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Abstract. In this paper, we study a dynamic contact model with long memory which
allows both the convex potential and nonconvex superpotentials to depend on history-
dependent operators. The deformable body consists of a viscoelastic material with
long memory and the process is assumed to be dynamic. The contact involves a
nonmonotone Clarke subdifferential boundary condition and the friction is modeled
by a version of the Coulomb’s law of dry friction with the friction bound depending
on the total slip. We introduce and study a fully discrete scheme of the problem, and
derive error estimates for numerical solutions. Under appropriate solution regularity
assumptions, an optimal order error estimate is derived for the linear finite element
method. This theoretical result is illustrated numerically.
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1. Introduction

Variational inequalities and hemivariational inequalities play an important role in
the study of various nonlinear boundary value problems arising in Mechanics, Physics,
Engineering Sciences and so on. For some comprehensive references, the reader is re-
ferred to [2,9–11,13,14,17,19,22] for variational inequalities, and to [16,20,21,23,25]
for hemivariational inequalities. The analysis of variational inequalities is based on
monotonicity arguments and convexity theory while the analysis of hemivariational in-
equalities uses properties of the subdifferential in the sense of Clarke defined for locally
Lipschitz functions as main ingredient and allows nonconvex functionals in formula-
tions. Variational-hemivariational inequalities represent a special class of inequalities,
where both convex and nonconvex functions are present.
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This paper is devoted to the study on numerical approximation of a general evo-
lutional variational-hemivariational inequality involving history-dependent operators
which models a dynamic contact problem with long memory. The model we consider
here was first proposed in [12]. Existence and uniqueness result of the corresponding
variational-hemivariational inequality are shown in [12]. In this paper, we consider
numerical methods to solve the model in [12]. We derive optimal error estimates for
the scheme. Since history-dependent operators appear at several places and the contact
boundary conditions are of complex form, it is challenging to derive error estimates for
numerical solutions of the model.

We first recall the model studied in [12]. Assume a viscoelastic body occupies
a Lipschitz domain Ω in Rd with d = 2, 3. We use the notation x = (xi)

d
i=1 for a

generic point in Ω = Ω ∪ ∂Ω and we denote by ν = (νi)
d
i=1 the outward unit normal

on ∂Ω. We denote by u = (ui), σ = (σij) and ε(u) = (εij(u)) the displacement
vector, the stress tensor, and linearized strain tensor, respectively. Sometimes we do
not indicate explicitly the dependence of the variables on the spatial variable x. Recall
that the components of the linearized strain tensor ε(u) are εij(u) = (ui,j + uj,i)/2,
where ui,j = ∂ui/∂xj . The indices i, j, k, l run between 1 and d and, unless stated
otherwise, the summation convention over repeated indices is used. An index following
a comma indicates a partial derivative with respect to the corresponding component of
the spatial variable x. A superscript prime of a variable stands for the time derivative
of the variable. Moreover, we use the notation vν and vτ for the normal and tangential
components of v on ∂Ω given by vν = v·ν and vτ = v−vνν. The normal and tangential
components of the stress field σ on the boundary are defined by σν = (σν) · ν and
στ = σν − σνν, respectively. The symbol Sd represents the space of second order
symmetric tensors on Rd.

The boundary ∂Ω is partitioned into three disjoint measurable parts Γ1, Γ2 and Γ3

and the measure of Γ1, denoted m(Γ1), is positive. The body is clamped on Γ1, so the
displacement field vanishes there. Time-dependent surface tractions of density f2 act
on Γ2 and time-dependent volume forces of density f0 act in Ω. The part Γ2 can be
empty. The body is in permanent contact on Γ3 with a device, say a piston. The contact
is modeled with a nonmonotone normal damped response condition associated with a
total slip-dependent version of Coulomb’s law of dry friction. We are interested in the
evolutionary process of the mechanical state of the body in the time interval (0, T ) with
T > 0. The mathematical model of the contact problem is stated as follows.

Problem 1.1. Find a displacement field u : Ω × (0, T ) → Rd and a stress field σ :
Ω× (0, T )→ Sd such that for all t ∈ (0, T ),

σ(t) = Aε(u′(t)) + Bε(u(t)) +

∫ t

0
C(t− s)ε(u′(s)) ds in Ω, (1.1a)

ρu′′(t) = Divσ(t) + f0(t) in Ω, (1.1b)

u(t) = 0 on Γ1, (1.1c)

σ(t)ν = f2(t) on Γ2, (1.1d)
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− σν(t) ∈ φ(uν(t))∂jν(u′ν(t)) on Γ3, (1.1e)

‖στ (t)‖ ≤ Fb
(∫ t

0
‖uτ (s)‖ ds

)
,

− στ = Fb

(∫ t

0
‖uτ (s)‖ ds

) u′τ (t)

‖u′τ (t)‖
if u′τ (t) 6= 0 on Γ3, (1.1f)

u(0) = u0, u′(0) = w0 in Ω. (1.1g)

Eq. (1.1a) is the constitutive law for viscoelastic materials in which A represents
the viscosity operator, B represents the elasticity operator and C is the relaxation ten-
sor. Eq. (1.1b) is the equation of motion in which ρ denotes the density of mass. For
simplicity, assume ρ is a constant which can be set to be 1 after scaling of the equa-
tion. We have the clamped boundary condition (1.1c) on Γ1 and the surface traction
boundary condition (1.1d) on Γ2.

Relation (1.1e) is the multivalued contact condition with normal damped response
in which ∂jν denotes the Clarke subdifferential of a given function jν and φ is a damper
coefficient. Condition (1.1f) represents a version of Coulomb’s law of dry friction in
which Fb is a given positive function, the friction bound. Details on such a frictional
contact condition is found in [20] and some references therein. However, note that
in contrast to the conditions used in the literature, in (1.1e) the damper coefficient is
allowed to depend on the normal displacement uν(t). In (1.1f), the friction bound may
depend on the the total slip

∫ t
0 ‖uτ (x, s)‖ ds at the point x ∈ Γ3 over the time period

[0, t].
The quasistatic contact model with constitutive law (1.1a) was considered in [6].

In [7], the finite element method is used to approximate the model in [6] and an
optimal order error estimate is derived. Recently, the number of publications on er-
ror estimate is growing rapidly. The reference [24] provides an error estimate for the
numerical solution of a quasistatic viscoelastic problem with long memory, the refer-
ence [3] studies a fully dynamic viscoelastic contact model where the friction law is
described by a nonmonotone relation between the tangential stress and the tangential
velocity. Numerical analysis of history-dependent quasivariational inequalities was pre-
sented in [18], where both the temporally semi-discrete and fully discrete scheme are
studied. More recently, a history-dependent hemivariational inequality with constraint
is considered in [26] and the corresponding Céa’s type inequality is derived for error
estimation. The reader is referred to [15] for a survey of recent results on the numerical
solution of hemivariational inequalities of various kinds.

