ [0, T ],

y(0) = y0.

(4.22)
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Definition 4.5. A pair of functions (y,u) with y ∈ C([0, T ];E) and u ∈ W is
called a mild solution of Problem 4.4 if

y(t) = E (t)y0 +

∫ t

0

(t− s)α−1
F (t− s)g(s, y(s),u(s)) ds for all t ∈ [0, T ],

∫ T

0

∫

Ω

∂u(t)

∂t
· v(t) dx+ µ

(‖y(t)‖L2(Ω)

|Ω|

)∫

Ω

∇u(t) : ∇v(t) dx

+

∫

Ω

(
(u(t) · ∇)u(t)

)
· v(t) dx dt+

∫ T

0

∫

ΓC

j0τ (x, y(t),uτ (t);vτ (t)) dΓ dt

>

∫ T

0

∫

Ω

f(t, y(t)) · v(t) dx dt for all v ∈ V , (4.23)

and u(0) = u0.

To prove solvability of Problem 4.4, we introduce an intermediate problem.

Problem 4.6. Find functions u : [0, T ] → V and y : [0, T ] → E such that





〈u′(t),v〉+ 〈F (y(t),u(t)),v〉+ J0(y(t), γu(t); γv)

> 〈G(t, y(t)),v〉 for all v ∈ V and a.e. t ∈ [0, T ],

u(0) = u0,

C
0D

α
t y(t) = Sy(t) + g(t, y(t),u(t)) for a.e. t ∈ [0, T ],

y(0) = y0,

In Problem 4.6, the operators G : [0, T ] × E → V ∗, F : E × V → V ∗ and the
function J : E ×X → R are given by

G(t, y) = f(t, y) for y ∈ E and t ∈ [0, T ], (4.24)

〈F (y,u),v〉 = a(y,u,v) + b(u,u,v) for u,v ∈ V and y ∈ E, (4.25)

J(y,w) =

∫

ΓC

jτ (x, y(x),w(x)τ ) dΓ for y ∈ E and w ∈ X. (4.26)

Here, the forms a : E × V × V → R and b : V × V × V → R are defined by

a(y,u,v) = µ

(‖y‖L2(Ω)

|Ω|

)∫

Ω

∇u : ∇v dx, u,v ∈ V, y ∈ E,

b(u,v,w) =

∫

Ω

(
(u · ∇)v

)
·w dx, u,v,w ∈ V.

Based on Remark 4.2 and Definition 4.5, we now define the notion of a mild
solution to Problem 4.6.

Definition 4.7. A pair of functions (y,u) with y ∈ C([0, T ];E) and u ∈ W is
called a mild solution to Problem 4.6 if

y(t) = E (t)y0 +

∫ t

0

(t− s)α−1
F (t− s)g(s, y(s),u(s)) ds
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for all t ∈ [0, T ],

∫ T

0

(
〈u′(t),v(t)〉+ 〈F (y(t),u(t)),v(t)〉

)
dt+

∫ T

0

J0(y(t), γu(t);v(t)) dt

>

∫ T

0

〈G(t, y(t)),v(t)〉 dt (4.27)

for all v ∈ V and u(0) = u0.

In the proof of existence of a mild solution to Problem 4.6, we need some prop-
erties of the functions F , G, J , and g.

Lemma 4.8. Under the hypothesis H(h), the function g defined in (4.20) satisfies

the hypothesis H(g).

Proof. Hypotheses H(h) (i) and (ii) imply directly that for each (y,v) ∈ E × H
the function t 7→ g(t, y,v) is measurable on [0, T ] and the function v 7→ g(t, y,v) is
continuous. Hence conditions H(g) (i) and (ii) hold. Let y1, y2 ∈ E and v ∈ V be
arbitrary. Let D be a bounded subset of H. It follows from H(h) (ii) and (iii) that

‖g(t, y1,v)− g(t, y2,v)‖E =

(∫

Ω

|h(x, t, y1(x),v(x))−h(x, t, y2(x),v(x))|2 dx
)1/2

6

(∫

Ω

ϕ(t)2|y1(x)− y2(x)|2 dx
)1/2

6 ϕ(t)‖y1 − y2‖E ,

and

‖g(t, 0,v)‖E 6

(∫

Ω

(
ch(x) + dh(t)‖v(x)‖Rd

)2
dx

)1/2

6
√
2

(∫

Ω

(
ch(x)

2 + dh(t)
2‖v(x)‖2

Rd

)
dx

)1/2

6
√
2
(
‖ch‖L2(Ω) + dh(t)‖v‖H

)
6

√
2
(
‖ch‖L2(Ω) + dh(t)MD

)
,

where MD > 0 is such that ‖D‖H 6MD. Therefore, H(g) (iii) holds with functions
ρg = ϕ and ϕD( · ) =

√
2 (‖ch‖L2(Ω) + dh( · )MD). The lemma is proved.

