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a b s t r a c t

We consider an elastostatic frictional contact problem with a normal compliance con-
dition and Coulomb’s law of dry friction, which can be modeled by a quasi-variational
inequality. As a generalization of the finite element method, the virtual element method
(VEM) can handle general polygonal meshes with hanging nodes, which are very suitable
for solving problems with complex geometries or applying adaptive mesh refinement
strategy. In this paper, we study the VEM for solving the frictional contact problem
with the normal compliance condition. Existence and uniqueness results are obtained
for the discretized scheme. Furthermore, a priori error analysis is established, and an
optimal order error bound is derived for the lowest order virtual element method. One
numerical example is given to show the efficiency of the method and to illustrate the
theoretical error estimate.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Processes of frictional contact between deformable bodies or between a deformable body and a rigid foundation are
ommonly seen in the industry and daily life. A considerable effort has been made on modeling and numerical analysis
f the frictional contact problems. In this paper, we consider the numerical solution of a contact problem that describes
he contact between a linearly elastic body and a deformable foundation, with the normal compliance condition and
oulomb’s law of dry friction on the contact boundary. The contact problem is highly nonlinear, and its weak formulation
s quasi-variational inequality. Solution existence and uniqueness for the quasi-variational inequality can be established
y using the fixed point argument [1,2]. We note that inverse problems for nonlinear quasi-variational inequalities have
een studied in [3,4]; finite element methods have been applied for solving quasi-variational inequalities, and a priori
rror estimates can be found in [5–8]. Recently, in [9], several discontinuous Galerkin methods with linear elements are
ntroduced for solving a frictional contact problem with normal compliance, and a priori error estimates are established
n [10]. Nitsche-type methods can be introduced for solving contact problems in the form of variational inequalities,
.g., [11–13].
It is known that the conforming finite element method cannot handle general polygonal meshes. To overcome this

ifficulty, the virtual element method (VEM) is proposed in [14], and its elemental level function space contains both
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polynomials and non-polynomial functions. The method has advantages in handling very general (including non-convex)
polygonal elements, so we can solve problems on complex geometries with ease. Through the introduction of a projection
operator from a virtual element space to a polynomial space, the stiffness matrix can be formed without actually
computing the non-polynomial functions. The method has been applied to solve a variety of scientific and engineering
problems [15–20]. In particular, it has been applied to solve variational inequalities. In [21], the virtual element method
is applied to solve a two-body contact problem, but no error estimate is derived. The VEM is applied to solve the obstacle
problem and simplified friction problem in [22,23], respectively, and a priori error analysis is established. The VEM
is studied for a frictional contact problem in [24]. In [25,26], the VEM is developed and analyzed for solving elliptic
hemivariational inequalities with applications to contact mechanics. In [27], a general framework is established to study
the conforming and nonconforming virtual element methods for solving a Kirchhoff plate contact problem with friction,
and a priori error estimates are derived. The nonconforming VEM is studied to solve a hemivariational inequality for the
stationary Stokes equations with a nonlinear slip boundary condition in [28]. In this paper, we construct and analyze the
virtual element method for a frictional contact problem with normal compliance. Under some reasonable assumptions,
existence and uniqueness results are proved for the VEM scheme. Error estimates are derived for the numerical solution,
and an optimal convergence order is obtained for the lowest-order virtual element. Furthermore, numerical results show
that the VEM scheme works well on general polygonal elements.

The rest of the paper is organized as follows. In Section 2, we introduce the frictional contact problem with normal
ompliance, and present its weak formulation as a quasi-variational inequality. In Section 3, we give the virtual element
ethod scheme for the problem. In Section 4, we derive an a priori error estimate, which is of optimal order for the lowest
rder element. In Section 5, computer simulation results are reported to provide numerical evidence of the theoretically
redicted optimal convergence order.

. A frictional contact problem with normal compliance

In this section, we introduce an elastostatic contact problem, which is modeled with the normal compliance condition
nd Coulomb’s law of dry friction. Then we present the weak formulation of the problem.

