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a b s t r a c t

In this paper numerical approximation of history-dependent hemivariational inequalities
with constraint is considered, and corresponding Céa’s type inequality is derived for error
estimate. For a viscoelastic contact problem with normal penetration, an optimal order
error estimate is obtained for the linear element method. A numerical experiment for the
contact problem is reported which provides numerical evidence of the convergence order
predicted by the theoretical analysis.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Hemivariational inequalities are inequality problems characterized by nonconvexity and nonsmoothness, which may
arise in engineering, economics, contact mechanics, etc. Techniques from nonsmooth analysis are applied to deal with
difficulties caused by the nonsmoothness, which plays an important role in the mathematical theory of hemivariational
inequality. In particular, properties of the generalized (Clarke) directional derivative and subdifferential of a locally Lipschitz
function are frequently used; see [1–3].

Numerical methods for hemivariational inequalities have attracted much interest recently, in which the finite element
approximation is widely used. An early comprehensive reference in this direction is [4]. In [5], an elliptic hemivariational
inequality with convex constraint is considered, and two unconstrained problems can be regarded as special cases of a
constrained problem. Finite element approximation is used to solve the problem, and the numerical solutions tend on
subsequences to the solution of continuous problems. In [6], a variational–hemivariational inequality, which involves a
convex functional and a nonconvex functional, is analyzed under appropriate assumptions. The existence and uniqueness of
a solution are presented, and strong convergence for the finite element solution to the inequality is proved. Furthermore, an
optimal first-order error estimate is derived for the linear element method. In [7], a general form of elliptic hemivariational
inequality with or without convex constraint is considered, internal approximation of the discrete problem is studied with
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convergence result proved and Céa’s type inequalities derived. The theoretical results are applied to some particular contact
problems, and optimal error estimates are derived using the linear element method. A further study of the paper [7] is given
in [8], where external approximation of the inequality is analyzed and new techniques are developed to derive optimal
order error estimate. In [9], both internal and external approximations for a general stationary variational–hemivariational
inequality are studied. The numerical solutions are proved to converge strongly under minimal solution regularity property
available from the well-posedness analysis of the problem. Recently, semipermeable media is studied in the framework
of hemivariational inequalities in [10]. The model covers both isotropic, homogeneous semipermeable media and non-
isotropic, heterogeneous semipermeable media. Interior and boundary semipermeable terms are considered, and external
approximation of an abstract hemivariational inequality is illustrated. Convergence and optimal order error estimate of
numerical solutions are shown.

History-dependent hemivariational inequalities are documented in [11–18]. A hemivariational inequality defined on
a whole space is studied theoretically in [13]. In [12], numerical methods of temporally semi-discrete and fully discrete
schemes are introduced to approximate a quasivariational inequality. In [17], a discrete operator is introduced to ap-
proximate the history-dependent operator with specific form, and a fully discrete scheme is used to solve a variational–
hemivariational inequality numerically. In [18], an existence and uniqueness result of a general variational–hemivariational
inequality is proved. Its internal approximation is presented in [19], and an optimal order error bound is derived. In
this paper we further study numerical methods of history-dependent hemivariational inequalities, including its external
approximation. In Section 2, a general hemivariational inequality is introduced. Numerical method is used to solve the
hemivariational inequality in Section 3. In Section 4, the theoretical results are applied to a contact model with normal
penetration and an optimal error estimate is derived for the linear elementmethod. Finally, a numerical example is reported
providing numerical evidence of the convergence order predicted by the theoretical analysis in Section 5.

2. A general history-dependent hemivariational inequality

In this section we consider a general history-dependent hemivariational inequality and discuss the existence and
uniqueness of the solution.

LetX ,Xj be normed spaceswith norms ∥·∥X and ∥·∥Xj , letX
∗ andX∗

j be the topological dual ofX andXj. The duality pairings
are denoted by ⟨·, ·⟩X∗×X and ⟨·, ·⟩X∗

j ×Xj , respectively. When no confusion may arise, the notation ⟨·, ·⟩X∗×X may be replaced

by ⟨·, ·⟩ for simplicity. Let R+ = [0, +∞) and K be a nonempty subset of X . C(R+; X) and C(R+; K ) denote the spaces of
continuous functions from R+ to X and R+ to K respectively. Let there be given A : X → X∗, S : C(R+; X) → C(R+; X∗),
γj : X → Xj and function j : Xj → R is locally Lipschitz. Then the general hemivariational inequality to be studied is the
following.

Problem 1. Find a function u ∈ C(R+; K ) such that ∀ t ∈ R+,

⟨Au(t), v − u(t)⟩ + ⟨(Su)(t), v − u(t)⟩ + j0(γju(t); γjv − γju(t))
≥ ⟨f (t), v − u(t)⟩ ∀ v ∈ K .

(2.1)

The following assumptions are adopted in the analysis of Problem 1.{
X is a reflexive Banach space, K is a closed and convex set in X with
0 ∈ K , and Xj is a Banach space.

(2.2)⎧⎪⎪⎪⎨⎪⎪⎪⎩
j : Xj → R is a locally Lipschitz function such that

(a) ∥∂ j(z)∥X∗
j

≤ c0 + c1∥z∥Xj ∀ z ∈ Xj with c0, c1 ≥ 0;

(b) there exists αj > 0 such that
j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ αj∥z1 − z2∥2

Xj
∀ z1, z2 ∈ Xj.