Lemma 4.9. The operator F : E × V → V ∗ defined by (4.25) satisfies H(F ).

Proof. The continuity of µ (see the hypothesis H(µ)) implies that y 7→ a(y,u,v) is
continuous. Thanks to H(µ), we know that the function u 7→ a(y,u,v) is linear
and bounded for all (y,v) ∈ E × V , and is thus weakly continuous. The functional

u 7→ b(u,u,v) =

∫

Ω

(
(u · ∇)u

)
· v dx

is weakly continuous too; see [56], Proposition 2.6. Hence, H(F ) (i) holds.
Let u ∈ V . Using the Poincaré inequality and the relation

2

∫

Ω

D(u) : D(v) dx =

∫

Ω

∇u : ∇v dx, (4.28)
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we can find a constant c0 > 0 such that

‖F (y,u)‖V ∗ = sup
v∈V, ‖v‖V =1

〈F (y,u),v〉 6 sup
v∈V, ‖v‖V =1

µ

(‖y‖L2(Ω)

|Ω|

)
‖u‖V ‖v‖V

+ sup
v∈V, ‖v‖V =1

‖u‖L4(Ω;Rd)‖∇u‖L2(Ω;Rd×d)‖v‖L4(Ω;Rd)

6 2dµ‖u‖V + c0‖u‖L4(Ω;Rd)‖∇u‖L2(Ω;Rd×d). (4.29)

In deriving (4.29), we used the Hölder inequality, the Sobolev embedding theorem
and the hypothesis H(µ). From (4.29) together with the Korn and Cauchy–Schwarz
inequalities, we find the existence of a constant cF > 0 such that ‖F (y,u)‖V ∗ 6 cF×
(1+‖u‖2V ) for all u ∈ V . Thus, for any u ∈ V ∩L∞(0, T ;H), it follows from (4.29)
that

‖F(z,u)‖V∗ 6

(∫ T

0

c1
(
‖u(t)‖V + ‖u(t)‖V ‖u(t)‖H

)2
dt

)1/2

6
√
2c1

(∫ T

0

(
‖u(t)‖2V + ‖u(t)‖2V ‖u(t)‖2H

)
dt

)1/2

6
√
2c1 ‖u‖V +

√
2c1 ‖u‖V‖u‖L∞(0,T ;H) = cF‖u‖V(1 + ‖u‖L∞(0,T ;H))

for some c1 > 0. Hence, H(F ) (ii)2 is proved with cF =
√
2c1.

Next, for any u ∈ U , the Green formula yields that

b(u,u,u) =

∫

Ω

d∑

i,j=1

uiuj,iuj dx

=

∫

Ω

d∑

i,j=1

ui

(
u2j
2

)

,i

dx = −1

2

∫

Ω

(∇ · u)
d∑

j=1

u2j dx+
1

2

∫

Γ

uν

d∑

j=1

u2j dΓ = 0,

where the last equality follows from the facts that ∇ · u = 0 in Ω, u = 0 on ΓD

and uν = 0 on ΓC . Since the mapping u 7→
∫
Ω
((u ·∇)u)u dx is continuous and the

embedding U ⊂ V is dense, we have

b(u,u,u) = 0 for all u ∈ V.

This result combined with (4.28) and the hypothesis H(µ) implies H(F ) (iii) with
mF = 2cµ and lF = dF = eF = 0.

Let {un} ⊂ V ∩ L∞(0, T ;H) and {zn} ⊂ E be such that {un} is bounded
in L∞(0, T ;H), zn → z in E for some z ∈ E , and un ⇀ u in V and H for some
u ∈ V . Note that
∣∣∣∣
∫ T

0

a(zn(t),un(t),v(t)) dt−
∫ T

0

a(z(t),u(t),v(t)) dt

∣∣∣∣

6

∫ T

0

∣∣∣∣µ
(‖zn(t)‖L2(Ω)

|Ω|

)
− µ

(‖z(t)‖L2(Ω)

|Ω|

)∣∣∣∣
∫

Ω

‖∇un(t)‖Rd×d‖∇v(t)‖Rd×d dx dt

+

∣∣∣∣
∫ T

0

µ

(‖y‖L2(Ω)

|Ω|

)∫

Ω

(∇un(t)−∇u(t)) : ∇v(t) dx

∣∣∣∣.
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We use the continuity of µ and apply the Lebesgue dominated convergence theorem
to find ∫ T

0

a(zn(t),un(t),v(t)) dt→
∫ T

0

a(z(t),u(t),v(t)) dt,

because V ∋ w 7→ a(y,w,v) ∈ R is a bounded and linear function for all (y,v) ∈
E × V . Moreover, as in Ahmed [57], we have

∫ T

0

b(un(t),un(t),v(t)) dt→
∫ T

0

b(u(t),u(t),v(t)) dt.