The paper is organized as follows. In Section 2, we first present preliminary material
and list some assumptions on the data. And then, we formulate a dynamic history-
dependent variational-hemivariational inequality corresponding to the contact model.
In Section 3, we first introduce a discrete problem, present an existence and uniqueness
result for it, and then derive error bounds for the fully discrete solutions and give an
optimal order error estimate for finite element method. In the last section, we present
numerical results in simulations of a two-dimensional contact problem and provide
numerical evidence of optimal order convergence for the linear element solutions.
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2. Notation and assumptions

In this section, we recall notation, basic definitions and unique solvability result
of a dynamic history-dependent variational-hemivariational inequality. We start with
the definitions of Clarke directional derivative and Clarke subdifferential. Let X be a
Banach space, and X∗ its dual. Denote by 〈·, ·〉X∗×X the duality pairing between X∗

and X.

Definition 2.1. Let ψ : X → R be a locally Lipschitz function. The generalized directional
derivative, in the sense of Clarke, of ψ at x ∈ X in the direction v ∈ X, denoted by
ψ0(x; v), is defined by

ψ0(x; v) = lim sup
y→x, λ↓0

ψ(y + λv)− ψ(y)

λ

and the Clarke subdifferential of ψ at x, denoted by ∂ψ(x), is a subset of a dual space X∗

given by
∂ψ(x) = { ζ ∈ X∗ | ψ0(x; v) ≥ 〈ζ, v〉X∗×X , ∀v ∈ X }.

Definition 2.2. Let ϕ : X → R∪{+∞} be a convex functional. The convex subdifferntial
of ϕ at x ∈ X is a subset of X∗ given by

∂Convϕ(x) = {ξ ∈ X∗ : ϕ(x+ v)− ϕ(x) ≥ 〈ξ, v〉X∗×X , ∀v ∈ X}.

We use the standard notation for Lebesgue and Sobolev spaces. For v ∈ H1(Ω;Rd),
we use the same symbol v for the trace of v on ∂Ω and we use the notation vν and
vτ for its normal and tangential traces. In addition, we introduce spaces V and Q as
follows:

V = {v = (vi) ∈ H1(Ω;Rd) | v = 0 on Γ1},
Q = L2(Ω;Sd),
H = L2(Ω;Rd).

These are real Hilbert spaces with the canonical inner products in Q and H, and the
inner product

(u,v)V = (ε(u), ε(v))Q

in V . The associated norms are ‖ · ‖V , ‖ · ‖Q and ‖ · ‖H . By the Sobolev trace theorem,

‖v‖L2(Γ3;Rd) ≤ ‖γ‖‖v‖V , ∀v ∈ V, (2.1)

where ‖γ‖ represents the norm of the trace operator γ : V → L2(Γ3;Rd).
Note that V ⊂ H ⊂ V ∗ form an evolution triple of function spaces. Given 0 < T <

+∞, we introduce spaces V = L2(0, T ;V ) andW = {w ∈ V | w′ ∈ V∗}, where the time
derivative w′ = ∂w/∂t is understood in the sense of vector-valued distributions. The
dual of V is V∗ = L2(0, T ;V ∗). It is known that the space W endowed with the graph
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norm ‖w‖W = ‖w‖V + ‖w′‖V∗ is a separable and reflexive Banach space. Identifying
H = L2(0, T ;H) with its dual, we obtain the continuous embeddings W ⊂ V ⊂ H ⊂
V∗. The embedding W ⊂ C([0, T ];H) is continuous, C([0, T ];H) being the space of
continuous functions on [0, T ] with values in H. The duality pairing between V∗ and V
is

〈w,v〉V∗×V =

∫ T

0
〈w(t),v(t)〉V ∗×V dt, w ∈ V∗, v ∈ V.

Define a space of fourth order tensor fields,

Q∞ = {E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d}.

This is a real Banach space with the norm

‖E‖Q∞ =
∑

0≤i,j,k,l≤d
‖Eijkl‖L∞(Ω).

Now we introduce assumptions on the data in the study of Problem 1.1. For the
viscosity operator A : Ω× Sd → Sd, we assume

(a) there exists LA > 0 such that for all ε1, ε2 ∈ Sd and a.e. x ∈ Ω,

‖A(x, ε1)−A(x, ε2)‖ ≤ LA‖ε1 − ε2‖;
(b) there exists mA > 0 such that for all ε1, ε2 ∈ Sd and a.e. x ∈ Ω,

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA‖ε1 − ε2‖2;

(c) the mapping x 7→ A(x, ε) is measurable on Ω, for all ε ∈ Sd;
(d) A(x,0) = 0 a.e. x ∈ Ω.

(2.2)

For the elasticity operator B : Ω× Sd → Sd, we assume
(a) there exists LB > 0 such that for all ε1, ε2 ∈ Sd and a.e. x ∈ Ω,

‖B(x, ε1)− B(x, ε2)‖ ≤ LB‖ε1 − ε2‖;
(b) the mapping x 7→ B(x, ε) is measurable on Ω, for all ε ∈ Sd;
(c) B(x,0) = 0 a.e. x ∈ Ω.

(2.3)

For the relaxation operator C, we assume

C ∈ C(0, T ; Q∞). (2.4)

For the potential function jν : Γ3 × R→ R, we assume

(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there

exists ē ∈ L2(Γ3) such that jν(·, ē(·)) ∈ L1(Γ3);

(b) jν(x, ·) is Lipschitz continuous on R for a.e. x ∈ Γ3;

(c) |∂jν(x, r)| ≤ c̄0 for a.e. x ∈ Γ3, for all r ∈ R with c̄0 ≥ 0;

(d) j0
ν(x, r1; r2 − r1) + j0

ν(x, r2; r1 − r2) ≤ β̄|r1 − r2|2

for a.e. x ∈ Γ3, all r1, r2 ∈ R with β̄ ≥ 0.

(2.5)
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For the damper coefficient φ : Γ3 × R→ R+, we assume

(a) the mapping x 7→ φ(x, r) is measurable on Γ3, for any r ∈ R;

(b) there are constants φ1, φ2 such that 0 < φ1 ≤ φ(x, r) ≤ φ2

for all r ∈ R and a.e. x ∈ Γ3;

(c) there exists Lφ > 0 such that for all r1, r2 ∈ R and a.e. x ∈ Γ3,

|φ(x, r1)− φ(x, r2)| ≤ Lφ|r1 − r2|.

(2.6)

For the friction bound Fb : Γ3 × R→ R+, we assume
(a) the mapping x 7→ Fb(x, r) is measurable on Γ3, for any r ∈ R;

(b) there exists LFb
> 0 such that for all r1, r2 ∈ R and a.e. x ∈ Γ3,

|Fb(x, r1)− Fb(x, r2)| ≤ LFb
|r1 − r2|;

(c) the mapping x 7→ Fb(x, 0) belongs to L2(Γ3).