.1. Contact problem

Let Ω ⊂ Rd (d = 2, 3) be an open bounded connected domain with a Lipschitz boundary Γ that is divided into three
arts ΓD, ΓF and ΓC with ΓD, ΓF and ΓC relatively open and mutually disjoint such that meas (ΓD) > 0. The displacement

u : Ω ⊂ Rd
→ Rd is a vector-valued function. The linearized strain tensor is ε(u) =

1
2 (∇u + (∇u)t ). The symbol Sd

denotes the space of 2nd-order symmetric tensors on Rd with the inner product σ : τ = σijτij. Throughout the paper, we
adopt the summation convention over repeated indices, e.g., σijτij stands for

∑d
i,j=1 σijτij. Let ν be the unit outward normal

to Γ . For a vector v defined on the boundary, denote its normal component and tangential component by vν = v · ν and
vτ = v − vνν on the boundary. Similarly, for a tensor-valued function σ : Ω → Sd, we denote its normal component
σν = (σν) · ν and tangential part στ = σν − σνν. Then, we have

(σν) · v = (σνν + στ ) · (vνν + vτ ) = σνvν + στ · vτ .

For a tensor-valued function σ, define its divergence by div σ = (∂jσij)1≤i≤d. Then, for any symmetric tensor σ and any
vector field v, both are sufficiently smooth, we have the following integration by parts formula∫

Ω

divσ · v dx =

∫
Γ

σν · v ds −

∫
Ω

σ : ε(v) dx. (2.1)

We consider a static contact problem with a deformable foundation for the deformation of a linearly elastic body
occupying the domain Ω . Following [1,2,9], the pointwise formulation of the contact problem is to find a displacement
field u and a stress field σ such that

σ = Cε(u) in Ω, (2.2)
−div σ = f 1 in Ω, (2.3)
u = 0 on ΓD, (2.4)
σν = f 2 on ΓF , (2.5)

−σν = pν(uν − ga) on ΓC , (2.6)
|στ | ≤ pτ (uν − ga) on ΓC , (2.7)

στ = −pτ (uν − ga) uτ/|uτ | if uτ ̸= 0 on ΓC , (2.8)
|στ | < pτ (uν − ga) ⇒ uτ = 0 on ΓC . (2.9)

Here, (2.2) represents the constitutive law of the linearly elastic material, and we assume the bounded, symmetric and
positive definite elasticity tensor C is constant. (2.3) is the equilibrium equation in Ω under volume forces of density
2
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f 1 ∈ [L2(Ω)]d. Dirichlet boundary condition (2.4) implies that the elastic body is clamped on ΓD, and Neumann boundary
condition (2.5) means that surface tractions of density f 2 ∈ [L2(ΓF )]d act on ΓF . The function ga denotes the initial gap
between the body and the deformable foundation. On contact boundary ΓC , the normal compliance condition (2.6) depicts
that the reactive normal pressure depends on penetration of the elastic body in the foundation. The Coulomb’s law of dry
friction is described by relations (2.7)–(2.9), which states that the magnitude of the shear stress στ cannot exceed the
maximum frictional resistance pτ (uν − ga). There is no relative sliding between the body and the foundation when the
magnitude of στ is less than the upper bound pτ (uν − ga); relative sliding may occur when the magnitude of στ reaches
he critical value pτ (uν − ga), and in that case, the direction of στ is opposite to that of uτ . For the functions pe (e = ν, τ ),
e assume⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a) pe : ΓC × R → R+;

(b) there exists Le > 0, s.t. |pe(x, r1) − pe(x, r2)| ≤ Le|r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ ΓC ;

(c) the mapping x ↦→ pe(x, r) is measurable on ΓC for any r ∈ R;

(d) pe(x, r) = 0 ∀ r ≤ 0, a.e. x ∈ ΓC .

(2.10)

he gap function satisfies

ga ∈ L2(ΓC ), ga(x) ≥ 0 a.e. x ∈ ΓC . (2.11)

In what follows, c denotes a positive constant independent of mesh-size, which may take different values at different
ccurrences.