Therefore, we conclude that F(zn, un)⇀ F(y, u) in V∗, which completes the proof.

Lemma 4.10. The function J : E ×X → R defined by (4.26) satisfies H(J).

Proof. Since jτ ( · , r,v) is measurable on ΓC for all (r,v) ∈ R×Rd with jτ ( · , 0,0) ∈
L1(ΓC), and jτ (x, r, · ) is locally Lipschitz on Rd for all r ∈ R and a.e. x ∈ ΓC , it
follows from [41], Theorem 3.47 (i), that H(J) (i) holds.

By the definition of J (see (4.26)) and [41], Theorem 3.47 (v), we know that for
any ξ ∈ ∂J(y,w), there exists an η ∈ L2(ΓC ;R

d) such that

〈ξ,v〉X∗×X =

∫

ΓC

η(x) · vτ (x) dΓ for all v ∈ X.

The growth condition H(jτ ) (iii) ensures that

|〈ξ,v〉X∗×X | 6
∫

ΓC

cjτ (1 + ‖w(x)τ‖Rd)‖v(x)τ‖Rd dΓ

6 cjτ
(√

meas(ΓC) + ‖w‖X
)
‖v‖X .

Thus, H(J) (ii) is satisfied with αJ = cjτ
√

meas(ΓC) and βJ = cjτ .

ByH(jτ ) (iv), without loss of generality, we may assume that jτ (x, r, · ) is regular
for all r ∈ R and a.e. x ∈ ΓC , since the proof is similar in the case when −jτ (x, r, · )
is regular for all r ∈ R and a.e. x ∈ ΓC . Invoking [41], Theorem 3.47 (viii), we
deduce that J(y, · ) is regular for all y ∈ E and

J0(y,w;v) =

∫

Ω

j0τ (x, y(x),w(x)τ ;v(x)τ ) dΓ

=

∫

Ω

j′τ (x, y(x),w(x)τ ;v(x)τ ) dΓ = J ′(y,w;v). (4.30)

Let {(yn,wn)} ⊂ E × X be such that yn → y in E and wn → w in X as
n → ∞. We may assume, by passing to a subsequence if necessary, that
yn(x) → y(x) and wn(x) → w(x) as n → ∞ for a.e. x ∈ ΓC . The growth condi-
tion H(jτ ) (iii) guarantees that there exists a function hv ∈ L1

+(ΓC) such that
|j0τ (x, yn(x),wn(x)τ ;v(x)τ )| 6 hv(x) for a.e. x ∈ ΓC . Hence, by the Fatou
lemma (e.g. [41], Theorem 1.64), the hypothesis H(jτ ) (v), and (4.30), we have
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for all v ∈ X,

lim sup
n→∞

J0(yn,wn;v) = lim sup
n→∞

∫

Ω

j0τ (x, yn(x),wn(x)τ ;v(x)τ ) dΓ

6

∫

Ω

lim sup
n→∞

j0τ (x, yn(x),wn(x)τ ;v(x)τ ) dΓ

6

∫

Ω

j0τ (x, y(x),w(x)τ ;v(x)τ ) dΓ = J0(y,w;v).

By the hypothesis H(jτ ) (vi) and [41], Theorem 3.47 (iv), we get

J0(y,w;−w) 6

∫

ΓC

j0τ (x, y(x),w(x)τ ;−w(x)τ ) dΓ

6

∫

ΓC

(djτ + ejτ ‖w(x)τ‖θRd) dΓ 6 cJ + dJ‖w‖θX

for all y ∈ E and w ∈ X with some cJ > 0 and dJ > 0, where the last inequality
is obtained by applying the Hölder inequality. So, H(J) (iv) is verified.

Lemma 4.11. The function G : [0, T ] × E → V ∗ defined by (4.24) satisfies the

hypothesis H(G).

Proof. Condition H(G) (i) is a consequence of the hypothesis H(f) (i). The con-
tinuity of r 7→ f(x, t, r) implies that for all t ∈ [0, T ], the function y 7→ G(t, y) is
continuous, i.e., H(G) (ii) is valid. We use the condition H(f) (iii) to find

‖G(t, y)‖2V ∗ =

∫

Ω

‖f(x, t, y(x))‖2
Rd dx 6

∫

Ω

cf (x, t)
2 dx = ‖cf ( · , t)‖2L2(Ω)

for a.e. t ∈ [0, T ] and all y ∈ E. Therefore, H(G) (iii) is verified by taking ρG :=
cf
√

|Ω|.
Finally, we provide an existence result for a mild solution to Problem 4.1.