(2.7)

Finally, for the densities of body forces, surface tractions and the initial data, we assume

f0 ∈ L2(0, T ;L2(Ω;Rd)), f2 ∈ L2(0, T ;L2(Γ2;Rd)), u0,w0 ∈ V. (2.8)

Define a function f : (0, T )→ V ∗ by

〈f(t),v〉V ∗×V = (f0(t),v)H + (f2(t),v)L2(Γ2;Rd), v ∈ V, a.e. t ∈ (0, T ). (2.9)

Through a standard derivation, we have the following variational formulation of Prob-
lem 1.1 (cf. [20]).

Problem 2.1. Find a displacement field u : (0, T )→ V such that for a.e. t ∈ (0, T ),

〈u′′(t),v − u′(t)〉V ∗×V + (Aε(u′(t)), ε(v − u′(t)))Q

+ (Bε(u(t)), ε(v − u′(t)))Q +
(∫ t

0
C(t− s)ε(u′(s)) ds, ε(v − u′(t))

)
Q

+

∫
Γ3

Fb

(∫ t

0
‖uτ (s)‖ds

)
(‖vτ‖ − ‖u′τ (t)‖) dΓ

+

∫
Γ3

φ(uν(t)) j0
ν(u′ν(t); vν − u′ν(t)) dΓ

≥〈f(t),v − u′(t)〉V ∗×V , ∀v ∈ V, (2.10)

and
u(0) = u0, u′(0) = w0. (2.11)

The unique solvability of Problem 2.1 is provided in the following result ([12, The-
orem 13]).

Theorem 2.1. Assume (2.2)-(2.8). If

mA > β̄φ2‖γ‖2, (2.12)

then Problem 2.1 has a unique solution with regularity u ∈ V, u′ ∈ W.
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For the numerical approximation of the problem, it is convenient to reformulate
the dynamic history-dependent variational-hemivariational inequality in terms of the
velocity variable

w = u′. (2.13)

By using the initial value condition (2.11), we can recover u from w as follows:

u(t) = u0 + (Iw)(t), (2.14)

where

(Iw)(t) =

∫ t

0
w(s)ds. (2.15)

Then Problem 2.1 can be equivalently stated as follows.

Problem 2.2. Find a velocity field w ∈ W such that for a.e. t ∈ (0, T ),

〈w′(t),v −w(t)〉V ∗×V + (Aε(w(t)), ε(v −w(t)))Q

+ (Bε(u0 + (Iw)(t)), ε(v −w(t)))Q +
(∫ t

0
C(t− s)ε(w(s)) ds, ε(v −w(t))

)
Q

+

∫
Γ3

Fb

(∫ t

0
‖u0,τ + (Iw)(s)τ‖ds

)
(‖vτ‖ − ‖wτ (t)‖) dΓ

+

∫
Γ3

φ(u0,ν + (Iw)(t)ν) j0
ν(wν(t); vν − wν(t)) dΓ

≥〈f(t),v −w(t)〉V ∗×V , ∀v ∈ V, (2.16)

and
w(0) = w0. (2.17)

3. A fully discrete scheme and error estimate

In this section, we introduce a fully discrete scheme for the variational-
hemivariational inequality formulated in Problem 2.2 and provide a result on error
estimate. First, we recall a discrete Gronwall inequality (cf. [14, Lemma 7.26]) that
will be used later in error analysis.

Lemma 3.1. Let T > 0 be given. For a positive integer N , define k = T/N . Assume that
{gn}Nn=1 and {en}Nn=1 are two sequences of nonnegative numbers satisfying

en ≤ c̄gn + c̄

n∑
j=1

kej , n = 1, · · · , N,

for a positive constant c̄ independent of N or k. Then, there exists a positive constant c,
independent of N or k, such that

max
1≤n≤N

en ≤ c max
1≤n≤N

gn.
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We will also make use of the modified Cauchy-Schwarz inequality with an arbitrary
ε > 0:

a b ≤ ε a2 + c b2, a, b ∈ R, (3.1)

where the constant c > 0 depends on ε; indeed, we may simply take c = 1/(4 ε).
Let V h be a finite dimensional subspace of V , where h > 0 denotes a spatial dis-

cretization parameter. In addition, we consider an equidistant time grid with abscissae
tn = nk, where n = 0, 1, · · · , N , N ∈ N, and the constant step-size k = T/N . For a time
continuous function g = g(t), we write gn = g(tn) for n = 0, 1, · · · , N . For convenience,
we assume

f0 ∈ C([0, T ];L2(Ω;Rd)), f2 ∈ C([0, T ];L2(Γ2;Rd)). (3.2)

Then f ∈ C([0, T ];V ∗).
We use the left rectangle formula in each subinterval [tj , tj+1] of [0, T ] to approxi-

mate the history-dependent integral term in Problem 2.2:

∫ tn

0
C(tn − s)ε(w(s)) ds ≈ k

n−1∑
j=0

C(tn − tj)ε(wj).

The initial values u0 and w0 will be approximated by their V -orthogonal projections
into V h: uh0 ,w

h
0 ∈ V h such that

(uh0 − u0,v
h)V = 0, ∀vh ∈ V h, (3.3a)

(wh
0 −w0,v

h)V = 0, ∀vh ∈ V h. (3.3b)

The integration operator I of (2.15) will be approximated by the discrete operator Ik,
defined by the formula

(Ikw)n = k
n−1∑
j=0

wj (3.4)

for a continuous function w on [0, T ], where wj = w(tj), and by the formula

(Ikwhk)n = k

n−1∑
j=0

whk
j (3.5)

for a discrete function

whk = {whk
0 , · · · ,whk

N }.

Then the numerical scheme we consider is the following.
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Problem 3.1. Find a discrete velocity field whk = {whk
0 , · · · ,whk

N } such that for 1 ≤
n ≤ N ,(whk

n −whk
n−1

k
,vh −whk

n

)
H

+ (Aε(whk
n ), ε(vh −whk

n ))Q

+ (Bε(uh0 + (Ikwhk)n), ε(vh −whk
n ))Q + k

n−1∑
j=0

(
C(tn − tj)ε(whk

j ), ε(vh −whk
n )
)
Q

+

∫
Γ3

Fb

(
k

n−1∑
j=0

‖uh0,τ + (Ikwhk)j,τ‖
)

(‖vhτ‖ − ‖whk
n,τ‖) dΓ

+

∫
Γ3

φ(uh0,ν + (Ikwhk)ν) j0
ν(whkn,ν ; vhν − whkn,ν) dΓ

≥〈fn,vh −whk
n 〉V ∗×V , ∀vh ∈ V h, (3.6)

and
whk

0 = wh
0 . (3.7)

In the rest of the paper, we use c for a generic positive constant whose value may
change in various inequalities, but it is independent of h and k. Let us first show the
existence of a unique solution to Problem 3.1.