.2. Weak formulation

The contact problem will be studied through its weak formulation. For this purpose, we define a function space

V =
{
v ∈ [H1(Ω)]d : v|ΓD = 0

}
or the displacement field. Since meas(ΓD) > 0, Korn’s inequality holds (cf. [29, p. 79]): for some constant c > 0 depending
nly on Ω and ΓD such that

∥v∥[H1(Ω)]d ≤ c
∫

Ω

ε(v) : ε(v) dx ∀ v ∈ V . (2.12)

onsequently, V is a Hilbert space with the norm defined by the relation

∥v∥2
V :=

∫
Ω

ε(v) : ε(v) dx ∀ v ∈ V ,

nd the norm ∥ · ∥V is equivalent to the standard norm ∥ · ∥[H1(Ω)]d over V . By a standard approach, the following weak
ormulation can be derived for the contact problem (2.2)–(2.9) [2]:

roblem (P). Find a displacement field u ∈ V such that

a(u, v − u) + j(u, v) − j(u, u) ≥ (f , v − u) ∀ v ∈ V , (2.13)

where

a(u, v) =

∫
Ω

Cε(u) : ε(v) dx ∀ u, v ∈ V ,

(f , v) =

∫
Ω

f 1 · v dx +

∫
ΓF

f 2 · v ds ∀ v ∈ V , (2.14)

and

j(u, v) = jν(u, v) + jτ (u, v) ∀ u, v ∈ V . (2.15)

Here,

jν(u, v) =

∫
ΓC

pν(uν − ga)vν ds,

jτ (u, v) =

∫
ΓC

pτ (uν − ga)|vτ | ds.
3
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Fig. 1. Local degrees of freedom of V K
h for k = 1 (left) and k = 2 (right).

ote that the functional j depends on uν , so the problem is highly nonlinear. By the assumption (2.10), we can get the
ollowing inequality (Theorem 5.38 in [2])

j(u1, v2) − j(u1, v1) + j(u2, v1) − j(u2, v2)

≤ (Lν + Lτ )∥u1 − u2∥L2(ΓC )∥v1 − v2∥L2(ΓC ) ∀ u1, u2, v1, v2 ∈ V . (2.16)

Because the elasticity tensor is bounded and positive definite, we see that there exist two constants, m > 0 and M > 0,
depending on some parameters raised in C, such that

m∥v∥2
V ≤ a(v, v) ≤ M∥v∥2

V . (2.17)

By the trace theorem, there exists a positive constant c3, depending only on Ω , such that

∥v∥[L2(Γ )]d ≤ c3∥v∥[H1(Ω)]d ∀ v ∈ [L2(Γ )]d. (2.18)

Combining (2.12) and (2.18), there exists a constant C0 > 0, such that

∥v∥L2(ΓC )d ≤ C0∥v∥V ∀ v ∈ V . (2.19)

Under the assumptions (2.10)–(2.11) and the smallness condition C2
0 (Lν+Lτ ) < m, for any f 1 ∈ [L2(Ω)]d and f 2 ∈ [L2(ΓF )]d,

the quasi-variational inequality (2.13) has a unique solution [1,2].

3. Virtual element method

In this section, we introduce a virtual element method to solve Problem (P). For simplicity, we only consider the case
where Ω is a two-dimensional polygonal domain.

We begin with a family of decompositions {Th}h of Ω into polygonal elements denoted by K . Let hK = diam(K ) and
= max{hK : K ∈ Th}. All the subdivisions are compatible with the boundary splitting: Γ = ΓD ∪ ΓF ∪ ΓC . Furthermore,

we assume that ΓC is split as ΓC = ∪1≤i≤IΓC,i with each ΓC,i a closed line segment. Let E0
h denotes all the edges of Th

excluding the edges on ΓD, and P0
h denotes all the vertices of Th excluding the vertices on ΓD. Following [30], we make

assumption on the decompositions {Th}h as follows:
A1. There exist constants γ1 > 0 and γ2 > 0 such that for each h and for every K ∈ Th,
• K is star-shaped with respect to a disk of radius ρ ≥ γ1hK ;
• the distance between any two vertices of K is no less than γ2hK .