(2.3)

S : C(R+; X) → C(R+; X∗) is a history-dependent operator. (2.4)
A : X → X∗ is pseudomonotone and strongly monotone. (2.5)

γj ∈ L(X; Xj) with the norm bounded by cj > 0. (2.6)

αjc2j < mA. (2.7)

f ∈ C(R+; X∗). (2.8)

We explain the assumptions as follows. For the locally Lipschitz function j : Xj → R, we use j0(w; z) to denote the
generalized (Clarke) directional derivative of j at w ∈ Xj in the direction z ∈ Xj, defined by

j0(w; z) = lim sup
y→w,λ↓0

j(y + λz) − j(y)
λ

.

In applications to contact mechanics, the function j usually denotes an integral over a contact boundary and Xj represents
the space of square integrable functions or vector-valued square integrable functions over the contact boundary.
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The subdifferential (generalized gradient) of j at w, denoted as ∂ j(w), is a subset of the dual space X∗

j defined by

∂ j(w) = {ξ ∈ X∗

j | j0(w; z) ≥ ⟨ξ, z⟩X∗
j ×Xj ∀ z ∈ Xj}.

By the definition of the subdifferential, the generalized directional derivative can be calculated by the relation j0(w; z) =

max{⟨ξ, z⟩X∗
j ×Xj | ξ ∈ ∂ j(w)}. More properties about generalized directional derivative and generalized gradient can be found

in [1–3].
The operator S : C(R+; X) → C(R+; X∗) is called a history-dependent operator if for any n ∈ N, there exists a constant

sn > 0 such that ∀ t ∈ [0, n],

∥(Su1)(t) − (Su2)(t)∥X∗ ≤ sn

∫ t

0
∥u1(s) − u2(s)∥Xds ∀ u1, u2 ∈ C(R+; X). (2.9)

History-dependence refers to the fact that the value (Su)(t) at a time t depends on the values of u in the entire interval [0, t].
The operator A : X → X∗ is called pseudomonotone if it is bounded and un → u weakly in X together with

lim sup⟨Aun, un − u⟩ ≤ 0 imply

⟨Au, u − v⟩ ≤ lim inf⟨Aun, un − v⟩ ∀ v ∈ X .

A is strongly monotone if there existsmA > 0 such that

⟨Av1 − Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥
2
X ∀ v1, v2 ∈ X .

The closed, convex set K reflects the constraint of the problem. For the contact problem we study, K usually denotes
the admissible displacement field satisfying vν ≤ g on the contact boundary, where vν is the normal component of the
displacement v and g ≥ 0 represents the upper bound of penetration.

Hypothesis (2.3)(a) means that the norm of the subdifferential of j is bounded by a linear function; (2.3)(b) describes
constraint to the generalized directional derivative of j which guarantees the uniqueness of the solution to Problem 1. In
addition, (2.3)(b) is equivalent to the relaxed monotone condition

⟨∂ j(z1) − ∂ j(z2), z1 − z2⟩ ≥ −αj∥z1 − z2∥2
Xj ∀ z1, z2 ∈ Xj;

see [3,7,14,17]. Using (2.3), 0 ∈ K and the strong monotonicity of A, we get that there exists a constant c ≥ 0 such that
⟨Av, v⟩ ≥ mA∥v∥

2
X − c∥v∥X for all v ∈ X .

The following existence and uniqueness result for Problem 1 can be derived by taking ϕ((Su)(t), u(t), v) = ⟨(Su)(t), v⟩

in [18, Theorem 5] and modifying slightly its proof.

Theorem 2. Assume that conditions (2.2)–(2.8) hold. Then Problem 1 has a unique solution u ∈ C(R+; K ).

3. Numerical method

In this section a fully discrete method is introduced and studied for the numerical solution of Problem 1. We use finite
dimensional set K h to approximate the convex subset K and K h is not necessarily a subset of K . In the case K h

⊂ K , the
approximation is called internal, such a numerical method is studied in solving a variational–hemivariational inequality
in [19]. In the case K h ⊈ K , the corresponding approximation is called external. A Céa’s type inequality is derived for external
approximation of Problem 1.

Next we describe the discrete scheme for Problem 1, in which the spatial variable, the time variable and the history-
dependent operator are all discretized. On the spatial discretization, a regular family of finite element partition {T h

} is
introduced where h is the mesh parameter. Corresponding finite element space Xh

⊂ X and K h
⊂ Xh are presented, and K h

is assumed to be convex and closed with 0 ∈ K h. On the temporal discretization, k is the time step size and uniform partition
is used for the interval I = [0, T ]. Denote k =

T
N and tn = nk where 0 ≤ n ≤ N .

Nowwe describe the discretization for history-dependent operator. LetL(X) andL(X; X∗) be the spaces of bounded linear
operators from X to X and X to X∗ respectively. Let C(R+ ×R+;L(X)) and C2(R+ ×R+;L(X)) be the spaces of continuous and
twice continuously differentiable functions defined onR+ ×R+ with values inL(X). We focus on S : C(R+; X) → C(R+; X∗)
with a specific form

(Sv)(t) = R
(∫ t

0
q(t, s)v(s)ds + aS

)
∀ v ∈ C(R+; X), ∀ t ∈ R+, (3.1)

where R ∈ L(X; X∗), q ∈ C(R+ × R+;L(X)), aS ∈ X . The above operator S is useful in dealing with history-dependent
problems. For example, the well-known Volterra operator S , defined by