Theorem 3.1. Keep the assumptions of Theorem 2.1 and assume (3.2), Problem 3.1 has
a unique solution.

Proof. We rewrite Problem 3.1 as(whk
n

k
,vh −whk

n

)
H

+ (Aε(whk
n ), ε(vh −whk

n ))Q

+

∫
Γ3

Fb

(
k
n−1∑
j=0

‖uh0,τ + (Ikwhk)j,τ‖
)

(‖vhτ‖ − ‖whk
n,τ‖) dΓ

+

∫
Γ3

φ(uh0,ν + (Ikwhk)n,ν) j0
ν(whkn,ν ; vhν − whkn,ν) dΓ

≥`n(vh −whk
n ), (3.8)

where

`n(vh) =
(whk

n−1

k
,vh
)
H
− (Bε(uh0 + (Ikwhk)n), ε(vh))Q

− k
n−1∑
j=0

(
C(tn − tj)ε(whk

j ), ε(vh)
)
Q

+ 〈fn,vh〉V ∗×V .

We conduct an induction argument. The initial value whk
0 is given by (3.7). Suppose

whk
0 , · · · ,whk

n−1 are known. Let us show that (3.8) has a unique solution whk
n . For this
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purpose, introduce an operator Ah : V h → (V h)∗ by

〈Ahwh,vh〉(V h)∗×V h = (Aε(wh), ε(vh))Q +
(wh

k
,vh
)
H
, wh,vh ∈ V h,

and consider the following variational-hemivariational inequality

〈Ahwhk
n ,v

h −whk
n 〉(V h)∗×V h +

∫
Γ3

Fb

(
k

n−1∑
j=0

‖uh0,τ + (Ikwhk)j,τ‖
)

(‖vhτ‖ − ‖whk
n,τ‖) dΓ

+

∫
Γ3

φ(uh0,ν + (Ikwhk)n,ν) j0
ν(whkn,ν ; vhν − whkn,ν) dΓ

≥`n(vh −whk
n ), ∀vh ∈ V h. (3.9)

Under the assumptions (2.2)-(2.8) and (2.12), it follows from a well-posedness result
on elliptic variational-hemivariational inequalities (cf. [25, Theorem 84]) for K = V h

that there exists a unique solution whk
n ∈ V h of the Problem (3.9). �

For an error analysis of the numerical method, we will assume the smoothness

w ∈ H1(0, T ;V ) ∩H2(0, T ;V ∗), (3.10)

which implies that
w ∈ C([0, T ];V ).

Moreover, the first term in (2.16) can be replaced by

(w′(t),v −w(t))H .

We first set t = tn and v = whk
n in (2.16) and deduce that

(Aε(wn), ε(wn −whk
n ))Q

≤(w′n,w
hk
n −wn)H + (Bε(u0 + (Iw)n), ε(whk

n −wn))Q

+
(∫ tn

0
C(tn − s)ε(w(s)) ds, ε(whk

n −wn)
)
Q

+

∫
Γ3

Fb

(∫ tn

0
‖u0,τ + (Iw)(s)τ‖ ds

)
(‖whk

n,τ‖ − ‖wn,τ‖) dΓ

+

∫
Γ3

φ(u0,ν + (Iw)n,ν) j0
ν(wn,ν ;whkn,ν − wn,ν) dΓ− 〈fn,whk

n −wn〉V ∗×V . (3.11)

By (2.2)(b), we have for any vhn ∈ V h

mA‖wn −whk
n ‖2V

≤(Aε(wn)−Aε(whk
n ), ε(wn − vhn))Q + (Aε(wn), ε(vhn −wn))Q

+ (Aε(wn), ε(wn −whk
n ))Q + (Aε(whk

n ), ε(whk
n − vhn))Q. (3.12)
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From (3.6),

(Aε(whk
n ), ε(whk

n − vhn))Q

≤1

k

(
whk
n −whk

n−1,v
h
n −whk

n

)
H

+ (Bε(uh0 + (Ikwhk)n), ε(vhn −whk
n ))Q

+ k
n−1∑
j=0

(
C(tn − tj)ε(whk

j ), ε(vhn −whk
n )
)
Q

+

∫
Γ3

Fb

(
k

n−1∑
j=0

‖uh0,τ + (Ikwhk)j,τ‖
)

(‖vhn,τ‖ − ‖whk
n,τ‖) dΓ

+

∫
Γ3

φ(uh0,ν + (Ikwhk)n,ν) j0
ν(whkn,ν ; vhn,ν − whkn,ν) dΓ− 〈fn,vhn −whk

n 〉V ∗×V . (3.13)

Denote the error

en = wn −whk
n .

By using (3.11) and (3.13) in (3.12), we obtain

mA‖en‖2V ≤(Aε(wn)−Aε(whk
n ), ε(wn − vhn))Q +

(
w′n −

wn −wn−1

k
,whk

n − vhn
)
H

− 1

k
(en − en−1, en)H +

1

k

(
en − en−1,wn − vhn

)
H

+Rn(vhn)

+ I1 + I2 + I3, (3.14)

where

I1 = (Bε(u0 + (Iw)n)− Bε(uh0 + (Ikwhk)n), ε(whk
n − vhn))Q

+
(∫ tn

0
C(tn − s)ε(w(s)) ds− k

n−1∑
j=0

C(tn − tj)ε(whk
j ), ε(whk

n − vhn)
)
Q
,

I2 =

∫
Γ3

φ(u0,ν + (Iw)n,ν) j0
ν(wn,ν ;whkn,ν − wn,ν) dΓ

+

∫
Γ3

φ(uh0,ν + (Ikwhk)n,ν) j0
ν(whkn,ν ; vhn,ν − whkn,ν) dΓ

−
∫

Γ3

φ(u0,ν + (Iw)n,ν) j0
ν(wn,ν ; vhn,ν − wn,ν) dΓ,

I3 =

∫
Γ3

Fb

(∫ tn

0
‖u0,τ + (Iw)(s)τ‖ ds

)
(‖whk

n,τ‖ − ‖vhn,τ‖) dΓ

+

∫
Γ3

Fb

(
k
n−1∑
j=0

‖uh0,τ + (Ikwhk)j,τ‖
)

(‖vhn,τ‖ − ‖whk
n,τ‖) dΓ,
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and the residual term is defined as

