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a b s t r a c t

This paper is devoted to numerical analysis of history-dependent variational–
hemivariational inequalities arising in contact problems for viscoelastic material. We
introduce both temporally semi-discrete approximation and fully discrete approximation
for the problem, where the temporal integration is approximated by a trapezoidal rule and
the spatial variable is approximated by the finite element method.We analyze the discrete
schemes and derive error bounds. The results are applied for the numerical solution of
a quasistatic contact problem. For the linear finite element method, we prove that the
error estimation for the numerical solution is of optimal order under appropriate solution
regularity assumptions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Variational and hemivariational inequalities play an important role in the research of nonlinear problems arising in
Contact Mechanics, Economics, Physics and Engineering. The study of variational inequalities is based on the properties of
monotonicity, convexity and the subdifferential of a convex function; see e.g. [1,2]. The study of hemivariational inequalities
is based on the subdifferential of locally Lipschitz functions in the sense of Clarke; see [3–5]. Variational–hemivariational
inequalities have a characteristic structure that include both convex and nonconvex functions, and history-dependent
inequalities are evolutionary inequality problems with history-dependent operators. The history-dependent inequality
problems arise in various applications and have attracted the interest of many researchers. Some references on this topic
are [6–9].

Numerical analysis of hemivariational inequalities has been an active research area recently. In the comprehensive
reference [10], one finds applications of the finite elementmethods in solving hemivariational inequalities, and in particular,
some convergence results of the numerical solutions were shown. Attempts were made by several authors to derive error
estimates for numerical solutions of hemivariational inequalities. In [11], a sub-optimal order error estimate is derived
for a static hemivariational inequality. The reference [12] represents the first paper that provides an optimal order error
estimate for the linear finite element method in solving hemivariational inequalities. More recently, in [13], a general
framework was established on convergence and optimal order error estimation for internal approximations of stationary
hemivariational inequalities with or without convex constraints, and the theory has been extended to cover both internal
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and external approximations of general stationary hemivariational inequalities, including variational–hemivariational
inequalities, in [14]. Numerical analysis of history-dependent quasivariational inequalities was presented in [15], both
temporally semi-discrete scheme and fully discrete scheme were considered. In [16], a fully discrete method was studied
for history-dependent variational–hemivariational inequalities, and error estimates were derived for a quasistatic fictional
contact problem.

A new class of history-dependent variational–hemivariational inequalities with convex constraint is studied in [9]. There,
the novel structure of the inequalities involve a history-dependent operator, unilateral constraint and two nondifferential
functions, one of which is convex and the other may be nonconvex. The existence and uniqueness result and continuous
dependence of data are proved. The abstract results are applied to a quasistatic frictionless contact problem, and the weak
formulation with its unique solvability is presented.

In this paper we analyze numerical approximations for history-dependent variational–hemivariational inequalities,
whose well-posedness follows from the results in [9]. The form of the inequality problems adopted in this paper is slightly
different from that of [9], to facilitate error analysis of its numerical solutions. The structure of this paper is organized
as follows. In Section 2 we review some preliminary material on functional analysis and present the history-dependent
variational–hemivariational inequality problem. In Section 3 we consider temporally semi-discrete approximations for the
problem, including the unique solvability and error estimation. In Section 4 we introduce fully discrete schemes for the
inequality problems with or without convex constraints and derive Céa’s type inequality for error estimation. Finally in
Section 5 we utilize the abstract result to solve a viscoelastic contact problem and obtain an optimal order error estimation
for linear element method under appropriate solution regularity assumptions.

2. Preliminaries

In this sectionwe introduce the history-dependent variational–hemivariational inequalities and present an existence and
uniqueness result. We first provide some notations, definitions and preliminary materials.

Let X be a normed space, X∗ its topological dual, ∥ · ∥X and ∥ · ∥X∗ are associated norms. The duality pairing of X and X∗

is denoted by ⟨·, ·⟩X∗×X . For simplicity we use ⟨·, ·⟩ instead of ⟨·, ·⟩X∗×X .
Let φ : X → R be a locally Lipschitz function. The generalized (Clarke) directional derivative of φ at x in the direction

v ∈ X , denoted as φ0(x; v), is defined by

φ0(x; v) = lim sup
y→x,λ↓0

φ(y + λv) − φ(y)
λ

.

The generalized gradient (subdifferential) of φ at x, denoted as ∂φ(x), is a subset of the dual space X∗ defined by

∂φ(x) = {ξ ∈ X∗
| φ0(x; v) ≥ ⟨ξ, v⟩X∗×X ∀ v ∈ X}.

An operator A : X → X∗ is called pseudomonotone, if it is bounded and un → u weakly in X together with
lim sup⟨Aun, un − u⟩X∗×X ≤ 0 imply

⟨Au, u − v⟩X∗×X ≤ lim inf⟨Aun, un − u⟩X∗×X ∀ v ∈ X .

For a convex function ϕ : X → R ∪ {+∞}, the mapping ∂ϕ(x) defined by

∂ϕ(x) = {x∗
∈ X∗

| ϕ(v) − ϕ(x) ≥ ⟨x∗, v − x⟩X∗×X ∀ v ∈ X}

is called the subdifferential of ϕ. An arbitrary element x∗
∈ ∂ϕ is called a subgradient of ϕ at x.

Next we present some preliminary material on function spaces and properties on related operators. We denote by N as
the set of positive integers, R+ = [0, +∞) as the set of nonnegative real numbers, C(R+; X) and C1(R+; X) as the spaces of
continuous and continuously differentiable functions from R+ to X respectively. Let K be a subset of X . We use the symbols
C(R+; K ) and C1(R+; K ) for the spaces of continuous and continuously differentiable functions fromR+ to K . It is well known
that if X is a Banach space, C(R+; X) can be organized in a canonical way as a Fréchet space, i.e., it is a complete metric space
in which the corresponding topology is induced by a countable family of seminorms. Furthermore we give an equivalent
description for the convergence of a sequence {xk}k to an element x in the space C(R+; X):{

xk → x in C(R+; X) as k → ∞ if and only if
max
r∈[0,n]

∥xk(r) − x(r)∥X → 0 as k → ∞, ∀ n ∈ N.