(Sv)(t) =

∫ t

0
B(t − s)v(s)ds ∀ v ∈ C(R+; X), ∀ t ∈ R+,
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is a history-dependent operator, where B ∈ C(0, T ;L(X; X∗)). More discussions on S can be founded in [12,13,17,20]. For
the integral in (3.1), we apply the trapezoidal rule∫ tn

0
Z(s)ds ≈ k

n∑
i=0

′Z(ti),

where a prime indicates that the coefficients of the first and last terms of the summation are to be halved. For n = 0, the
summation is defined to be 0. Then the fully discrete operator Skh

n is defined by

Skh
n ukh

:= R

(
k

n∑′

i=0

q(tn, ti)ukh
i + aS

)
, ukh

= {ukh
i }

N
i=0 ⊂ Xh. (3.2)

Below, we denote ∥R∥ = ∥R∥L(X;X∗) and ∥q∥ = ∥q∥C(I×I;L(X)). The space C2(R+ × R+;L(X)) is needed in bounding the
difference between the history-dependent operator and its discrete analogue. In addition we introduce a constant C with
possibly different values in different places which is independent of the mesh parameter h and the time step k. Now we
illustrate the following fully discrete approximation of Problem 1.

Problem 3. The fully-discrete scheme for Problem 1 is to find the discrete solution ukh
:= {ukh

n }
N
n=0 ⊂ K h such that for

0 ≤ n ≤ N ,

⟨Aukh
n , vh

− ukh
n ⟩ + ⟨Skh

n ukh, vh
− ukh

n ⟩ + j0(γjukh
n ; γjv

h
− γjukh

n )

≥ ⟨fn, vh
− ukh

n ⟩ ∀ vh
∈ K h.

(3.3)

Under assumptions (2.2)–(2.3), (2.5)–(2.8), (3.1), 3.2 and a small time step

k <
mA − αjc2j
∥R∥∥q∥

, (3.4)

then there exists a unique solution ukh of Problem 3. The proof is similar to that found in [19] where the solution existence
and uniqueness of a discrete scheme is proved for a history-dependent variational–hemivariational inequality.

As a preparation for error estimation, we prove that the sequence ∥ukh
n ∥X is uniformly bounded.

Proposition 4. There exist constants M > 0 and k0 > 0 such that ∥ukh
n ∥X ≤ M ∀ 0 < k ≤ k0, ∀ h > 0.

Proof. Taking vh
= 0 in (3.3), we have

⟨Aukh
n , ukh

n ⟩ ≤ ⟨Skh
n ukh, −ukh

n ⟩ + j0(γjukh
n ; −γjukh

n ) + ⟨fn, ukh
n ⟩. (3.5)

Note that 0 ∈ K , thus for all v ∈ K ,

mA∥v∥
2
X ≤ ⟨Av − A0, v⟩ ≤ ⟨Av, v⟩ + ∥A0∥X∗∥v∥X . (3.6)

Taking v = ukh
n , we get

⟨Aukh
n , ukh

n ⟩ ≥ mA∥ukh
n ∥

2
X − ∥A0∥X∗∥ukh

n ∥X . (3.7)

From the formula 3.2, we have

⟨Skh
n ukh, −ukh

n ⟩ ≤ ∥Skh
n ukh

∥X∗∥ukh
n ∥X

≤ k∥R∥∥q∥

(
n∑

i=0

∥ukh
i ∥X

)
∥ukh

n ∥X + ∥R∥∥aS∥X∥ukh
n ∥X .

(3.8)

Take z1 = γjukh
n , z2 = 0 in (2.3)(b) and apply (2.3)(a) to obtain

j0(γjukh
n ; −γjukh

n ) ≤ αj∥γjukh
n ∥

2
Xj − j0(0; γjukh

n )

≤ αjc2j ∥u
kh
n ∥

2
X + c0cj∥ukh

n ∥X .
(3.9)

Obviously,

⟨fn, ukh
n ⟩ ≤ ∥fn∥X∗∥ukh

n ∥X . (3.10)

Combining (3.5) and (3.7)–(3.10), we have

∥ukh
n ∥X ≤

1
mA − αjc2j

(∥R∥∥aS∥X + c0cj + ∥A0∥X∗ + ∥fn∥X∗ )

+
k

mA − αjc2j
∥R∥∥q∥

n∑
i=0

∥ukh
i ∥X .

(3.11)
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We recall the discrete Gronwall’s inequality [21]: let {en}Nn=0 and {gn}Nn=0 be two sequences of non-negative numbers with

en ≤ C1gn + C2k
n∑

i=0

ei, 0 ≤ n ≤ N,

where C1, C2 are two constants. Then there is a constant C3 such that for k > 0 sufficiently small, we have

max
0≤n≤N

en ≤ C3 max
0≤n≤N

gn.

Thus we obtain

max
0≤n≤N

∥ukh
n ∥X ≤ C

(
max
0≤n≤N

∥fn∥X∗ + ∥R∥∥aS∥X + c0cj + ∥A0∥X∗

)
. (3.12)

Since f ∈ C(R+; X∗), the sequence {ukh
n } is bounded uniformly. □

To proceed further for error analysis, we assume the operator A : X → X∗ is Lipschitz continuous, i.e., for a constant
LA > 0,

∥Au − Av∥X∗ ≤ LA∥u − v∥X ∀ u, v ∈ X . (3.13)

Let t = tn in (2.1), we have

⟨Aun, v − un⟩ + ⟨Snu, v − un⟩ + j0(γjun; γjv − γjun) ≥ ⟨fn, v − un⟩. (3.14)

where Snu = R
(∫ tn

0 q(tn, s)u(s)ds + aS
)
and un = u(tn). Define a residual term

En(v) = ⟨Aun, v⟩ + ⟨Snu, v⟩ + j0(γjun; γjv) − ⟨fn, v⟩, (3.15)

which play an important role in error estimation. Now we derive a Céa’s type inequality.