.1. Construction of V h

Corresponding to a decomposition Th, we construct a finite dimensional space V h ⊂ V . Similar to the virtual element
ethod for the elasticity problem [21,31], for every element K ∈ Th and integer k ≥ 1, we define the local space

V K
h := {v ∈ [H1(K )]2 : div(Cε(v)) ∈ [Pk−2(K )]2, v|∂K ∈ C0(∂K ), v|e ∈ [Pk(e)]2 ∀e ⊂ ∂K },

here Pk(K ) denotes the space of polynomials on K of degree no more than k. Here, P−1(K ) = {0}. Any v ∈ V K
h is

etermined by the following degrees of freedom (See Fig. 1.):

• the value of vh at the vertices of K ;
• the moments

∫
e q · vh ds for q ∈ [Pk−2(e)]2 on each edge e ⊂ ∂K for k ≥ 2;

• the moments
∫
K q · vh dx for q ∈ [Pk−2(K )]2 for k ≥ 2.

Then we define the global virtual element space as

V h := {v ∈ V : v|K ∈ V K
h ∀ K ∈ Th}, (3.1)

nd the global degrees of freedom for v ∈ V :
h
4
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• the value of vh at the vertices ∈ P0
h ;

• the moments
∫
e q · vh ds for q ∈ [Pk−2(e)]2∀ e ∈ E0

h for k ≥ 2;
• the moments

∫
K q · vh dx for q ∈ [Pk−2(K )]2∀ K ∈ Th for k ≥ 2.

For every smooth enough function v, there exists a unique interpolation vI ∈ Vh such that

dofi(vI ) = dofi(v) i = 1, . . . ,Ndof,

here dofi(vI ) denotes the value of the ith degree of freedom of vI ∈ Vh. In addition, let vπ be a piecewise polynomial
pproximation of v, i.e., for each element K , (vπ |K ∈ [Pk(K )]2) is an approximation of v on K . According to the
cott–Dupont theory [32,33], we have the following approximation results.

roposition 3.1. If Assumption A1 is satisfied, for any v ∈ [H l(Ω)]2, 2 ≤ l ≤ k + 1, there exist vI ∈ V h and vπ ∈ [Pk(K )]2
uch that

∥v − vI∥V ≤ chl−1
|v|[H l(Ω)]2 , (3.2)

∥v − vπ∥V ,K ≤ chl−1
K |v|[H l(K )]2 , (3.3)

here ∥v∥2
V ,K :=

∫
K ε(v) : ε(v)dx. Moreover, if v|ΓC,i ∈ H l(ΓC,i), 1 ≤ i ≤ I ,we have

∥v − vI∥L2(ΓC ) ≤ chl

(
I∑

i=1

|v|2l,ΓC,i

)1/2

. (3.4)

In analysis of the virtual element method, we will use a broken norm ∥ · ∥V ,h defined by

∥v∥2
V ,h =

∑
K∈Th

∥v∥2
V ,K .

.2. Construction of ah

The bilinear form a(·, ·) can be decomposed as

a(u, v) =

∑
K∈Th

aK (u, v) ∀ u, v ∈ V , (3.5)

here

aK (u, v) =

∫
K
Cε(u) : ε(v) dx.

orrespondingly, we will first construct suitable local bilinear form aKh (u, v) and then put them together as

ah(uh, vh) =

∑
K∈Th

aKh (uh, vh).

ccording to the general framework of virtual element method [14], the local bilinear form aKh (u, v) should satisfy the
ollowing properties:

• Polynomial consistency:

aKh (vh, q) = aK (vh, q) ∀ vh ∈ V K
h , ∀ q ∈ [Pk(K )]2. (3.6)

• Stability: there exist two positive constants α∗ and α∗, independent of h and K , s.t.