In fact the definition by the seminorms is equivalent to the definition by the following metrics (cf. [17, Proposition 2.1])

d(u, v) =

∞∑
n=1

1
2n

maxr∈[0,n] ∥u(r) − v(r)∥X

1 + maxr∈[0,n] ∥u(r) − v(r)∥X
.

It is worth noting that for any fixed n ∈ N the interval [0, n] is compact and C([0, n]; X) is the space of continuous functions
defined on [0, n] with values in X .
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Let X and Y be normed spaces. Following [8], an operatorS : C(R+; X) → C(R+; Y ) is called a history-dependent operator
if it satisfies the following condition⎧⎪⎪⎨⎪⎪⎩

∀ n ∈ N there exists sn > 0 such that

∥(Su1)(t) − (Su2)(t)∥Y ≤ sn

∫ t

0
∥u1(s) − u2(s)∥Xds

∀ u1, u2 ∈ C(R+; X), ∀ t ∈ [0, n].

(2.1)

Nowwe introduce the variational–hemivariational inequalities. Let X , Xj, Y be normed spaces and K ⊂ X . Given operators
A : X → X∗, S : C(R+; X) → C(R+; Y ) and γj : X → Xj, given functions ϕ : Y × K × K → R and j : Xj → R.

Problem 1. Find a function u ∈ C(R+; K ) such that for all t ∈ R+,

⟨Au(t), v − u(t)⟩ + ϕ((Su)(t), u(t), v) − ϕ((Su)(t), u(t), u(t))

+ j0(γju(t); γjv − γju(t)) ≥ ⟨f (t), v − u(t)⟩ ∀ v ∈ K .
(2.2)

In the study of Problem 1, we assume the following hypotheses:

X is a reflexive Banach space, K ⊂ X is nonempty, closed and convex. (2.3){
Xj is a Banach space, γj ∈ L(X; Xj), there exists cj > 0 such that

∥γjv∥Xj ≤ cj∥v∥X ∀ v ∈ X .
(2.4)⎧⎪⎨⎪⎩

A : X → X∗ is an operator such that
(a) A is pseudomonotone.
(b) A is strongly monotone, i.e., there existsmA > 0 such that

⟨Av1 − Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥
2
X ∀ v1, v2 ∈ X .

(2.5)

{
S : C(R+; X) → C(R+; Y ) is a history-dependent operator,
Y is a normed space. (2.6)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ : Y × K × K → R is a function such that
(a) ϕ(y, u, ·) : K → R is convex and l.s.c. on K , ∀ y ∈ Y , ∀ u ∈ K .

(b) there exists αϕ > 0 and βϕ > 0 such that
ϕ(y1, u1, v2) − ϕ(y1, u1, v1) + ϕ(y2, u2, v1) − ϕ(y2, u2, v2)

≤ αϕ∥u1 − u2∥X∥v1 − v2∥X + βϕ∥y1 − y2∥Y∥v1 − v2∥X ,

∀ y1, y2 ∈ Y , ∀ u1, u2, v1, v2 ∈ K .

(2.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j : Xj → R is a function such that

(a) j is locally Lipschitz;
(b) ∥∂ j(z)∥X∗

j
≤ c0 + c1∥z∥Xj ∀ z ∈ Xj with c0, c1 ≥ 0;

(c) there exists αj > 0 such that
j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ αj∥z1 − z2∥2

Xj ∀ z1, z2 ∈ Xj.

(2.8)

αϕ + αjc2j < mA. (2.9)

f ∈ C(R+; X∗) (2.10)

Note that the function j in (2.8) is an integral over part of the boundary in a contact problem, and it may be nonconvex.
Assumption (2.8) (c) is equivalent to the following relaxed monotonicity condition

⟨∂ j(z1) − ∂ j(z2), z1 − z2⟩ ≥ −αj∥z1 − z2∥2
Xj ∀ z1, z2 ∈ Xj,

which is used to guarantee the uniqueness of the solution in hemivariational inequalities; see [7,13,16].

Remark 2. Assume X is a Hilbert space. Following Proposition 2.29 in [18], if

⟨∂ j(u) − ∂ j(v), u − v⟩ ≥ −α∥u − v∥
2
X ∀ u, v ∈ X,

then

⟨∂(j(u) +
α

2
∥u∥2

X ) − ∂(j(v) +
α

2
∥v∥

2
X ), u − v⟩ ≥ 0

and the function

h(u) = j(u) +
α

2
∥u∥2

X

is convex, and its convex subdifferential is given by

∂convexh = ∂

(
j(u) +

α

2
∥u∥2

X

)
= ∂ j(u) + αu.
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So the Clarke subdifferential ∂ j in the formulation of the problem can be replaced by ∂convexh − αu, and the variational–
hemivariational inequality is equivalent to a certain variational inequality with a linear perturbation term.

Remark 3. Remark 2 implies that j(u) can be expressed as

j(u) = j1(u) − j2(u),

where both ji are convex functions, and moreover j2(u) can be assumed to be quadratic.

The space Xj is helpful in error estimation of the discrete problems. For a spatial dimension d, Xj can be chosen to be L2(Γ3)
or L2(Γ3;Rd) and γj : X → Xj can be the trace operator. Now we present an existence and uniqueness result by modifying
slightly the proof in [9, Theorem 5].

Theorem 4. Assume (2.3)–(2.10). Then Problem 1 has a unique solution u ∈ C(R+; K ).

We study numerical methods for solving inequality problem (2.2) in this paper. We focus on the special case where the
operator S : C(R+; X) → C(R+; Y ) has the following form [8,15,16]:

(Sv)(t) = R(
∫ t

0
q(t, s)v(s)ds + aS) ∀ v ∈ C(R+; X), ∀ t ∈ R+, (2.11)

where R ∈ L(X; Y ), q ∈ C(R+ ×R+;L(X)), aS ∈ X . It can be shown that the operator S given in (2.11) is a history-dependent
operator.

In the next two sections we consider temporally semi-discrete approximation and fully discrete approximation for the
problem respectively. Below, C represents a constant independent of the time step k and themesh parameter hwhose values
may change from place to place.