Rn(vhn) =
(
w′n,v

h
n −wn

)
H

+ (Aε(wn), ε(vhn −wn))Q

+ (Bε(u0 + (Iw)n), ε(vhn −wn))Q

+
(∫ tn

0
C(tn − s)ε(w(s)) ds, ε(vhn −wn)

)
Q

+

∫
Γ3

Fb

(∫ tn

0
‖u0,τ + (Iw)(s)τ‖ ds

)
(‖vhn,τ‖ − ‖wn,τ‖) dΓ

+

∫
Γ3

φ(u0,ν + (Iw)n,ν) j0
ν(wn,ν ; vhn,ν − wn,ν) dΓ

− 〈fn,vhn −wn〉V ∗×V . (3.15)

Lemma 3.2. Let w and whk be solutions to Problems 2.2 and 3.1, respectively. We have
the following bound for n = 1, · · · , N :

‖(Iw)n − (Ikwhk)n‖V ≤ c k‖w‖H1(0,T ;V ) + k
n−1∑
j=0

‖wj −whk
j ‖V . (3.16)

Proof. From the definitions of (Iw)n and (Ikwhk)n, we have

‖(Iw)n − (Ikwhk)n‖V ≤
∥∥∥∫ tn

0
w(s) ds− k

n−1∑
j=0

wj

∥∥∥
V

+ k

n−1∑
j=0

‖wj −whk
j ‖V

=
∥∥∥ n−1∑
j=0

∫ tj+1

tj

(
w(s)−wj

)
ds
∥∥∥
V

+ k
n−1∑
j=0

‖wj −whk
j ‖V

=
∥∥∥ n−1∑
j=0

∫ tj+1

tj

∫ s

tj

d

dτ

(
w(τ)

)
dτ ds

∥∥∥
V

+ k

n−1∑
j=0

‖wj −whk
j ‖V

≤k
n−1∑
j=0

∫ tj+1

tj

‖w′(τ)‖V dτ + k
n−1∑
j=0

‖wj −whk
j ‖V ,

i.e., (3.16) holds. �

The next lemma provides a result on the estimate for three history-dependent terms
in (3.14).

Lemma 3.3. Let w and whk
n be solutions to Problems 2.2 and 3.1. Under the regularity

assumption C ∈ H1(0, T ;L(Sd)), we have the following inequality:

I1 + I2 + I3 ≤c‖whk
n − vhn‖V

(
k‖w‖H1(0,T ;V ) + k

n−1∑
j=0

‖wj −whk
j ‖V + ‖u0 − uh0‖V

)
+ β̄φ2‖γ‖2‖en‖2V + c ‖wn − vhn‖L2(Γ3;Rd) (3.17)

for all vhn ∈ V h, n = 1, · · · , N .
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Proof. First, we derive an upper bound on I1. The term containing the operator C
can be bounded as follows:∥∥∥∫ tn

0
C(tn − s)ε(w(s)) ds− k

n−1∑
j=0

C(tn − tj)ε(whk
j )
∥∥∥
Q

≤
∥∥∥∫ tn

0
C(tn − s)ε(w(s)) ds− k

n−1∑
j=0

C(tn − tj)ε(wj)
∥∥∥
Q

+
∥∥∥k n−1∑

j=0

C(tn − tj)ε(wj)− k
n−1∑
j=0

C(tn − tj)ε(whk
j )
∥∥∥
Q

≤c
(
k‖w‖H1(0,T ;V ) + k

n−1∑
j=0

‖wj −whk
j ‖V

)
.

For the term containing operator B, by using (2.3)(a), we obtain(
Bε(u0 + (Iw)n)− Bε(uh0 + (Ikwhk)n)

)
≤LB(‖u0 − uh0‖V + ‖(Iw)n − (Ikwhk)n‖V ).

Using (3.16) we conclude that there is a constant c such that

I1 ≤ c‖whk
n − vhn‖V

(
k‖w‖H1(0,T ;V ) + k

n−1∑
j=0

‖wj −whk
j ‖V + ‖u0 − uh0‖V

)
. (3.18)

Next, we bound I2. By (2.5)(c), j0
ν(x, t, ξ; η) ≤ c0 |η|. Using the subadditivity of the

generalized directional derivative, (2.5)(d) and Cauchy-Schwarz inequality, it follows
that ∫

Γ3

[j0
ν(wn,ν ;whkn,ν − vhn,ν) + j0

ν(whkn,ν ; vhn,ν − whkn,ν)] dΓ

≤
∫

Γ3

[j0
ν(wn,ν ;whkn,ν − wn,ν) + j0

ν(whkn,ν ;wn,ν − whkn,ν)] dΓ

+

∫
Γ3

[j0
ν(wn,ν ;wn,ν − vhn,ν) + j0

ν(whkn,ν ; vhn,ν − wn,ν)] dΓ

≤β̄‖γ‖2‖wn −whk
n ‖2V + 2 c0

√
m(Γ3)‖wn − vhn‖L2(Γ3;Rd).

Moreover, using again the subadditivity of the generalized directional derivative, we
have ∫

Γ3

φ(u0,ν + (Iw)n,ν) j0
ν(wn,ν ;whkn,ν − wn,ν) dΓ

≤
∫

Γ3

φ(u0,ν + (Iw)n,ν)
[
j0
ν(wn,ν ;whkn,ν − vhn,ν) + j0

ν(wn,ν ; vhn,ν − wn,ν)
]
dΓ.
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Consequently, from (2.5) and (2.6) we have

I2 ≤
∫

Γ3

φ(u0,ν + (Iw)n,ν) j0
ν(wn,ν ;whkn,ν − vhn,ν) dΓ

+

∫
Γ3

φ(uh0,ν + (Ikwhk)n,ν) j0
ν(whkn,ν ; vhn,ν − whkn,ν) dΓ

≤
∫

Γ3

[
φ(u0,ν + (Iw)n,ν)− φ(uh0,ν + (Ikwhk)n,ν)

]
j0
ν(wn,ν ;whkn,ν − vhn,ν)

+ φ(uh0,ν + (Ikwhk)n,ν)
[
j0
ν(wn,ν ;whkn,ν − vhn,ν) + j0

ν(whkn,ν ; vhn,ν − whkn,ν)
]
dΓ

≤c̄0Lk‖γ‖2(‖u0 − uh0‖V + ‖(Iw)n − (Ikwhk)n‖V )‖whk
n − vhn‖V

+ φ2(β̄‖γ‖2‖wn −whk
n ‖2V + 2 c0

√
m(Γ3)‖wn − vhn‖L2(Γ3;Rd)). (3.19)

Finally, we bound I3, which is expressed as

I3 =

∫
Γ3

[
Fb

(∫ tn

0
‖u0,τ + (Iw)(s)τ‖ ds

)
− Fb

(
k
n−1∑
j=0

‖uh0,τ + (Ikwhk)j,τ‖
) ]

· (‖whk
n,τ‖ − ‖vhn,τ‖) dΓ.