α∗aK (vh, vh) ≤ aKh (vh, vh) ≤ α∗aK (vh, vh) ∀ vh ∈ V K
h . (3.7)

Because shape functions are not available for V K
h , we cannot calculate the value of aK (u, v) for u, v ∈ V h. Due to the

omputability requirement, we define a projection operator ΠK
k : V K

h → [Pk(K )]2 by

aK (ΠK
k vh − vh, q) = 0 ∀ q ∈ [Pk(K )]2. (3.8)

his equation determines ΠK
k vh only up to a rigid motion. In order to ensure the uniqueness, we adopt the idea in [21]

o add the following conditions

1
nK

nKV∑
ΠK

k vh(xi) =
1
nK

nKV∑
vh(xi),
V i=1 V i=1

5
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V

nKV∑
i=1

xi × ΠK
k vh(xi) =

1
nK
V

nKV∑
i=1

xi × vh(xi),

where {xi} are the coordinates of vertices of the element K and nK
V denotes the number of the vertices. Then, we define

he local bilinear form

aKh (uh, vh) = aK (ΠK
k uh, ΠK

k vh) + SK (uh − ΠK
k uh, vh − ΠK

k vh) ∀ uh, vh ∈ V K
h (3.9)

here the stabilization term SK (uh, vh) should be chosen to satisfy

c4aK (vh, vh) ≤ SK (vh, vh) ≤ c5aK (vh, vh) ∀ vh ∈ V K
h with ΠK

k vh = 0, (3.10)

or two positive constants c4 and c5. Note that (3.8)–(3.10) ensures the properties (3.6) and (3.7). In this paper, we choose

SK (uh, vh) =

Ndof
K∑
i=1

χi(uh) χi(vh),

here χi(uh) denotes the ith degree of freedom for uh and Ndof
K is their number.

Define

ah(uh, vh) =

∑
K∈Th

aKh (uh, vh) ∀uh, vh ∈ V h.

By the symmetry of ah, stability (2.17) and (3.7), we have, for two positive constants C1 and C2,

ah(v, v) ≥ C1∥v∥
2
V ∀ v ∈ V h, (3.11)

ah(u, v) ≤ C2∥u∥V∥v∥V ∀ u, v ∈ V h. (3.12)

.3. Construction of f h

Because the term
∫

Ω
f 1 ·v dx is not computable for v ∈ V h, we introduce its approximation. Let PK

k be the L2 projection
rom V K

h to [Pk(K )]2. For k = 1, we define

⟨f 1h, vh⟩ =

∑
K∈Th

∫
K
PK
0 f 1 · vh dx ∀ vh ∈ V h.

For k ≥ 2, define

⟨f 1h, vh⟩ =

∑
K∈Th

∫
K
PK
k−2f 1 · vh dx ∀ vh ∈ V h.

To approximate the right-hand side term (f , v), we choose

⟨f h, vh⟩ = ⟨f 1h, vh⟩ +

∫
ΓF

f 2 · vh ds ∀ vh ∈ V h.

Then we have the following approximation property [31]

∥f − f h∥V ′
h

= sup
vh∈V h

(f , vh) − ⟨f h, vh⟩

∥vh∥V
≤ c hk

|f |k−1. (3.13)

lso,

(f , vh) − ⟨f h, vh⟩ ≤ ∥f − f h∥V ′
h
∥vh∥V ∀vh ∈ V h. (3.14)

urthermore, by the property of the L2 projection operator PK
k , we have

⟨f h, vh⟩ ≤ c∥vh∥V ∀vh ∈ V h (3.15)

here the constant c depends only on f 1 and f 2.

.4. The discrete problem

We introduce the discrete scheme for solving the Problem (P).

roblem (Ph). Find a displacement field uh ∈ V h, such that

a (u , v − u ) + j(u , v ) − j(u , u ) ≥ ⟨f , v − u ⟩ ∀ v ∈ V . (3.16)
h h h h h h h h h h h h h

6
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Let us prove the existence and uniqueness of the numerical solution of the discrete problem (3.16).

heorem 3.2. Assume f 1 ∈ [L2(Ω)]2, f 2 ∈ [L2(ΓF )]2, the gap function ga ∈ L2(ΓC ), and pe (e = ν, τ ) satisfies the conditions
2.10). Moreover, we assume the smallness condition C1 > C2

0 (Lν + Lτ ). Then, Problem (Ph) has a unique solution.

roof. First, we define the operator A : V h → V h by

(Auh, vh)V h = ah(uh, vh). (3.17)

y the continuity (3.12) of ah, we see that A is a Lipschitz continuous operator on V h. Furthermore, from (3.11), the
oerciveness of ah, we get