3. Temporally semi-discrete approximation

In this section we study temporally discretemethod for solving Problem 1 and derive error bound. For an arbitrarily fixed
T ∈ R+, denote the time interval I = [0, T ]. We consider Problem 1 on I = [0, T ] for computation. The interval I is divided
uniformly here; however, the numericalmethod can be directly extended to the case of non-uniformpartitions. For a positive
integer N , let k = T/N be the time step-size, tn = nk, 0 ≤ n ≤ N . For a continuous function v(t) with values in a function
space, we write vj = v(tj), 0 ≤ j ≤ N . For the operator S in the form (2.11), we use the trapezoidal rule to approximate the
integral

∫ t
0 q(t, s)v(s)ds. We denote ∥R∥ = ∥R∥L(X;Y ) and ∥q∥ = ∥q∥C(I×I;L(X)) for simplicity. Recall the trapezoidal rule∫ tn

0
Z(s)ds ≈ k

n∑
j=0

′Z(tj), (3.1)

where a prime denotes that in the summation the first and the last terms are to be halved. Let Sn := S(tn) be approximated
by Sk

n defined as follows:

Sk
nv := R(k

n∑
j=0

′q(tn, tj)vj + aS). (3.2)

Problem 5. The temporally semi-discrete scheme for Problem 1 is to find the discrete solution uk
:= {uk

n}
N
n=0 ⊂ K such that

⟨Auk
n, v − uk

n⟩ + ϕ(Sk
nu

k, uk
n, v) − ϕ(Sk

nu
k, uk

n, u
k
n)

+ j0(γjuk
n; γjv − γjuk

n) ≥ ⟨fn, v − uk
n⟩ ∀ v ∈ K .

(3.3)

We present an existence and uniqueness result for Problem 5.

Theorem 6. Assume (2.3)–(2.5), (2.7)–(2.11) and (3.2). For step-size

k <
mA − αϕ − αjc2j

βϕ∥R∥∥q∥
, (3.4)

Problem 5 has a unique solution.

Proof. We prove the result through an induction. With {uk
j }j≤n−1 known, we prove that uk

n ∈ K is uniquely determined by
inequality (3.3). The proof is divided into three steps.
Step 1. Let η ∈ X be given. Denote

ukη
= {uk

0, . . . , uk
n−1, η}
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and

yη = Sk
nu

kη. (3.5)

We first consider the auxiliary problem of finding uη ∈ K such that

⟨Auη, v − uη⟩ + ϕ(yη, uη, v) − ϕ(yη, uη, uη)

+ j0(γjuη; γjv − γjuη) ≥ ⟨fn, v − uη⟩ ∀ v ∈ K ,
(3.6)

where fn = f (tn). Applying [9, Lemma 6] we get there exists unique uη ∈ K satisfying (3.6) under the assumptions in
Theorem 6.
Step 2. Define an operator Λ : X → K by

Λη = uη. (3.7)

We verify that the operator Λ has a unique fixed point η∗
∈ K . Let η1, η2 ∈ X be given and denote yi = yηi , ui = uηi ,

ukηi = {uk
0, . . . , uk

n−1, ηi}, i = 1, 2. Thus u1, u2 ∈ K satisfy

⟨Au1, v − u1⟩ + ϕ(y1, u1, v) − ϕ(y1, u1, u1)

+ j0(γju1; γjv − γju1) ≥ ⟨fn, v − u1⟩ ∀ v ∈ K ,
(3.8)

⟨Au2, v − u2⟩ + ϕ(y2, u2, v) − ϕ(y2, u2, u2)

+ j0(γju2; γjv − γju2) ≥ ⟨fn, v − u2⟩ ∀ v ∈ K
(3.9)

respectively. Taking v = u2 in (3.8) and v = u1 in (3.9), we obtain

⟨Au1, u2 − u1⟩ + ϕ(y1, u1, u2) − ϕ(y1, u1, u1)

+ j0(γju1; γju2 − γju1) ≥ ⟨fn, u2 − u1⟩,
(3.10)

⟨Au2, u1 − u2⟩ + ϕ(y2, u2, u1) − ϕ(y2, u2, u2)

+ j0(γju2; γju1 − γju2) ≥ ⟨fn, u1 − u2⟩.
(3.11)

Adding (3.10) and (3.11), we get

⟨Au1 − Au2, u1 − u2⟩ ≤ ϕ(y1, u1, u2) − ϕ(y1, u1, u1) + ϕ(y2, u2, u1) − ϕ(y2, u2, u2)

+ j0(γju1; γju2 − γju1) + j0(γju2; γju1 − γju2).

We use assumptions (2.5)(b), (2.7)(b) and (2.8)(c) to obtain

(mA − αϕ − αjc2j )∥u1 − u2∥X ≤ βϕ∥y1 − y2∥Y . (3.12)

By Eq. (3.7), we have

∥Λη1 − Λη2∥X = ∥u1 − u2∥X .

Together with (3.12), we get

∥Λη1 − Λη2∥X ≤
βϕ

mA − αϕ − αjc2j
∥y1 − y2∥Y . (3.13)

Utilizing the hypotheses on operators R and q, we obtain

∥y1 − y2∥Y = ∥Sk
nu

kη1 − Sk
nu

kη2∥Y

= ∥R(k
n∑

j=0

′q(tn, tj)u
kη1
j + aS) − R(k

n∑
j=0

′q(tn, tj)u
kη2
j + aS)∥Y

≤ k∥R∥∥q∥∥η1 − η2∥X .

(3.14)

Therefore,

∥Λη1 − Λη2∥X ≤
βϕ

mA − αϕ − αjc2j
k∥R∥∥q∥∥η1 − η2∥X . (3.15)

By the smallness condition (3.4), we have βϕ

mA−αϕ−αjc2j
k∥R∥∥q∥ < 1. According to the Banach fixed point theorem (e.g. [19,

p. 209]), we conclude that the operator Λ has a unique fixed point η∗
∈ K .

Step 3. Let η∗ be the fixed point of the operator Λ. Eqs. (3.5) and (3.7) imply that

yη∗ = Sk
nu

kη∗

, uη∗ = η∗. (3.16)

Let η = η∗ in the inequality (3.6), we draw the conclusion that uk
n = η∗

∈ K is a solution of (3.3). The uniqueness of the
solution is a direct consequence of Banach fixed point theorem. □
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Next we derive an error bound for semi-discrete solution from Problem 5.