By (2.7), ∣∣∣Fb(∫ tn

0
‖u0,τ + (Iw)(s)τ‖ ds

)
− Fb

(
k
n−1∑
j=0

‖uh0,τ + (Ikwhk)j,τ‖
) ∣∣∣

≤c
∣∣∣ ∫ tn

0
‖u0,τ + (Iw)(s)τ‖ ds− k

n−1∑
j=0

‖uh0,τ + (Ikwhk)j,τ‖
∣∣∣

≤c (I4 + I5) ,

where

I4 =
∣∣∣ ∫ tn

0
‖u0,τ + (Iw)(s)τ‖ ds− k

n−1∑
j=0

‖u0,τ + (Ikw)j,τ‖
∣∣∣,

I5 = k
∣∣∣ n−1∑
j=0

‖u0,τ + (Ikw)j,τ‖ −
n−1∑
j=0

‖uh0,τ + (Ikwhk)j,τ‖
∣∣∣.

Write ∫ tn

0
‖u0,τ + (Iw)(s)τ‖ ds− k

n−1∑
j=0

‖u0,τ + (Ikw)j,τ‖

=

n−1∑
j=0

∫ tj+1

tj

[
‖u0,τ + (Iw)(s)τ‖ − ‖u0,τ + (Ikw)j,τ‖

]
ds.
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Then,

I4 ≤
n−1∑
j=0

∫ tj+1

tj

∣∣∣‖u0,τ + (Iw)(s)τ‖ − ‖u0,τ + (Ikw)j,τ‖
∣∣∣ ds

≤
n−1∑
j=0

∫ tj+1

tj

∥∥∥(Iw)(s)τ − (Ikw)j,τ

∥∥∥ ds
=

n−1∑
j=0

∫ tj+1

tj

∥∥∥∫ t

tj

w′τ (s) ds
∥∥∥ dt

≤k
∫ tn

0
‖w′τ (s)‖ ds.

Easily,

I5 ≤ k
n−1∑
j=0

[
‖u0,τ − uh0,τ‖+

∥∥∥k j−1∑
i=0

wi,τ − k
j−1∑
i=0

whk
i,τ

∥∥∥ ].
Then,

I5 ≤ c ‖u0,τ − uh0,τ‖+ c k

n−1∑
j=0

‖wj,τ −whk
j,τ‖.

Summarizing,

|I3| ≤ c
∫

Γ3

(I4 + I5) ‖vhn −whk
n ‖ dΓ,

and then,

I3 ≤ c ‖vhn −whk
n ‖V

(
k‖w‖H1(0,T ;V ) + k

n−1∑
j=0

‖wj −whk
j ‖V + ‖u0 − uh0‖V

)
. (3.20)

From (3.18)-(3.20), we have (3.17). This finishes the proof. �

Now, we are ready to bound the other terms on the right side of (3.14). First,

(en − en−1, en)H =
1

2
(‖en‖2H − ‖en−1‖2H + ‖en − en−1‖2H)

≥1

2
(‖en‖2H − ‖en−1‖2H).

Thus,

−1

k
(en − en−1, en)H ≤ −

1

2k
(‖en‖2H − ‖en−1‖2H). (3.21)

Let

En = w′n −
wn −wn−1

k
.



584 H. L. Xuan, X. L. Cheng, W. M. Han and Q. C. Xiao

We note that

〈En,w
hk
n − vhn〉V ∗×V ≤ ‖En‖V ∗‖whk

n − vhn‖V .

For any ε > 0, by applying the modified Cauchy-Schwarz inequality (3.1), we obtain
that

〈En,w
hk
n − vhn〉V ∗×V ≤ ‖En‖V ∗(‖en‖V + ‖wn − vhn‖V )

≤ε‖en‖2V + c ‖En‖2V ∗ + c ‖wn − vhn‖2V . (3.22)

Moreover, from (2.2)(a) and applying the modified Cauchy-Schwarz inequality (3.1)
again, we have

(Aε(wn)−Aε(whk
n ), ε(wn − vhn))Q

≤LA‖wn −whk
n ‖V ‖wn − vhn‖V

≤ε ‖wn −whk
n ‖2V + c ‖wn − vhn‖2V . (3.23)

Then, by using inequalities (3.17), (3.21)-(3.23) on the right side of the inequality
(3.14) and taking ε > 0 sufficiently small, under assumption (2.12), we obtain the
following result

k‖en‖2V + ‖en‖2H − ‖en−1‖2H
≤ck(‖wn − vhn‖2V + ‖wn − vhn‖L2(Γ3;Rd) + ‖En‖2V ∗)

+ c k‖whk
n − vhn‖V

(
k‖w‖H1(0,T ;V ) + k

n−1∑
j=0

‖wj −whk
j ‖V + ‖u0 − uh0‖V

)
+
(
en − en−1,wn − vhn

)
H

+ c k |Rn(vhn)|.

Since

‖whk
n − vhn‖2V ≤ 2(‖whk

n −wn‖2V + ‖wn − vhn‖2V ),

it follows that

k‖en‖2V + ‖en‖2H − ‖en−1‖2H
≤c k (‖wn − vhn‖2V + ‖wn − vhn‖L2(Γ3;Rd) + ‖En‖2V ∗)

+ ck3‖w‖2H1(0,T ;V ) + ck2
n−1∑
j=0

‖wj −whk
j ‖2V

+ ck‖u0 − uh0‖2V + c
(
en − en−1,wn − vhn

)
H

+ ck|Rn(vhn)|. (3.24)
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We replace n by l in (3.24) and make a summation over l from 1 to n,

k
n∑
l=1

‖el‖2V + ‖en‖2H − ‖e0‖2H

≤c k
n∑
l=1

(‖wl − vhl ‖2V + ‖wl − vhl ‖L2(Γ3;Rd) + ‖El‖2V ∗ + |Rl(vhl )|)

+ ck2‖w‖2H1(0,T ;V ) + ck2
n∑
l=1

l−1∑
j=0

‖wj −whk
j ‖2V + c‖u0 − uh0‖2V

+ c
n∑
l=1

(
el − el−1,wl − vhl

)
H
.

For the term El, we have

El =
1

k

∫ tl

tl−1

(t− tl−1)w′′(t) dt.

It follows that

‖El‖2V ∗ ≤
1

k2

∫ tl

tl−1

(t− tl−1)2 dt

∫ tl

tl−1

‖w′′(t)‖2V ∗ dt =
k

3

∫ tl

tl−1

‖w′′(t)‖2V ∗ dt.

And then, we have

k
n∑
l=1

‖El‖2V ∗ ≤
k2

3
‖w′′‖2L2(0,T ;V ∗).