(Auh − Avh, uh − vh)V h = ah(uh − vh, uh − vh) ≥ C1∥uh − vh∥
2
V .

o A is strongly monotone. From the definition of j in (2.15) and the assumption (2.10), we see that for all v ∈ V h, the
unctional j(v, ·) : V h → R is continuous. For any u1, u2, v1, v2 ∈ V h, using (2.16) and (2.19), we obtain

j(u1, v2) − j(u1, v1) + j(u2, v1) − j(u2, v2) ≤ (Lν + Lτ )∥u1 − u2∥L2(ΓC )∥v1 − v2∥L2(ΓC )

≤ C2
0 (Lν + Lτ )∥u1 − u2∥V∥v1 − v2∥V .

rom (3.15), we see that f h ∈ V ′

h. Thus, applying [2, Theorem 2.19], under the stated assumptions, we conclude that
roblem (Ph) has a unique solution. ■

. Error estimates

In this section, we derive error estimates for the VEM solutions of Problem (P). First, we provide a uniform boundedness
esult on the numerical solution uh.

emma 4.1. Under the assumptions stated in Theorem 3.2, the numerical solution uh ∈ V h of Problem (Ph) is uniformly
ounded independent of h.

roof. Let vh = 0 in (3.16),

ah(uh, −uh) + j(uh, 0) − j(uh, uh) ≥ ⟨f h, −uh⟩,

o

ah(uh, uh) ≤ j(uh, 0) − j(uh, uh) + ⟨f h, uh⟩. (4.1)

y the definition of j(u, v), it is easy to see that j(0, v) = 0 for any v ∈ V . And from (2.16) and trace inequality (2.19), we
et

j(uh, 0) − j(uh, uh) ≤ (Lν + Lτ )∥uh∥
2
L2(ΓC )

≤ C2
0 (Lν + Lτ )∥uh∥

2
V . (4.2)

se (3.15), (3.11) and (4.2) in (4.1) to obtain

(C1 − C2
0 (Lν + Lτ ))∥uh∥

2
V ≤ c∥uh∥V .

ince C1 > C2
0 (Lν + Lτ ),

∥uh∥V ≤
c

C1 − C2
0 (Lν + Lτ )

,

which completes the proof. ■

Now we are ready to give an error estimate for the VEM solution of Problem (P).

Theorem 4.2. Let u and uh be the solutions of Problem (P) and Problem (Ph), respectively. Then

∥u − uh∥V ≤ c
(
∥u − uπ∥V ,h + ∥u − uI∥V ,h + ∥f − f h∥V ′

h
+ ∥u − uI∥

1/2
L2(ΓC )

)
, (4.3)

here uI and uπ are approximations of u defined in Section 3.1.

roof. First, we split the error e = u − uh into two parts

e = eI + eh,

here

e = u − u , e = u − u ,
I I h I h

7
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B

and uI ∈ V h is the interpolation of u. Setting vh = eh ∈ V h in (3.11), we get

C1∥eh∥2
V ≤ ah(eh, eh) = ah(uI , eh) − ah(uh, eh). (4.4)

y (3.6), we have

ah(uI , eh) =

∑
K∈Th

(aKh (uI − uπ , eh) + aKh (uπ , eh))

=

∑
K∈Th

(aKh (uI − uπ , eh) + aK (uπ , eh))

=

∑
K∈Th

(aKh (uI − uπ , eh) + aK (uπ − u, eh)) + a(u, eh). (4.5)

From the discrete virtual element scheme (3.16),

− ah(uh, uI − uh) ≤ −⟨f h, uI − uh⟩ − j(uh, uh) + j(uh, uI ). (4.6)

Combining (4.4)–(4.6), we have

C1∥eh∥2
V ≤ R1 + R2 + R3, (4.7)

where

R1 =

∑
K∈Th

(aKh (uI − uπ , eh) + aK (uπ − u, eh)),

R2 =(f , eh) − ⟨f h, eh⟩,
R3 =a(u, eh) − (f , eh) − j(uh, uh) + j(uh, uI ).