Theorem 7. Keep the assumptions stated in Theorem 6. Moreover, assume the regularity q ∈ C2(R+ × R+;L(X)), u ∈

W 2,∞
loc (R+; X). Then for the semi-discrete solution of Problem 5, the following error bound holds

max
0≤n≤N

∥un − uk
n∥X ≤ Ck2. (3.17)

Proof. We take t = tn in the inequality (2.2) to get

⟨Aun, v − un⟩ + ϕ(Snu, un, v) − ϕ(Snu, un, un)

+ j0(γjun; γjv − γjun) ≥ ⟨fn, v − un⟩ ∀ v ∈ K ,
(3.18)

where Snu = R(
∫ tn
0 q(tn, s)u(s)ds + aS). Let v = uk

n in (3.18),

⟨Aun, uk
n − un⟩ + ϕ(Snu, un, uk

n) − ϕ(Snu, un, un)

+ j0(γjun; γjuk
n − γjun) ≥ ⟨fn, uk

n − un⟩.
(3.19)

Taking v = un in (3.3), we have

⟨Auk
n, un − uk

n⟩ + ϕ(Sk
nu

k, uk
n, un) − ϕ(Sk

nu
k, uk

n, u
k
n)

+ j0(γjuk
n; γjun − γjuk

n) ≥ ⟨fn, un − uk
n⟩.

(3.20)

We add (3.19) and (3.20) to obtain

⟨Aun − Auk
n, un − uk

n⟩ ≤ ϕ(Snu, un, uk
n) − ϕ(Snu, un, un) + ϕ(Sk

nu
k, uk

n, un)

− ϕ(Sk
nu

k, uk
n, u

k
n) + j0(γjun; γjuk

n − γjun)

+ j0(γjuk
n; γjun − γjuk

n)

≤ αϕ∥un − uk
n∥

2
X + βϕ∥Snu − Sk

nu
k
∥Y∥un − uk

n∥X

+ αjc2j ∥un − uk
n∥

2
X .

(3.21)

Together with assumptions q ∈ C2(R+ × R+;L(X)), u ∈ W 2,∞
loc (R+; X) and arguments in [15, Section 3], we have

∥Snu − Sk
nu∥Y ≤ Ck2∥u∥W2,∞(I;X). (3.22)

Combining with the hypotheses on R, we obtain

∥Snu − Sk
nu

k
∥Y ≤ ∥Snu − Sk

nu∥Y + ∥Sknu − Sknu
k
∥Y

≤ Ck2∥u∥W2,∞(I;X) + k∥R∥∥q∥
n∑

j=0

∥un − uk
n∥X .

(3.23)

Together with (2.5)(b), (3.21) and (3.23), we get

∥un − uk
n∥X ≤ k2

Cβϕ∥u∥W2,∞(I;X)

mA − αϕ − αjc2j
+ k

βϕ∥R∥∥q∥
mA − αϕ − αjc2j

n∑
j=0

∥un − uk
n∥X . (3.24)

Recall the discrete Gronwall’s inequality ([20, p. 164]): Let {en}Nn=0 and {gn}Nn=0 be two sequences of non-negative numbers
with

en ≤ C1gn + C2k
n∑

j=0

ej, 0 ≤ n ≤ N,

where C1, C2 are two constants. Then for some constant C3, we have

max
0≤n≤N

en ≤ C3 max
0≤n≤N

gn.

Thus we derive the error bound (3.17) from (3.24). □

4. Fully discrete approximation

In this section we consider fully discrete approximations of Problem 1 with or without constraints. Here, both the
temporal and spatial variables are discretized. The symbols and assumptions in Section 3 are still used for the temporal
discretization, and a regular family of finite element partitions {T h

} is introduced for the spatial discretization. We use the
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finite element space Xh
⊂ X that matches the partition {T h

}. Considering the internal approximation we assume nonempty,
convex and close subsets K h

⊂ Xh and K h
⊂ K . For the discrete problemwith constraint, we derive a Céa’s type inequality for

the error estimation. For the discrete problem without constraint, we assume the function ϕ further satisfies the following
condition⎧⎪⎪⎨⎪⎪⎩

ϕ : Y × K × K → R is a function such that
there exists a constant cϕ > 0 satisfies

ϕ(y, u, v1) + ϕ(y, u, v2) − 2ϕ(y, u,
v1 + v2

2
) ≤ cϕ∥v1 − v2∥

2
X

∀ y ∈ Y , ∀ u, v1, v2 ∈ K .

(4.1)

Remark 8. If the function ϕ : Y × K × K → R is linear with its third argument, for example [9, (6.4)], then it satisfies
condition (4.1) trivially with cϕ = 0 and the following equation is satisfied

ϕ(y, u, v1) + ϕ(y, u, v2) = 2ϕ(y, u,
v1 + v2

2
).

Define an operator

Skhn ukh
:= R(k

n∑
j=0

′q(tn, tj)ukh
j + aS), ukh

= {ukh
j }

N
j=0 ⊂ Xh. (4.2)

Now we consider the following fully discrete approximation of Problem 1.

Problem 9. Find ukh
:= {ukh

n }
N
n=0 ⊂ K h such that

⟨Aukh
n , vh

− ukh
n ⟩ + ϕ(Skh

n ukh, ukh
n , vh) − ϕ(Skh

n ukh, ukh
n , ukh

n )

+ j0(γjukh
n ; γjv

h
− γjukh

n ) ≥ ⟨fn, vh
− ukh

n ⟩ ∀ vh
∈ K h.

(4.3)

Using arguments similar to that in the proof of Theorem6,we can show that under the conditions (2.3)–(2.5), (2.7)–(2.11),
(3.4) and (4.2), Problem 9 has a unique solution. Next we derive an error bound for the fully discrete scheme in solving
Problem 9.