Theorem 5. Assume (2.2)–(2.3), (2.5)–(2.8), (3.1), 3.2, (3.4) and (3.13). Furthermore, assume regularity conditions q ∈

C2(R+ × R+;L(X)) and u ∈ W 2,∞
loc (R+; X). Then the following error estimate holds for the numerical solution of Problem 1

defined by Problem 3:

max
0≤n≤N

∥un − ukh
n ∥X ≤ C max

0≤n≤N

{
inf

vh∈Kh

(
∥un − vh

∥X + ∥γjun − γjv
h
∥

1
2
Xj

+|En(vh
− un)|

1
2

)
+ inf

v∈K
|En(v − ukh

n )|
1
2

}
+ Ck2∥u∥W2,∞(I;X).

(3.16)

Proof.We begin with

mA∥un − ukh
n ∥

2
X ≤ ⟨Aun − Aukh

n , un − ukh
n ⟩

= ⟨Aun − Aukh
n , un − vh

⟩ + ⟨Aun, v
h
− un⟩ + ⟨Aun, un − v⟩

+ ⟨Aun, v − ukh
n ⟩ + ⟨Aukh

n , ukh
n − vh

⟩.

(3.17)

Combining (3.17), (3.3) and (3.14), we have

mA∥un − ukh
n ∥

2
X ≤ ⟨Aun − Aukh

n , un − vh
⟩ + ⟨Aun, v

h
− un⟩ + ⟨Aun, v − ukh

n ⟩

+ ⟨Snu, v − un⟩ + j0(γjun; γjv − γjun) − ⟨fn, v − un⟩

+ ⟨Skh
n ukh, vh

− ukh
n ⟩ + j0(γjukh

n ; γjv
h
− γjukh

n )

− ⟨fn, vh
− ukh

n ⟩

= ⟨Aun − Aukh
n , un − vh

⟩ + En(vh
− un) + En(v − ukh

n )

+ ES(v, vh, un, ukh
n ) + Ej(v, vh, un, ukh

n ),

(3.18)

where En(vh
− un) and En(v − ukh

n ) are defined by (3.15), ES(v, vh, un, ukh
n ) and Ej(v, vh, un, ukh

n ) are defined by

ES(v, vh, un, ukh
n ) = ⟨Snu − Skh

n ukh, ukh
n − vh

⟩

= ⟨Snu − Skh
n ukh, ukh

n − un⟩ + ⟨Snu − Skh
n ukh, un − vh

⟩,
(3.19)

and
Ej(v, vh, un, ukh

n ) = j0(γjun; γjv − γjun) + j0(γjukh
n ; γjv

h
− γjukh

n )

− j0(γjun; γjv
h
− γjun) − j0(γjun; γjv − γjukh

n ).
(3.20)
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Next we bound ES(v, vh, un, ukh
n ) and Ej(v, vh, un, ukh

n ). For any small ε > 0, we have

ES ≤ ∥Snu − Skh
n ukh

∥X∗∥un − ukh
n ∥X + ∥Snu − Skh

n ukh
∥X∗∥un − vh

∥X

≤ ε∥un − ukh
n ∥

2
X + ∥un − vh

∥
2
X +

1
4
(1 +

1
ε
)∥Snu − Skh

n ukh
∥
2
X∗ .

(3.21)

Using the subadditivity of the generalized directional derivative, we get

Ej ≤ j0(γjun; γjv − γjukh
n ) + j0(γjun; γjukh

n − γjun) + j0(γjukh
n ; γjv

h
− γjun)

+ j0(γjukh
n ; γjun − γjukh

n ) − j0(γjun; γjv
h
− γjun) − j0(γjun; γjv − γjukh

n )

≤ αj∥γjun − γjukh
n ∥

2
Xj + j0(γjukh

n ; γjv
h
− γjun) − j0(γjun; γjv

h
− γjun)

≤ αjc2j ∥un − ukh
n ∥

2
X + (2c0 + c1∥γjukh

n ∥Xj + c1∥γjun∥Xj )∥γjun − γjv
h
∥Xj .

Since A is Lipschitz continuous, we have

⟨Aun − Aukh
n , un − vh

⟩ ≤ LA∥un − ukh
n ∥X∥un − vh

∥X

≤ ε∥un − ukh
n ∥

2
X +

L2A
4ε

∥un − vh
∥
2
X .

(3.22)

Thus, from (3.18), we obtain

mA∥un − ukh
n ∥

2
X ≤ (2ε + αjc2j )∥un − ukh

n ∥
2
X + (1 +

L2A
4ε

)∥un − vh
∥
2
X

+ (2c0 + c1cj∥ukh
n ∥X + c1cj∥un∥X )∥γjun − γjv

h
∥Xj

+ |En(vh
− un)| + |En(v − ukh

n )| +
1
4
(1 +

1
ε
)∥Snu − Skh

n ukh
∥
2
X∗ .