Let us bound each of the terms on the right side of (4.7). From the continuity of each aK and Cauchy–Schwarz inequality,

R1 ≤ c

⎛⎝(∑
K∈Th

∥uI − uπ∥
2
V ,K

)1/2
+

(∑
K∈Th

∥u − uπ∥
2
V ,K

)1/2⎞⎠ ∥eh∥V . (4.8)

From (3.15),

R2 ≤ c∥f − f h∥V ′
h
∥eh∥V . (4.9)

Taking v = uh or v = 2u − uI in (2.13), we get

a(u, u − uh) ≤ (f , u − uh) + j(u, uh) − j(u, u), (4.10)

and

a(u, uI − u) ≤ (f , uI − u) − j(u, u) + j(u, 2u − uI ). (4.11)

Therefore,

R3 = a(u, uI − u) + a(u, u − uh) − (f , eh) − j(uh, uh) + j(uh, uI )
≤
(
j(u, 2u − uI ) − j(u, u)) + (j(uh, uI ) − j(uh, u)

)
+
(
j(u, uh) − j(u, u) + j(uh, u) − j(uh, uh)

)
. (4.12)

From (2.16),

j(u, uh) − j(u, u) + j(uh, u) − j(uh, uh) ≤ (Lν + Lτ )∥u − uh∥
2
L2(ΓC )

. (4.13)

By the definition of j(u, v), it is easy to see that j(0, v) = 0 for any v ∈ V . So

j(u, 2u − uI ) − j(u, u) =j(u, 2u − uI ) − j(u, u) + j(0, 2u − uI ) − j(0, u)

≤(Lν + Lτ )∥u∥L2(ΓC )∥u − uI∥L2(ΓC ). (4.14)

Similarly, we get

j(uh, uI ) − j(uh, u) ≤ (Lν + Lτ )∥uh∥L2(ΓC )∥u − uI∥L2(ΓC ). (4.15)

Using (4.13)–(4.15) in (4.12) and Lemma 4.1, as well as the trace inequality (2.19), we obtain
2 2
R3 ≤ C0 (Lν + Lτ )∥u − uh∥V + c(Lν + Lτ )∥u − uI∥L2(ΓC ). (4.16)

8
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Combine (4.8), (4.9), (4.16) and triangle inequality with (4.7),

C1∥eh∥2
V ≤ c

(
∥u − uπ∥V ,h + ∥u − uI∥V + ∥f − f h∥V ′

h

)
∥eh∥V

+ C2
0 (Lν + Lτ )∥u − uh∥

2
V + c(Lν + Lτ )∥u − uI∥L2(ΓC ). (4.17)

Applying the fact that

a, b, x > 0 and x2 ≤ ax + b H⇒ x ≤ a + b1/2,

we arrive at

∥eh∥V ≤ c
(
∥u − uπ∥V ,h + ∥u − uI∥V + ∥f − f h∥V ′

h

)
+

√
C2
0 (Lν + Lτ )

C1
∥u − uh∥V + c1/2(Lν + Lτ )1/2∥u − uI∥

1/2
L2(ΓC )

.

y the triangle inequality

∥u − uh∥V ≤ ∥u − uI∥V + ∥eh∥V , (4.18)

nd noting that C1 > C2
0 (Lν + Lτ ), we obtain the inequality (4.3). ■

Generally, variational inequalities have low regularities, so it makes sense to only use lowest-order numerical schemes.
or the lowest-order VEM, i.e., k = 1, if u ∈ (H2(Ω))2 and u|ΓC,i ∈ H2(ΓC,i), 1 ≤ i ≤ I , from the approximation properties
3.2)–(3.4), we have

∥u − uπ∥V ,h ≤ ch|u|2,Ω ,

∥u − uI∥V ≤ ch|u|2,Ω ,

nd

∥u − uI∥L2(ΓC ) ≤ ch2

(
I∑

i=1

|u|
2
2,ΓC,i

)1/2

.

herefore, we obtain

∥u − uh∥V ≤ ch,

hich is an optimal order error estimate.
For high order VEM, due to the inequality form of the problem, it is not possible to have an optimal order error

stimate, even if the solution is smooth. For example, when k = 2, even under higher solution regularities u ∈ (H3(Ω))2
nd u|ΓC,i ∈ H3(ΓC,i), 1 ≤ i ≤ I , we can only get suboptimal convergence order

∥u − uh∥V ≤ ch3/2

ue to the contact boundary error approximation result (3.4) for l = 3. One way to improve convergence order is to refine
he elements along contact boundary ΓC to reduce the error ∥u−uI∥L2(ΓC ). Such a mesh refinement can be easily obtained
or the virtual element method because it treats the hanging nodes as vertices of the new element. It is an advantage of
EM to solve contact problems.