Theorem 10. Assume (2.3)–(2.5), (2.7)–(2.11), (3.4) and (4.2). Moreover, assume A : X → X∗ is Lipschitz continuous with a
Lipschitz constant LA > 0. Under the regularity assumptions q ∈ C2(R+ ×R+;L(X)), u ∈ W 2,∞

loc (R+; X), we have the error bound

max
0≤n≤N

∥un − ukh
n ∥X ≤ C max

0≤n≤N
inf

vh∈Kh
{∥un − vh

∥X + ∥γjun − γjv
h
∥

1
2
Xj

+ |En(vh, un)|
1
2 } + Ck2,

(4.4)

where the term E(vh, un) is defined by

En(vh, un) = ⟨Aun, v
h
− un⟩ + ϕ(Snu, un, v

h) − ϕ(Snu, un, un)

+ j0(γjun; γjv
h
− γjun) − ⟨fn, vh

− un⟩, vh
∈ K h.

(4.5)

Proof. We take t = tn and v = ukh
n in (2.2) to get

⟨Aun, ukh
n − un⟩ + ϕ(Snu, un, ukh

n ) − ϕ(Snu, un, un)

+ j0(γjun; γjukh
n − γjun) ≥ ⟨fn, ukh

n − un⟩.
(4.6)

Since A : X → X∗ is strongly monotone, we have

mA∥un − ukh
n ∥

2
X ≤ ⟨Aun − Aukh

n , un − ukh
n ⟩, (4.7)

On the other hand,

⟨Aun − Aukh
n , un − ukh

n ⟩ = ⟨Aun, un − ukh
n ⟩ + ⟨Aukh

n , ukh
n − vh

⟩

+ ⟨Aukh
n , vh

− un⟩.
(4.8)

Combined with (4.3) and (4.6), we get

⟨Aun − Aukh
n , un − ukh

n ⟩ ≤ ϕ(Snu, un, ukh
n ) − ϕ(Snu, un, un)

+ ϕ(Skh
n ukh, ukh

n , vh) − ϕ(Skh
n ukh, ukh

n , ukh
n )

+ ⟨Aukh
n , vh

− un⟩ + j0(γjun; γjukh
n − γjun)

+ j0(γjukh
n ; γjv

h
− γjukh

n ) − ⟨fn, vh
− un⟩

= Eϕ1 + Eϕ2 + Ej + EA + En(vh, un),

(4.9)
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where

Eϕ1 = ϕ(Snu, un, ukh
n ) − ϕ(Snu, un, un) + ϕ(Skh

n ukh, ukh
n , un)

−ϕ(Skh
n ukh, ukh

n , ukh
n ),

(4.10)

Eϕ2 = ϕ(Skh
n ukh, ukh

n , vh) − ϕ(Skh
n ukh, ukh

n , un) + ϕ(Snu, un, un)
−ϕ(Snu, un, v

h),
(4.11)

Ej = j0(γjun; γjukh
n − γjun) + j0(γjukh

n ; γjv
h
− γjukh

n )
−j0(γjun; γjv

h
− γjun),

(4.12)

EA = ⟨Aukh
n , vh

− un⟩ − ⟨Aun, v
h
− un⟩. (4.13)

In the following we bound Eϕ1 , Eϕ2 , Ej and EA in turn.

Eϕ1 ≤ αϕ∥un − ukh
n ∥

2
X + βϕ∥Snu − Skhn ukh

∥Y∥un − ukh
n ∥X , (4.14)

Eϕ2 ≤ αϕ∥un − ukh
n ∥X∥un − vh

∥X + βϕ∥Snu − Skh
n ukh

∥Y∥un − vh
∥X . (4.15)

Utilizing sub-additive property of generalized directional derivative [3,18], we have

Ej ≤ j0(γjun; γjv
h
− γjun) + j0(γjun; γjukh

n − γjv
h)

+ j0(γjukh
n ; γjv

h
− γjukh

n ) − j0(γjun; γjv
h
− γjun)

≤ j0(γjun; γjun − γjv
h) + j0(γjun; γjukh

n − γjun)

+ j0(γjukh
n ; γjv

h
− γjun) + j0(γjukh

n ; γjun − γjukh
n )

≤ (2c0 + c1∥γjun∥Xj + c1∥γjukh
n ∥Xj )∥γjun − γjv

h
∥Xj

+ αj∥γjun − γjukh
n ∥

2
Xj

≤ (2c0 + 2c1cj∥un∥X )∥γjun − γjv
h
∥Xj + αjc2j ∥un − ukh

n ∥
2
X

+ c1c2j ∥un − ukh
n ∥X∥un − vh

∥X .

(4.16)

Note that A is Lipschitz continuous with Lipschitz constant LA > 0, we get

EA ≤ LA∥un − ukh
n ∥X∥un − vh

∥X . (4.17)

Together with (4.9), (4.14)–(4.17) and (2.9), we derive that

∥un − ukh
n ∥X ≤ C{∥un − vh

∥X + ∥γjun − γjv
h
∥

1
2
Xj

+ |En(vh, un)|
1
2 }

+ C∥Snu − Skh
n ukh

∥Y .

(4.18)

The terms (3.22) and (4.2) imply that

∥Snu − Skh
n ukh

∥Y ≤ ∥Snu − Sk
nu∥Y + ∥Sk

nu − Skh
n ukh

∥Y

≤ Ck2∥u∥W2,∞(I;X) + k∥R∥∥q∥
n∑

j=0

∥uj − ukh
j ∥X .

(4.19)

We combine (4.18) and (4.19) to get

∥un − ukh
n ∥X ≤ C{∥un − vh

∥X + ∥γjun − γjv
h
∥

1
2
Xj

+ |En(vh, un)|
1
2

+ k2∥u∥W2,∞(I;X)} + Ck
n∑

j=0

∥uj − ukh
j ∥X .

(4.20)

Applying the discrete Gronwall’s inequality again, we have the error bound (4.4). □

Now we consider the error estimation for numerical solution of the discrete problem without constraint.

Theorem11. Keep the assumptions stated in Theorem 10. Moreover, let K = X and assume the functionϕ satisfies the assumption
(4.1). Then the following error bound holds for the fully discrete Problem

max
0≤n≤N

∥un − ukh
n ∥X ≤ C max

0≤n≤N
inf

vh∈Kh
{∥un − vh

∥X + ∥γjun − γjv
h
∥

1
2
Xj
}

+ Ck2.
(4.21)
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Proof. We start with
⟨Aun − Aukh

n , un − ukh
n ⟩ = ⟨Aun − Aukh

n , un − vh
⟩ + ⟨Aun − Aukh

n , vh
− ukh

n ⟩

= ⟨Aun − Aukh
n , un − vh

⟩ + ⟨Aun, v
h
− un⟩

+ ⟨Aun, un − ukh
n ⟩ + ⟨Aukh

n , ukh
n − vh

⟩.