Using the conditions u ∈ C(I; K ) and (2.7) and applying Proposition 4, we find

∥un − ukh
n ∥X ≤ C

(
∥un − vh

∥X + ∥γjun − γjv
h
∥

1
2
Xj

+ |En(vh
− un)|

1
2

+|En(v − ukh
n )|

1
2 + ∥Snu − Skh

n ukh
∥X∗

)
.

(3.23)

Recall the assumptions u ∈ W 2,∞
loc (R+; X), q ∈ C2(R+ × R+;L(X)). We have

∥Skh
n ukh

− Snu∥X∗ ≤ ∥R(k
n∑

i=0

′q(tn, ti)ukh
i + aS) − R(k

n∑
i=0

′q(tn, ti)ui + aS)∥X∗

+ ∥R(k
n∑

i=0

′q(tn, ti)ui + aS) − R(
∫ tn

0
q(tn, s)u(s)ds + aS)∥X∗

≤ k∥R∥∥q∥

(
n∑

i=0

∥ukh
i − ui∥X

)
+ Ck2∥u∥W2,∞(I;X).

Thus, from (3.23),

∥un − ukh
n ∥X ≤ C

(
∥un − vh

∥X + ∥γjun − γjv
h
∥

1
2
Xj

+ |En(vh
− un)|

1
2

+|En(v − ukh
n )|

1
2 + k2∥u∥W2,∞(I;X)

)
+ Ck

n∑
i=0

∥ui − ukh
i ∥X .

Using discrete Gronwall’s inequality again, we obtain the error bound (3.17). □

In the case K h
⊂ K ∩ Xh, the approximation is internal and the residual term infv∈K |En(v − ukh

n )| = 0. Then Theorem 5
reduces to the following result.

Theorem 6. Assume (2.2)–(2.3), (2.5)–(2.8), (3.1), 3.2, (3.4) and (3.13). Furthermore, assume K h
⊂ K ∩ Xh and regularities

q ∈ C2(R+ × R+;L(X)) and u ∈ W 2,∞
loc (R+; X). Then we have the error estimate of the numerical solution of Problem 1 defined
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by Problem 3:

max
0≤n≤N

∥un − ukh
n ∥X ≤ C max

0≤n≤N

{
inf

vh∈Kh

(
∥un − vh

∥X + ∥γjun − γjv
h
∥

1
2
Xj

+|En(vh
− un)|

1
2

)}
+ Ck2∥u∥W2,∞(I;X).

(3.24)

A Céa’s type inequality of form (3.24) is derived in [19] for the error of approximations of a history-dependent variational–
hemivariational inequality.

4. Application to a viscoelastic contact problem

In this section a representative viscoelastic contact model with normal penetration is considered. The numerical method
and theoretical results illustrated in Section 3 are applied to the contact problem, and an optimal order error estimate is
derived for the linear finite element method.

We start with some standard notation in mechanics. Let d = 2or3 be the spatial dimension. Let Ω ⊂ Rd be a Lipschitz
domain, representing the reference configuration of the deformable body. Let u = (ui) be the displacement field, and
σ = (σij) the stress tensor of second-order. They are the main unknowns of the problem. Symbols A = (aijkl) and B = (bijkl)
both represent fourth-order tensors. All the subscripts i, j, k, l satisfy 1 ≤ i, j, k, l ≤ d. Since the boundary Γ ofΩ is Lipschitz
continuous, the unit outward normal ν = (νi) exists a.e. on Γ . For a vector field v defined on Γ , vν := v ·ν denotes its normal
component and vτ := v − vνν its tangential component. Similarly for a stress field σ, σν := (σν) · ν represents its normal
component and στ := σν − σνν represents its tangential component. Let ε(u) = (∇u + (∇u)T )/2 be the linearized strain
tensor. The classical formulation of the viscoelastic contact problem is as follows.

Problem 7. Find a displacement u : Ω × R+ → Rd and a stress field σ : Ω × R+ → Sd such that

σ(t) = Aε(u(t)) +
∫ t
0 B(t − s)ε(u(s))ds in Ω × R+, (4.1)

Div σ(t) + f0(t) = 0 in Ω × R+, (4.2)

u(t) = 0 on Γ1 × R+, (4.3)

σ(t)ν = f2(t) on Γ2 × R+, (4.4)

uν(t) ≤ g, σν(t) + ξν(t) ≤ 0,
(σν(t) + ξν(t))(uν(t) − g) = 0,
ξν(t) ∈ ∂ jν(uν(t))

⎫⎬⎭ on Γ3 × R+, (4.5)

στ(t) = 0 on Γ3 × R+. (4.6)

The model is illustrated graphically in Fig. 1 of Section 5. Note that a slight different model is studied in [18]. In the
following we give the description of the physical setting. A layer of elastic material is laid on the rigid foundation, and a
viscoelastic body which occupies Ω is in contact with the foundation. The boundary Γ of the body is divided into three
measurable parts Γ1, Γ2 and Γ3, with meas(Γ1) > 0. The whole contact process is quasi-static.

Eq. (4.1) is a constitutive law for viscoelastic material with long memory (cf. [14,17,18,22]), where A is a nonlinear
elasticity tensor andB is a relaxation tensor. Relation (4.2) is the equilibrium equation, where Div is the divergence operator,
and f 0 is the density of volume forces acting on the body Ω . Relations (4.3) and (4.4) mean that the body is fixed on Γ1 and
the density of surface forces f 2 acts on Γ2. Eq. (4.5) describes the state of the contact process on Γ3. Since the penetration is
restricted by vν ≤ g , the set of admissible displacements is a convex and closed subset of H1(Ω;Rd). The normal stress is
described by a Clarke subdifferential of a function jν . Relation (4.6) means the contact process is frictionless on the boundary
Γ3.