For the term
∑n

l=1

(
el − el−1,wl − vhl

)
H

, according to [14], we have

n∑
l=1

(
el − el−1,wl − vhl

)
H

≤1

2
(‖en‖2H + ‖wn − vhn‖2H)

+
k

2

n−1∑
l=1

(‖el‖2H + k−2‖(wl − vhl )− (wl+1 − vhl+1)‖2H)

+
1

2
(‖e0‖2H + ‖w1 − vh1‖2H).

Finally, we obtain the following inequality.

k
n∑
l=1

‖el‖2V + ‖en‖2H

≤ck
n∑
l=1

(‖wl − vhl ‖2V + |Rl(vhl )|+ ‖wl − vhl ‖L2(Γ3;Rd))
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+ ck2‖w‖2H1(0,T ;V ) + c‖u0 − uh0‖2V + ck2‖w‖2H2(0,T ;V ∗) + ck‖w0 −wh
0‖2V

+ c‖wn − vhn‖2H + ck−1
n−1∑
l=1

‖(wl − vhl )− (wl+1 − vhl+1)‖2H

+ c‖e0‖2H + c‖w1 − vh1‖2H + ck
n−1∑
l=0

(
‖el‖2H + k

l∑
j=1

‖wj −whk
j ‖2V

)
. (3.25)

For the discrete displacement,

uhkn = uh0 + k
n−1∑
j=0

wj ,

we have

k

n∑
l=1

‖ul − uhkl ‖2V ≤c(‖u0 − uh0‖2V + k2‖w‖2H1(0,T ;V ))

+ ck

n∑
l=1

k

l−1∑
j=0

‖wj −whk
j ‖2V . (3.26)

Combining (3.25) and (3.26), we have

k
n∑
l=1

‖ul − uhkl ‖2V + k
n∑
l=1

‖el‖2V + ‖en‖2H

≤ck
n∑
l=1

(‖wl − vhl ‖2V + |Rl(vhl )|+ ‖wl − vhl ‖L2(Γ3;Rd)) + ck‖e0‖2V

+ ck2‖w‖2H1(0,T ;V ) + c‖u0 − uh0‖2V + ck2‖w‖2H2(0,T ;V ∗) + c‖w1 − vh1‖2H

+ c‖wn − vhn‖2H + ck−1
n−1∑
l=1

‖(wl − vhl )− (wl+1 − vhl+1)‖2H + c‖e0‖2H

+ ck

n−1∑
l=0

(
‖el‖2H + k

l∑
j=1

‖wj −whk
j ‖2V + k

l∑
j=1

‖uj − uhkj ‖2V
)
.

Applying Gronwall lemma, we deduce that

max
1≤n≤N

‖en‖2H + k
N∑
n=1

‖en‖2V + k
N∑
n=1

‖un − uhkn ‖2V

≤ck2(‖w‖2H2(0,T ;V ∗) + ‖w‖2H1(0,T ;V ))

+ c(‖e0‖2H + ‖u0 − uh0‖2V + k‖e0‖2V ) + c max
1≤n≤N

Ẽn,
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where

Ẽn = inf
vh
l ∈V h

{
k

n∑
l=1

(‖wl − vhl ‖2V + |Rl(vhl )|+ ‖wl − vhl ‖L2(Γ3;Rd))

+ ‖wn − vhn‖2H + k−1
n−1∑
l=1

‖(wl − vhl )− (wl+1 − vhl+1)‖2H

+ ‖w1 − vh1‖2H
}
. (3.27)

Summarizing the above arguments, we have the following theorem.

Theorem 3.2. Let w and whk be solutions to Problems 2.2 and 3.1, respectively. Assume
(2.2)-(2.8), (2.12) and (3.2). Then under the regularity assumptions in Lemma 3.3 and
(3.10), we have the following inequality

max
1≤n≤N

‖wn −whk
n ‖2H + k

N∑
n=1

‖wn −whk
n ‖2V + k

N∑
n=1

‖un − uhkn ‖2V

≤ck2(‖w‖2H2(0,T ;V ∗) + ‖w‖2H1(0,T ;V ))

+ c(‖w0 −wh
0‖2H + ‖u0 − uh0‖2V + k‖w0 −wh

0‖2V ) + c max
1≤n≤N

Ẽn, (3.28)

where

Ẽn = inf
vh
l ∈V h

{
k

n∑
l=1

(‖wl − vhl ‖2V + |Rl(vhl )|+ ‖wl − vhl ‖L2(Γ3;Rd))

+ ‖wn − vhn‖2H + k−1
n−1∑
l=1

‖(wl − vhl )− (wl+1 − vhl+1)‖2H

+ ‖w1 − vh1‖2H
}
.

Theorem 3.2 is valid for any finite dimensional subspace V h of V . We will apply
the finite element space. For simplicity, we assume that Ω is a polygonal or polyhedral
domain and let T h be a regular family of finite element triangulations of Ω into triangles
or tetrahedrons. For an element T ∈ T h, denote by P1(T ;Rd) the space of polynomials
of a total degree less than or equal to one in T . Then we can use the linear element
space of piecewise continuous affine functions

V h = {vh ∈ C(Ω;Rd) : vh|T ∈ P1(T ;Rd), ∀T ∈ T h, vh = 0 on Γ1}. (3.29)

Corollary 3.1. Under the assumptions stated in Theorem 3.2. Assume Ω is a polygonal or
polyhedral domain, and let {V h} be the family of linear element spaces defined by (3.29),
corresponding to a regular family of finite element triangulations of Ω into triangles or
tetrahedrons. Assume further that

w ∈ C([0, T ];H2(Ω;Rd)), w|Γ3
∈ C([0, T ];H2(Γ3;Rd)).
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Then we have the following optimal order error estimate:

max
1≤n≤N

‖wn −whk
n ‖2H + k

N∑
n=1

‖wn −whk
n ‖2V

+ k
N∑
n=1

‖un − uhkn ‖2V ≤ c(k2 + h2). (3.30)

Proof. We apply the standard finite element interpolation error estimates ([1,5,8]).
Take vhl ∈ V h to be the finite element interpolation of wl. Then, we have

‖wl − vhl ‖V ≤ ch‖wl‖H2(Ω;Rd), 0 ≤ l ≤ N. (3.31)

Notice that vhl interpolates vl on Γ3. We have the following error estimate [14]:

‖wl − vhl ‖L2(Γ3)d ≤ ch2‖wl‖H2(Γ3;Rd).