Theorem 4.12. Assume H(f), H(jτ ), H(h), H(µ), y0 ∈ E , and u0 ∈ V . Then

Problem 4.1 has at least one mild solution.

Proof. We apply Theorem 3.7 to prove this result. Let us examine all the assump-
tions stated in Theorem 3.7. It follows from Lemmas 4.8–4.11 that functions g, F ,
J and G satisfy conditions H(g), H(F ), H(J), H(G), respectively. Remark 4.2
indicates that S satisfies H(S) with MS = 1. It remains to show that H(γ)
holds. By Remark 4.3, we see that γ is linear, bounded and compact. Let {un}
be a bounded sequence in M2,2(0, T ;V, V ∗). Thanks to Proposition 2.7, {un} is
relatively compact in L2(0, T ;H1−δ(Ω;Rd)) due to the compactness of the embed-
ding of M2,2(0, T ;V, V ∗) to L2(0, T ;H1−δ(Ω;Rd)), where δ ∈ (0, 1/2) is given
in Remark 4.3. Passing to a subsequence if necessary, we may assume that γ1un →
γ1u in L2(0, T ;H1/2+δ(Ω;Rd)) for some u ∈ L2(0, T ;H1/2+δ(Ω;Rd)), where γ1 :
V → L2(0, T ;H1/2+δ(Ω;Rd)) is the Nemytskii operator corresponding to γ1. Com-
bining this with the continuity of γ2 and γ3 (see Remark 4.3), we conclude that
γun → γu in X . Hence, H(γ) holds.
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Consequently, all conditions of Theorem 3.7 are verified. Applying that theorem,
we know that there exists a pair of functions (y,u) ∈ C([0, T ];E)×W which solves
Problem 4.6. Moreover, the inequality

J0(y,w;v) 6

∫

ΓC

j0τ (x, y(x),w(x)τ ;v(x)τ ) dΓ for all y ∈ E, v,w ∈ X

implies that (y,u) ∈ C([0, T ];E)×W is also a mild solution to Problem 4.4.
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[5] Z. H. Liu, S. Migórski, and S. D. Zeng, “Partial differential variational inequalities
involving nonlocal boundary conditions in Banach spaces”, J. Differential Equations

263:7 (2017), 3989–4006.

[6] X. J. Chen and Z. Y. Wang, “Differential variational inequality approach to
dynamic games with shared constraints”, Math. Program. 146:1-2, Ser. A (2014),
379–408.

[7] T. D. Ke, N. V. Loi, and V. Obukhovskii, “Decay solutions for a class of fractional
differential variational inequalities”, Fract. Calc. Appl. Anal. 18:3 (2015), 531–553.

[8] J. Gwinner, “On a new class of differential variational inequalities and a stability
result”, Math. Program. 139:1-2, Ser. B (2013), 205–221.

[9] Z. H. Liu, N. V. Loi, and V. Obukhovskii, “Existence and global bifurcation of
periodic solutions to a class of differential variational inequalities”, Internat.
J. Bifur. Chaos Appl. Sci. Engrg. 23:7 (2013), 1350125.

[10] B. Brogliato and A. Tanwani, “Dynamical systems coupled with monotone
set-valued operators: formalisms, applications, well-posedness, and stability”, SIAM

Rev. 62:1 (2020), 3–129.

[11] X. J. Chen and Z. Y. Wang, “Convergence of regularized time-stepping methods for
differential variational inequalities”, SIAM J. Optim. 23:3 (2013), 1647–1671.

[12] L. S. Han, A. Tiwari, M. K. Camlibel, and J. S. Pang, “Convergence of time-
stepping schemes for passive and extended linear complementarity systems”, SIAM

J. Numer. Anal. 47:5 (2009), 3768–3796.

[13] L. S. Han and J. S. Pang, “Non-Zenoness of a class of differential quasi-variational
inequalities”, Math. Program. 121:1, Ser. A (2010), 171–199.

[14] Y. R. Jiang and Z. C. Wei, “Weakly asymptotic stability for fractional delay
differential mixed variational inequalities”, Appl. Math. Optim. 84:1 (2021),
273–297.

[15] Z. H. Liu and S. D. Zeng, “Differential variational inequalities in infinite Banach
spaces”, Acta Math. Sci. Ser. B (Engl. Ed.) 37:1 (2017), 26–32.



A new class of fractional differential hemivariational inequalities 359

[16] N. V. Loi, “On two-parameter global bifurcation of periodic solutions to a class of
differential variational inequalities”, Nonlinear Anal. 122 (2015), 83–99.

[17] S. Migórski and S. D. Zeng, “A class of generalized evolutionary problems driven by
variational inequalities and fractional operators”, Set-Valued Var. Anal. 27 (2019),
949–970.
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