To study Problem 7, we introduce the space V = {v = (vi) ∈ H1(Ω;Rd) | v = 0 a.e. onΓ1} for the displacement field, and
the space H = {τ = (τij) ∈ L2(Ω; Sd) | τij = τji, 1 ≤ i, j ≤ d} for the stress field, where Sd denotes the space of symmetric
tensor of second-order. Denote Q∞ = {E = (Eijkl)| Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d} with the associated
norm defined by ∥E∥Q∞

=
∑

1≤i,j,k,l≤d ∥Eijkl∥L∞(Ω). The canonical inner products in the spaces Rd, Sd and H are defined by
(u, v)Rd =

∑d
i=1 uivi for all u, v ∈ Rd, (σ, τ)Sd =

∑
1≤i,j≤d σijτij for all σ, τ ∈ Sd and (σ, τ)H =

∫
Ω

∑
1≤i,j≤d σij(x)τij(x)dx for

all σ, τ ∈ H respectively. Since meas(Γ1) > 0, V is a Hilbert space with the inner product (u, v)V = (ε(u), ε(v))H for all
u, v ∈ V .

For any v ∈ V , the trace of v on the boundary Γ is still denoted by v. The normal trace is vν = v · ν and tangential trace
vτ = v − vνν.

Let K = {v ∈ V | vν ≤ g a.e. on Γ3}, where the thickness function g is nonnegative. It is clear that K is convex and closed
in V and 0 ∈ K .

The function jν : Γ3 ×R → R satisfies the following assumptions: jν(x, ·) is locally Lipschitz onR for a.e. x ∈ Γ3; jν(·, r) is
measurable on Γ3 for all r ∈ R, and there exists e ∈ L2(Γ3) such that jν(·, e(·)) ∈ L1(Γ3); there exist constants c0, c1 > 0 such
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that |∂ jν(x, r)| ≤ c0 + c1|r| for a.e. x ∈ Γ3, for all r ∈ R; there exists a constant αν ≥ 0 such that the sum of j0ν(x, r1; r2 − r1)
and j0ν(x, r2; r1 − r2) is less than or equal to the quantity αν |r1 − r2|2 for all r1, r2 ∈ R for a.e. x ∈ Γ3.

For the elasticity tensor A : Ω × Sd
→ Sd, we assume A(·, ε) is measurable on Ω , A(x, 0) = 0, A(x, ·) is strongly

monotone and Lipschitz continuous. We denote by mA > 0 the constant in the strong monotonicity, and by LA > 0 the
Lipschitz constant. The fourth-order tensor B satisfies B ∈ C(R+;Q∞).

The density of body force f 0 and the density of surface traction f 2 satisfy f 0 ∈ C(R+; L2(Ω;Rd)) and f 2 ∈C(R+; L2(Γ2;Rd))
respectively. Using Riesz representation theorem, we can define a function f : R+ → V ∗ by

⟨f (t), v⟩V∗×V = (f 0(t), v)L2(Ω;Rd) + (f 2(t), v)L2(Γ2;Rd) ∀ v ∈ V , t ∈ R+.

Then the weak formulation of Problem 7 is the following.

Problem 8. Find a displacement u : R+ → K such that ∀ t ∈ R+,(
Aε(u(t)), ε(v) − ε(u(t))

)
H

+

(∫ t

0
B(t − s)ε(u(s))ds, ε(v) − ε(u(t))

)
H

+

∫
Γ3

j0v(uν(t); vν − uν(t))dΓ ≥ ⟨f (t), v − u(t)⟩V∗×V ∀ v ∈ K .

(4.7)

We define the operators A : V → V ∗, S : C(R+; V ) → C(R+; V ∗) and function j : Xj → R as follows:

⟨Au, v⟩V∗×V =

(
Aε(u), ε(v)

)
H

∀ u, v ∈ V , (4.8)

(Su)(t) =

∫ t

0
B(t − s)ε(u(s))ds ∀ u ∈ C(R+; V ). (4.9)

Let X = V , Xj = L2(Γ3), γjv = vν ∀ v ∈ V . Define

j(v) =

∫
Γ3

jν(v)dΓ ∀ v ∈ Xj. (4.10)

Thus we have

j(γjv) =

∫
Γ3

jν(vν)dΓ ∀ v ∈ V . (4.11)

Using the argument in [18, Section 6] and Theorem 2, under the hypotheses for Problem 7 and the smallness condition
αν∥γj∥

2 < mA, we can show that Problem 8 has a unique solution u ∈ C(R+; K ).
Next we consider a fully discretemethod to solve Problem 8. For simplicity, assumeΩ is a polygonal/polyhedral. Let {T h

}

be a regular family of partition ofΩ into triangles/tetrahedrons, and the boundaryΓ is divided intoΓi,l, 1 ≤ l ≤ li, 1 ≤ i ≤ 3.
If there is intersection between the side/face of an element and the set Γi,l, and the measurement of the intersection is
positive with respect to Γi,l, then the side/face locates entirely in Γi,l. Denote V h

= {vh
∈ C(Ω)d | vh

|T ∈ P1(T )d for T ∈

T h, vh
= 0 on Γ1} be the linear element spaces for {T h

}, and K h be the subsets of V h defined by K h
= {vh

∈ V h
| vh

ν ≤

g at node points on Γ3}. Thus 0 ∈ K h is satisfied automatically. If the thickness function g is concave, then K h
⊂ K . The

numerical method for this case is studied in [19]. We consider the general case K h ⊈ K in this paper.
For the time interval [0, T ] the uniformpartition is used for the temporal discretization, and the notations k, tn still denotes

the time step and time nodes in the partition. The trapezoidal rule is applied to approximate the integral in (4.9).
Thus the numerical method for Problem 8 is defined as follows.