Moreover, note that (vhl − vhl+1) is the finite element interpolation of (wl −wl+1), then

‖(wl − vhl )− (wl+1 − vhl+1)‖2H ≤ ch2‖wl −wl+1‖2V ≤ ch2k

∫ tl+1

tl

‖w′(t)‖2V dt,

and then, we have

k−1
n−1∑
l=1

‖(wl − vhl )− (wl+1 − vhl+1)‖2H

≤ch2‖w‖2H1(0,T ;H2(Ω;Rd)), 1 ≤ n ≤ N. (3.32)

It remains to consider Rl(vhl ). Similar to [14, Section 8.1], it can be shown that under
the stated regularity assumptions, we have the equality (1.1b) in V ∗. Apply both sides
of (1.1b) to an arbitrary v ∈ V , integrate over Ω and integrate by parts to get

〈w′(t),v〉V ∗×V +

∫
Ω
σ(t) · ε(v) dx = 〈f(t),v〉V ∗×V +

∫
Γ3

σ(t)ν · v da.

Thus, the term Rl(v
h
l ) is simplified to

Rl(v
h
l ) =

∫
Γ3

σlν · (vhl −wl) da+

∫
Γ3

φ(u0,ν + (Iw)l,ν)j0
ν(wl,ν ; vhl,ν − wl,ν) dΓ

+

∫
Γ3

Fb

(∫ tl

0
‖u0,τ + (Iw)(s)τ‖ ds

)
(‖vhl,τ‖ − ‖wl,τ‖) dΓ.

Therefore,
|Rl(vhl )| ≤ c‖vhl −wl‖L2(Γ3)d . (3.33)
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Finally, we have

max
1≤n≤N

‖wn − vhn‖H ≤ ch2‖w‖C([0,T ];H2(Ω;Rd)). (3.34)

Combining (3.31)-(3.34) and (3.28), we obtain the optimal order error estimate

max
1≤n≤N

‖wn −whk
n ‖2H + k

N∑
n=1

‖wn −whk
n ‖2V + k

N∑
n=1

‖un − uhkn ‖2V ≤ c(k2 + h2).

This concludes the proof of Corollary 3.1. �

Finally, we note that for the error in the displacement,

un − uhkn = (u0 − uhk0 ) +
[
(Iw)n − (Ikwhk)n

]
.

So from Corollary 3.1 and Lemma 3.2, we have the next result.

Corollary 3.2. Keep the assumptions stated in Corollary 3.1. Then we have the optimal
order error estimate

max
1≤n≤N

‖un − uhkn ‖V ≤ c (k + h) . (3.35)

4. Numerical example

In this section, some numerical results are presented to illustrate the behavior of the
solution of the history-dependent frictional contact problem Problem 1.1. Particular
attention is paid on the numerical convergence orders.

Figure 1: Reference configuration of the two-dimensional example.
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We consider the physical setting shown in Fig. 1. Here, the domain Ω = (0, 3) ×
(0, 1.5), and its boundary is split into Γ1 = {0} × (0, 1.5), Γ2 = ((0, 3)× {1.5}) ∪ ({3} ×
(0, 1.5)), and Γ3 = (0, 3) × {0}. The time interval of interest is [0, T ] with T = 1s. For
the force densities, we take f0 = (0, 0)N/m2 in Ω, f2 = (0,−30)N/m on (0, 3)×{1.5}.
The compressible material response is governed by a linearly viscoelastic constitutive
law with history-dependent operator in which the viscosity tensor A and the elasticity
tensor B are given by

(Aτ)αβ = µ1(τ11 + τ22)δαβ + µ2ταβ, 1 ≤ α, β ≤ 2, ∀τ ∈ S2,

(Bτ)αβ =
E

1 + κ
ταβ +

Eκ

(1− κ)(1− 2κ)
(τ11 + τ22)δαβ, 1 ≤ α, β ≤ 2, ∀τ ∈ S2,

where µ1 and µ2 are viscosity constants, E and κ are Young’s modulus and Poisson’s
ratio of the material, and δαβ denotes the Kronecker symbol. In the numerical example,
we take µ1 = 25, µ2 = 50, E = 1000N/m, and κ = 0.3. The relaxation tensor C(s) =
(0.5 + s)3I, where I is the identity matrix.

We assume φ(uν(t)) = 1. Let jν : R→ R be defined by

jν(r) =


0, if r < 0,

−1

2
r2 + 2r, if 0 ≤ r ≤ 1,

r +
1

2
, if r > 1.

(4.1)

The Clarke subdifferential of this function is given by

∂jν(r) =


0, if r < 0,

[0, 2], if r = 0,

−r + 2, if 0 < r ≤ 1,

1, if r > 1.

(4.2)

For the friction law, we take

Fb(z) = (a− b)e−αz + b. (4.3)

Then,

−στ =


(b− a)e−αz − b, if u′τ < 0,

[(b− a)e−αz − b, (a− b)e−αz + b], if u′τ = 0,

(a− b)e−αz + b, if u′τ > 0,

(4.4)

where

z =

∫ t

0
‖uτ‖ ds.

We use a Primal-Dual Active Set Strategy to solve the discrete problem. We can see
the details in paper [4].
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Figure 2: Deformed configuration and interface forces on Γ3 at t = 1s.

Figure 3: Results with a = 0.1 and b = 0.1 (left), and with a = 1 and b = 1 (right).

In Fig. 2, we plot the deformed configuration as well as the interface forces on Γ3

during the dynamic compression process at time t = 1s. We plot the deformed meshes
and the interface forces on Γ3 for coefficient a = 1 and b = 0.01. In Fig. 3 we plot the
deformed meshes and the interface forces on Γ3 for two group of the same value of the
coefficients a = b = 0.1 and a = b = 1, respectively. In the case a = b = 0.1, we note
that the contact nodes are in slip contact since, there, the friction bound is low and,
therefore, is reached. In contrast, in the case a = b = 1 the friction bound is higher
and, as a consequence, all the contact nodes are in stick status.

Table 1: H1-norm errors.

h + k 0.03125 0.0625 0.125 0.25 0.5 1
‖u− uhk‖ 0.8628× 10−2 0.2024× 10−1 0.4072× 10−1 0.8689× 10−1 0.1600 0.3525
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0.0313 0.0625 0.125 0.25 0.5 1

0.0086

0.0202

0.0407

0.0869

0.1600

0.3525

Figure 4: H1-norm errors.

To examine the numerical convergence orders, we computed a sequence of numer-
ical solutions by using uniform discretizations of the problem domain according to the
spatial discretization parameter h and time step k. For instance, the deformed config-
uration and the interface forces plotted in Fig. 2 correspond to the choices h = 3/128
and k = 1/128. The numerical error ‖u− uhk‖V is computed for several discretization
parameters of h and k. Here, the boundary Γ3 of Ω is divided into 3/h equal parts.
We start with h = 3/4 and k = 1/4, which are successively halved. The numerical
solution corresponding to h = 3/256 and k = 1/256 was taken as the “exact” solution,
used to compute the errors of the numerical solutions. The numerical results are pre-
sented in Table 1 and Fig. 4. Observe that the error ‖u−uhk‖V clearly displays a linear
convergence pattern; This matches well the theoretical prediction from (3.35).
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