(4.22)

Let t = tn in (2.2),

⟨Aun, v − un⟩ + ϕ(Snu, un, v) − ϕ(Snu, un, un)

+ j0(γjun; γjv − γjun) ≥ ⟨fn, v − un⟩ ∀ v ∈ X .
(4.23)

Taking v = ukh
n in (4.23) we obtain (4.6). Replacing v with 2un − v in (4.23), we get

⟨Aun, un − v⟩ + ϕ(Snu, un, 2un − v) − ϕ(Snu, un, un)

+ j0(γjun; γjun − γjv) ≥ ⟨fn, un − v⟩ ∀ v ∈ X .
(4.24)

We take v = vh in (4.24) to get

⟨Aun, un − vh
⟩ + ϕ(Snu, un, 2un − vh) − ϕ(Snu, un, un)

+ j0(γjun; γjun − γjv
h) ≥ ⟨fn, un − vh

⟩.
(4.25)

Together with (4.22), (4.6), (4.25) and (4.3), we have

⟨Aun − Aukh
n , un − ukh

n ⟩ ≤ ⟨Aun − Aukh
n , un − vh

⟩ + ϕ(Snu, un, 2un − vh)

+ ϕ(Snu, un, ukh
n ) − 2ϕ(Snu, un, un)

+ ϕ(Skh
n ukh, ukh

n , vh) − ϕ(Skh
n ukh, ukh

n , ukh
n )

+ j0(γjun; γjun − γjv
h) + j0(γjun; γjukh

n − γjun)

+ j0(γjukh
n ; γjv

h
− γjukh

n )
= Eϕ1 + Eϕ2 + Eϕ3 + Ẽj + EA,

(4.26)

where Eϕ1 , Eϕ2 , EA are the same in (4.10), (4.11), (4.13) respectively with their bounds (4.14), (4.15), (4.17). Here

Eϕ3 = ϕ(Snu, un, 2un − vh) + ϕ(Snu, un, v
h) − 2ϕ(Snu, un, un), (4.27)

Ẽj = j0(γjun; γjun − γjv
h) + j0(γjun; γjukh

n − γjun)

+ j0(γjukh
n ; γjv

h
− γjukh

n ).
(4.28)

By the assumption (4.1), we obtain

Eϕ3 ≤ cϕ3∥un − vh
∥
2
X . (4.29)

Using the sub-additive property again, we obtain

Ẽj ≤ C∥γjun − γjv
h
∥Xj + αjc2j ∥un − ukh

n ∥
2
X . (4.30)

Therefore we immediately get

∥un − ukh
n ∥X ≤ C{∥un − vh

∥X + ∥γjun − γjv
h
∥

1
2
Xj
} + C∥Snu − Skh

n ukh
∥Y . (4.31)

Using (4.19) and the discrete Gronwall’s inequality, we get the error bound (4.21). □

Note that the square root involved in the error bounds in (4.4) and (4.21) results from the inequality problem, and further
estimation of the residual term En(vh, un) depends on the specific problems in applications. In Section 5, we illustrate an
example of contact problem to bound En(vh, un). In Theorem 11 the inequality problem is defined on thewhole space X , thus
there is no convex constraint. Through a modified proof, the residual term En(vh, un) vanishes.

5. Application to a contact problem

In this sectionwe illustrate an application of the numerical analysis results developed in the previous sections to a history-
dependent variational–hemivariational inequality of the form (2.2) that arises in contact mechanics. We recall a viscoelastic
frictionless contact model, the notation for function spaces and its weak formulation studied in [9]. Numerical analysis for
the discrete problem of contact model is shown, and an optimal order error estimation for the linear finite element method
is proved.

We first describe thephysical setting. For a spatial dimension d = 2or 3, a viscoelastic body is in contactwith a foundation.
The contact model is frictionless and quasistatic. The body occupies a regular domain Ω ⊂ Rd with boundary Γ in its
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reference configuration, and the boundary Γ is divided into three parts Γ1, Γ2 and Γ3 such that each Γi, 1 ≤ i ≤ 3 is
measurable with m(Γ1) > 0. The body is fixed on Γ1, thus no displacement arises here. A volume force of density f0 acting
on Ω and a surface traction of density f2 acting on Γ2 are both time-dependent. In addition the time interval we consider
is R+. On the contact surface Γ3, a unilateral constraint condition with a nonmonotone normal compliance condition is
considered. Then we present the mathematical model.

Problem 12. Find a displacement u : Ω × R+ → Rd and a stress field σ : Ω × R+ → Sd such that

σ(t) = Aε(u(t)) + µ(ε(u(t)) − PM(κ(ζ (t)))ε(u(t)))

+

∫ t

0
B(t − s)ε(u(s))ds in Ω,

(5.1)

Div σ(t) + f0(t) = 0 in Ω, (5.2)

u(t) = 0 on Γ1, (5.3)

σ(t)ν = f2(t) on Γ2, (5.4){uν(t) ≤ g, σν(t) + ξν(t) ≤ 0,
(σν(t) + ξν(t))(uν(t) − g) = 0, on Γ3,

ξν(t) ∈ ∂ jν(uν(t))
(5.5)

στ(t) = 0 on Γ3, (5.6)

for all t ∈ R+.
Next we list some standard notation in mechanics and function spaces. Let u = (ui), ν = (νi), σ = (σij), ε(u) =

(∇u + (∇u)T )/2 be the displacement field, the outward unit normal, the stress tensor and the linearized strain tensor
respectively. In addition vν := v · ν and vτ := v − vνν stand for the normal and tangential components of a vector field v,
σν := (σν)·ν andστ := σν−σνν represent the normal and tangential components of the stress fieldσ respectively. In Eq. (5.1)
PM(κ(·)) denotes the projection on the Von Mises convex, µ is a fixed constant, A and B are the elastic and relaxation tensor.
For any v ∈ H1(Ω;Rd), the trace of v on the boundary Γ is still denoted by v, and the normal and tangential traces are
denoted by vν and vτ respectively. The function spaces V and H are defined by

V = {v = (vi) ∈ H1(Ω;Rd) | v = 0 a.e.on Γ1},

H = {τ = (τij) ∈ L2(Ω; Sd) | τij = τji, 1 ≤ i, j ≤ d}.