Problem 9. Find a discrete displacement ukh
:= {ukh

n }
N
n=0 ⊂ K h such that for 0 ≤ n ≤ N ,(

Aε(ukh
n ), ε(vh) − ε(ukh

n )
)
H

+

(
k

n∑
i=0

′
B(tn − ti)ε(ukh

i ), ε(vh) − ε(ukh
n )

)
H

+

∫
Γ3

j0v(u
kh
n,ν; vh

ν − ukh
n,ν)dΓ ≥ ⟨fn, vh

− ukh
n ⟩V∗×V ∀ vh

∈ K h.

(4.12)

By the same kind of derivation used in proving Theorem 5, we have

max
0≤n≤N

∥un − ukh
n ∥V ≤ C max

0≤n≤N

{
inf

vh∈Kh

(
∥un − vh

∥V + ∥un,ν − vh
ν∥

1
2
L2(Γ3)

+|En(vh
− un)|

1
2

)
+ inf

v∈K
|En(v − ukh

n )|
1
2

}
+ Ck2∥u∥W2,∞(I;V ),

(4.13)
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where

En(v) = ⟨Aun, v⟩ + ⟨Snu, v⟩ +

∫
Γ3

j0ν(un,ν; vν)dΓ − ⟨fn, v⟩. (4.14)

For solution regularity, we assume u ∈ W 2,∞
loc (R+; V ) ∩ C(R+;H2(Ω;Rd)), σν ∈ C(R+; L2(Γ3;Rd)), u|Γ3,l∈ C(R+;H2

(Γ3,l;Rd)) and g|Γ3,l∈ H2(Γ3,l), 1 ≤ l ≤ l3.
Note that if A and B are suitably smooth, then we can derive σ ∈ C(R+;H1(Ω; Sd)) from C(R+;H2(Ω;Rd)). In addition,

the condition σ ∈ C(R+;H1(Ω; Sd)) implies σν ∈ C(R+; L2(Γ3;Rd)).
Now we bound the residual term En(v). Define a subset of K ,

K̃ = {v ∈ C∞(Ω)d| v = 0 on Γ1 ∪ Γ3}.

Pointwise equations will be shown from the weak formulation (4.7) and the arguments in [21, Section 8.1]. Define

σ(t) = Aε(u(t)) +

∫ t

0
B(t − s)ε(u(s))ds in Ω.

Let ṽ be an arbitrary function from the subset K̃ , and take v = u ± ṽ in (4.7) to get(
σ(t), ε(̃v)

)
H

= ⟨f (t), ṽ⟩V∗×V ∀ ṽ ∈ K̃ .

The following two equations are derived from the above relation:

Div σ(t) + f0(t) = 0 a.e. in Ω, (4.15)

σ(t)ν = f2(t) a.e. on Γ2. (4.16)

Taking t = tn in (4.15) and (4.16), we get

Div σ(tn) + f0(tn) = 0 a.e. in Ω, (4.17)

σ(tn)ν = f2(tn) a.e. on Γ2. (4.18)

Multiplying (4.17) by v and integrating over Ω , we obtain∫
Ω

Div σ(tn) · vdx +

∫
Ω

f0(tn) · vdx = 0. (4.19)

Performing an integration by parts, we get∫
Ω

σ(tn) · ε(v)dx =

∫
Ω

f0(tn) · vdx +

∫
Γ

σ(tn)ν · vdΓ . (4.20)

Therefore∫
Ω

Aε(un) · ε(v)dx +

∫
Ω

∫ tn

0
B(tn − s)ε(u(s))ds · ε(v)dx

=

∫
Ω

f0(tn) · vdx +

∫
Γ2

f2(tn) · vdΓ +

∫
Γ3

σ(tn)ν · vdΓ ,

i.e.,

⟨Aun, v⟩ + ⟨Snu, v⟩ − ⟨fn, v⟩ =

∫
Γ3

σ(tn)ν · vdΓ . (4.21)

Therefore

En(v) =

∫
Γ3

σ(tn)ν · vdΓ +

∫
Γ3

j0ν(un,ν; vν)dΓ . (4.22)

Thus

|En(v)| ≤ |

∫
Γ3

σ(tn)ν · vdΓ | + |

∫
Γ3

j0ν(un,ν; vν)dΓ |.

Combining with σν ∈ C(R+; L2(Γ3;Rd)), we have

|En(v)| ≤ C∥v∥L2(Γ3;Rd). (4.23)
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Fig. 1. Initial configuration of the contact problem.

Then we derive the bounds

|En(vh
− un)| ≤ C∥un − vh

∥L2(Γ3;Rd), (4.24)

|En(v − ukh
n )| ≤ C∥v − ukh

n ∥L2(Γ3;Rd). (4.25)

Then from (4.13),

max
0≤n≤N

∥un − ukh
n ∥V ≤ C max

0≤n≤N

{
inf

vh∈Kh

(
∥un − vh

∥V + ∥un − vh
∥

1
2
L2(Γ3;Rd)

)
+ inf

v∈K
∥v − ukh

n ∥

1
2
L2(Γ3;Rd)

}
+ Ck2∥u∥W2,∞(I;V ).

(4.26)

Now we focus on the estimate of the third term on the right hand of (4.26), which can be solved using the arguments
presented in [8, Section 4].

Suppose the contact boundary Γ3 is smooth. For x ∈ Γ3, the unit outward normal ν(x) is extended to ν, where ν ∈ H1(Ω)
and ν|Γ3= ν(x). Let φ(x) be a smooth cut-off function defined by φ(x) = 0 outside the small neighborhood ofΓ3 and φ(x) = 1
near Γ3. Let ν multiplying φ(x), we obtain a function ν̃ ∈ H1(Ω;Rd) with ν̃|Γ3= ν. Assume g̃ ∈ H1(Ω;Rd), g̃|Γ3= g and g is
continuous. Define

v = ukh
n + (min{̃g, ukh

n · ν̃} − ukh
n · ν̃)̃ν.

Thus on Γ3, we have vτ = ukh
n,τ, vν = min{g, ukh

n,ν}. Therefor we get vν ≤ g on Γ3, i.e., v ∈ K . We observe that

∥v − ukh
n ∥L2(Γ3;Rd) = ∥vν − ukh

n,ν∥L2(Γ3). (4.27)

Note that vν = min{g, ukh
n,ν}, thus on Γ3, 0 ≤ ukh

n,ν(x) − vν(x). Since ukh
n,ν(x) ≤ g(x) at nodes x on Γ3, we obtain ukh

n,ν(x) ≤

Πhg(x), x ∈ Γ3, where Πhg(x) is the linear finite element interpolate of g on Γ3.
Then we consider two cases on Γ3: if ukh

n,ν ≤ g , then vν = ukh
n,ν ; if u

kh
n,ν > g , then vν = g , and thus 0 ≤ ukh

n,ν(x) − vν(x) ≤

Πhg(x) − g(x). Therefore

∥vν − ukh
n,ν∥L2(Γ3) ≤ ∥Πhg − g∥L2(Γ3). (4.28)

Combining (4.27) and (4.28), we have

∥v − ukh
n ∥L2(Γ3;Rd) ≤ ∥Πhg − g∥L2(Γ3). (4.29)

Then applying finite element interpolation theory [23,24], we have the optimal order error bound for Problem 9

max
0≤n≤N

∥un − ukh
n ∥V ≤ C(h + k2). (4.30)

Thus in spatial mesh size the method is of first-order, and in the time step it is of second-order.

5. A numerical example

In this section we report a numerical example for Problem 7. The physical setting of the problem is depicted in Fig. 1. Let
Ω = (0, L1) × (0, L2) be a rectangle with a boundary Γ which is divided into three parts

Γ1 = {0} × (0, L2) , Γ2 = {L1} × (0, L2) ∪ [0, L1] × {L2}, Γ3 = [0, L1] × {0}.
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Fig. 2. Normal displacements on Γ3 at different time steps.

The elasticity tensor A satisfies

(Aτ )ij =
Eκ

1 − κ2 (τ11 + τ22)δij +
E

1 + κ
τij, 1 ≤ i, j ≤ 2. (5.1)

The notation E denotes the Youngmodulus, κ denotes the Poisson ratio of thematerial, and δij denotes the Kronecker symbol.
The relaxation tensor B(s) = (0.5 + s)3I, where I is identity matrix. For a given value S ≥ 0, the function jν(·) is defined by

jν(uν) = S
∫

|uν |

0
µ(s)ds, (5.2)

and the function µ(·) defined by

µ(s) = (a − b)e−αs
+ b, (5.3)

with a ≥ b > 0 and α > 0. The following parameters are used in numerical experiments:

L1 = 2 m, L2 = 1 m, E = 1 N/m2, κ = 0.3,
α = 100, a = 0.04, b = 0.02, S = 0.1 N, g = 0.2 m,

and

f2 =

{
(0, 0) N/m on {L1} × (0, L2)(
0, −0.1(1 − e−2t )x

)
N/m on [0, L1] × {L2}.

(5.4)

To numerically solve the sample problem, uniform rectangular finite element partitions are introduced, with the intervals
[0, L1] and [0, L2] being divided into 1/h equal parts, and the corresponding continuous bilinear rectangular finite element
space for V h is used.

The normal displacements of the deformable body on Γ3 at different time steps are showed in Fig. 2. To compute
the numerical solution errors, the numerical solution with h = k =

1
256 is used as the ‘‘reference’’ solution. The

numerical convergence orders in H1 norm are reported in Tables 1 and 2 which show the first order convergence for spatial
discretization and second order for time discretization, and confirm the previous theoretical results.
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Table 1
Convergence orders of the errors with fixed time step size.

h k
u(·, T ) − ukh

N


1 Order

1/8 1/256 4.049067247799612e−03 –
1/16 1/256 9.899921240195822e−04 1.31
1/32 1/256 4.290570202713140e−04 1.19
1/64 1/256 2.416076212233180e−04 1.13

Table 2
Convergence orders of the errors with fixed spatial step size.

h k
u(·, T ) − ukh

N


1 Order

1/256 1/4 7.044095264494761e−03 –
1/256 1/8 2.831608699747937e−03 2.03
1/256 1/12 1.244870264157188e−03 2.06
1/256 1/16 5.692251463968669e−04 2.00
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