The inner product in the Hilbert space H is

(σ, τ)H =

∫
Ω

σij(x)τij(x)dx,

and the associated norm is denoted by ∥ · ∥H. The space V is a Hilbert space sincem(Γ1) > 0, which is equipped with inner
product

(u, v)V = (ε(u), ε(u))H, u, v ∈ V

and norm ∥ · ∥V . The space of fourth order tensor field Q∞ is defined by

Q∞ = {E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d},

and the associated norm is denoted by

∥E∥Q∞
=

∑
1≤i,j,k,l≤d

∥Eijkl∥L∞(Ω).

We now list hypotheses for Problem 12. The elasticity tensorA : Ω ×Sd
→ Sd is of fourth order, positive with coefficient

mA > 0 and symmetric about subscripts. The relaxation tensorB belongs to C(R+;Q∞) and the bound function κ : R → R+

is Lipschitz continuouswith a constant Lκ > 0. Furthermore the potential function jν : Γ3×R → R ismeasurable for the first
variable on Γ3 for all r ∈ R and locally Lipschitz for the second variable on R for a.e. x ∈ Γ3, and jν(·, e(·)) belongs to L1(Γ3)
for some e ∈ L2(Γ3). There also exist c0, c1 > 0 such that the absolute value of the subdifferential ∂ jν(x, r) is controlled by
c0 + c1|r| for a.e. x ∈ Γ3, for all r ∈ R. In addition, there exists αν ≥ 0 such that for a.e. x ∈ Γ3

j0ν(x, r1; r2 − r1) + j0ν(x, r2; r1 − r2) ≤ αν |r1 − r2|2 ∀ r1, r2 ∈ R.

The densities of body forces f0 belongs to C(R+; L2(Ω;Rd)) and the surface traction f2 belongs to C(R+; L2(Γ2;Rd)). The
description of the physical setting and the problem data with formulation can be found in [9, Section 5].

Let

U = {v ∈ V | vν ≤ g a.e. on Γ3}
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be the set of admissible displacements. Define the function F : R+ → V ∗ by

⟨F (t), v⟩V∗×V = (f0(t), v)L2(Ω;Rd) + (f2(t), v)L2(Γ2;Rd) ∀ v ∈ V , ∀ t ∈ R+.

Then we state the weak formulation of Problem 12 and its existence and uniqueness result.

Problem 13. Find a displacement u : R+ → U and such that the following inequality holds:

(Aε(u(t)), ε(v) − ε(u(t)))H + µ(ε(u(t)), ε(v) − ε(u(t)))H
− µ(PM(κ(ζ (t)))ε(u(t)), ε(v) − ε(u(t)))H

+

(∫ t

0
B(t − s)ε(u(s))ds, ε(v) − ε(u(t))

)
H

+

∫
Γ3

j0v(uν(t); vν − uν(t))dΓ ≥ ⟨F(t), v − u(t)⟩V∗×V ∀ v ∈ U, ∀ t ∈ R+.

(5.7)

We define the operator A : V → V ∗, the space Y , the function ϕ : Y × V × V → R, the operator S : C(R+; V ) → C(R+; Y )
and the function j : Xj → R as follows:

⟨Au, v⟩V∗×V = (Aε(u), ε(v))H + µ(ε(u), ε(v))H ∀ u, v ∈ V , (5.8)

The space Y = R × H is endowed with the norm

∥y∥Y = |r| + ∥θ∥H ∀ y = (r, θ) ∈ Y , (5.9)

and

ϕ(y, u, v) = −µ(PM(κ(r))ε(u), ε(v))H + (θ, ε(v))H
∀ y = (r, θ) ∈ Y , ∀ u, v ∈ V .

(5.10)

Note that the function ϕ defined by (5.10) is linear with respect to the last variable, according to Remark 8 the function ϕ

satisfies (4.1) with cϕ = 0.
Denote

(Su)(t) =

(∫ t

0
∥ε(u(s))∥Hds,

∫ t

0
B(t − s)ε(u(s))ds

)
∀ u ∈ C(R+; V ). (5.11)

Let X = V , K = U , Xj = L2(Γ3), γjv = vν for v ∈ V . Define

j(v) =

∫
Γ3

jν(v)dΓ ∀ v ∈ Xj. (5.12)

Thus we have

j(γjv) =

∫
Γ3

jν(vν)dΓ ∀ v ∈ V . (5.13)

Using the arguments in [9, Section 6] and Theorem 4, under the hypotheses for Problem 12 and the smallness condition
αν∥γj∥

2 < mA, we can show that Problem 13 has a unique solution u ∈ C(R+;U). Note that the coefficients αϕ = µ,
mA = mA + µ, thus αν∥γj∥

2 < mA implies αϕ + αν∥γj∥
2 < mA, i.e., the smallness condition (2.9) is satisfied.

Next we introduce a fully discrete method described in Section 4 to solve Problem 13. For the temporal discretization,
we still use the uniform partition for the interval [0, T ] and the associate notations. We assume the domain Ω is a
polygonal/polyhedral for simplicity and introduce a regular family of partitions {T h

} for the spatial discretization, in which
the domain Ω is divided into triangles/tetrahedrons and the whole boundary Γ is divided into Γk,i, 1 ≤ i ≤ ik, 1 ≤ k ≤ 3.
Notice that if the side/face of an element has intersection with set Γk,i and themeasure of the intersection is positive respect
to Γk,i, then the side/face locates entirely in Γk,i. Thus the linear element spaces respect to {T h

} is constructed as follows:

V h
= {vh

∈ C(Ω)d | vh
|T ∈ P1(T )d for T ∈ T h, vh

= 0 on Γ1}.

Define

Uh
= {vh

∈ V h
| vh

ν ≤ g at node points on Γ3}.

Assume g is concave, we obtain Uh
⊂ U . Thus the approximation is internal and the numerical method for Problem 13 is

defined as follows:



W. Xu, Z. Huang, W. Han et al. / Journal of Computational and Applied Mathematics 351 (2019) 364–377 375

Problem 14. Find a discrete displacement ukh
:= {ukh

n }
N
n=0 ⊂ Uh such that

(Aε(ukh
n ), ε(vh) − ε(ukh

n ))H + µ(ε(ukh
n ), ε(vh) − ε(ukh

n ))H
− µ(PM(κ (̃ζ (tn)))ε(u

kh
n ), ε(vh) − ε(ukh

n ))H

+

⎛⎝k
n∑

j=0

′
B(tn − tj)ε(ukh

j ), ε(vh) − ε(ukh
n )

⎞⎠
H

+

∫
Γ3

j0v(u
kh
n,ν; vh

ν − ukh
n,ν)dΓ ≥ ⟨Fn, vh

− ukh
n ⟩V∗×V ∀ vh ∈ Uh, ∀ 0 ≤ n ≤ N,

(5.14)

where

ζ̃ (tn) = k
n∑

j=0

′
∥ε(ukh

j )∥H.

It is easy to see that the arguments used in the proof of Theorem 10 can be applied to the numerical solution defined by
Problem 14, and assuming

u ∈ W 2,∞
loc (R+; V ), (5.15)

we have the error bound

max
0≤n≤N

∥un − ukh
n ∥V ≤ C max

0≤n≤N
inf

vh∈Uh
{∥un − vh

∥V + ∥un,ν − vh
ν∥

1
2
L2(Γ3)

+ |En(vh, un)|
1
2 } + C k2, (5.16)

where

En(vh, un) = ⟨Aun, vh
− un⟩ + ϕ(Snu, un, vh) − ϕ(Snu, un, un)

+

∫
Γ3

j0ν(un,ν; vh
ν − un,ν) dΓ − ⟨Fn, vh

− un⟩V∗×V . (5.17)

Let us bound the residual term defined in (5.17). For this purpose, in addition to (5.15), we assume the following solution
regularity property:

σ ∈ C(R+;H1(Ω; Sd)), σν ∈ C(R+; L2(Γ2;Rd)), (5.18)

where

σ(t) = Aε(u(t)) + µ(ε(u(t)) − PM(κ(ζ (t)))ε(u(t))) +

∫ t

0
B(t − s)ε(u(s))ds in Ω.

Define a subset of U ,

Ũ = {v ∈ C∞(Ω)d | v = 0 on Γ1, vν = 0 on Γ3}.

Then we show the pointwise equality relations using the weak formulation (5.7) and the arguments in [20, Section 8.1]. We
take v = u ± ṽ in (5.7), where ṽ is an arbitrary function from the subset Ũ , which implies

(σ(t), ε(̃v))H = ⟨F (t), ṽ⟩V∗×V ∀ ṽ ∈ Ũ .

From the above relation we obtain the following equalities:

Divσ(t) + f0(t) = 0 a.e. in Ω, (5.19)

σν = f2 a.e. on Γ2, στ = 0 a.e. on Γ3. (5.20)

Multiplying (5.19) by v − u with v ∈ U , and integrating over Ω , we apply Green’s formula to get

−

∫
Ω

σ(t) · (ε(v) − ε(u(t)))dx +

∫
Γ

σ(t)ν · (v − u(t))dΓ +

∫
Ω

f0 · (v − u(t))dx = 0.
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Thus,

(Aε(u(t)), ε(v) − ε(u(t)))H + µ(ε(u(t)), ε(v) − ε(u(t)))H
− µ(PM(κ(ζ (t)))ε(u(t)), ε(v) − ε(u(t)))H

+

(∫ t

0
B(t − s)ε(u(s))ds, ε(v) − ε(u(t))

)
H

= ⟨F (t), v − u(t)⟩V∗×V +

∫
Γ3

σν(t)(vν − uν(t))dΓ , ∀ v ∈ U, ∀ t ∈ R+.

(5.21)

Taking t = tn and v = vh in (5.21), we obtain

(Aε(un), ε(vh) − ε(un))H + µ(ε(un), ε(vh) − ε(un))H
− µ(PM(κ(ζ (tn)))ε(un), ε(vh) − ε(un))H

+

(∫ t

0
B(tn − s)ε(u(s))ds, ε(vh) − ε(un)

)
H

= ⟨Fn, vh
− un⟩V∗×V +

∫
Γ3

σn,ν(vn,ν − un,ν)dΓ , ∀ vh
∈ Uh.

(5.22)

Together with (5.8), (5.10) and (5.11), Eq. (5.22) can be rewritten as

⟨Aun, vh
− un⟩ + ϕ(Snu, un, vh) − ϕ(Snu, un, un) = ⟨Fn, vh

− un⟩ +

∫
Γ3

σn,ν(vh
ν − un,ν) dΓ .

Thus,

En(vh, un) =

∫
Γ3

[σn,ν(vh
ν − un,ν) + j0ν(un,ν; vh

ν − un,ν)]dΓ .

Using the solution regularity assumptions (5.15) and (5.18), we have

|En(vh, un)| ≤ C∥un,ν − vh
ν∥L2(Γ3). (5.23)

Then from (5.16),

max
0≤n≤N

∥un − ukh
n ∥V ≤ C max

0≤n≤N
inf

vh∈Vh
(∥un − vh

∥V + ∥un,ν − vh
ν∥

1
2
L2(Γ3)

) + C k2. (5.24)

To proceed further, we further assume

u ∈ C(R+;H2(Ω;Rd)), uν ∈ C(R+; H̃2(Γ3)). (5.25)

Here, v ∈ H̃2(Γ3) means that v ∈ H̃2(Γ3,i) for 1 ≤ i ≤ i3; recall that Γ3 =
⋃

1≤i≤i3
Γ3,i. We comment that if A, κ and B are

suitable smooth, then (5.18) follows from the first part of (5.25). Utilizing the finite element interpolation theory [19,21], we
can then derive the following optimal order error bound

max
0≤n≤N

∥un − ukh
n ∥V ≤ C(h + k2). (5.26)

Thus in spatial mesh size the method is of first-order, and in the time step it is of second-order.
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