. Numerical simulations

In this section, we report some numerical simulation results.
In the numerical experiment, we consider functions pν , pτ in the form

pν(t) = kν(t)
mν
+ , pτ (t) = kτ (t)

mτ
+ , (5.1)

here kν,mν, kτ ,mτ ≥ 0, and (t)+ = max{t, 0}. We can verify that the function pν and pτ satisfy the condition (2.10). For
implicity, we consider a reduced normal compliance law, i.e. mτ = 0 in (5.1); then the functional j(u, v) can be written
s

j(u, v) = jν(u, v) + jτ (v),

here

jν(u, v) =

∫
kν(uν − ga)

mν
+ vνds,
ΓC

9
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Table 1
Errors and numerical convergence orders of the lowest order VEM.
h 2−2 2−3 2−4 2−5 2−6

Error 1.9114e−1 1.0309e−1 5.4352e−2 2.80070e−2 1.3828e−2
Convergence order – 0.89067 0.92354 0.95656 1.0182

jτ (v) =

∫
ΓC

kτ |vτ |ds.

In order to implement the virtual element method (3.16), we use the Uzawa iteration by introducing a Lagrange multiplier
λh [34]. Then the discrete problem (3.16) is equivalent to the system

ah(uh, vh) + jν(uh, vh) +

∫
ΓC

kτλhτ · vhτds = ⟨f h, vh⟩ ∀ vh ∈ Vh, (5.2)

|λhτ | ≤ 1, λhτ · uhτ = |uhτ | a.e. on ΓC . (5.3)

Since the spatial domain of the problem is two-dimensional, λhτ and vhτ can be equivalently viewed as scalars, e.g., we
use vhτ ≡ vhτ · τ to replace vhτ . Then, the Uzawa iteration algorithm is as follows.

Step 1 Choose λ
(0)
hτ = 0 and u(0)

h = 0.

Step 2 For n = 1, 2, . . ., find u(n)
h ∈ Vh such that

ah(u
(n)
h , vh) = ⟨f h, vh⟩ − jν(u

(n−1)
h , vh) −

∫
ΓC

kτλ
(n−1)
hτ vhτ ds ∀vh ∈ Vh. (5.4)

Then, update the Lagrangian multiplier

λ
(n)
hτ = P

(
λ
(n−1)
hτ + ρkτu

(n)
hτ

)
, (5.5)

where ρ is a positive constant and P is a projection operator defined by

P(µ) = sup
(
−1, inf(1, µ)

)
∀ µ ∈ L∞(ΓC ). (5.6)

Step 3 If ∥u(n)
− u(n−1)

∥ < ϵ1 or |λ
(n)
hτ − λ

(n−1)
hτ | < ϵ2, for two given error tolerances ϵ1 > 0 and ϵ2 > 0, stop; otherwise,

go to Step2.

For numerical simulations, let Ω = (0, 1) × (0, 1) ⊂ R2 with ΓD = {1} × (0, 1), ΓF = ({0} × (0, 1)) ∪ ((0, 1) × {1}),
and ΓC = (0, 1) × {0}. The domain Ω represents the cross-section of a three-dimensional deformable body. The physical
setting is shown in Fig. 2. The elasticity tensor C is given by

(Cε)ij =
Eκ

1 − κ2 (ε11 + ε22)δij +
E

1 + κ
εij, 1 ≤ i, j ≤ 2,

here E is the Young’s modulus, κ is the Poisson ratio of the material and δij denotes the Kronecker symbol. We use the
ollowing data (the unit daN/mm2 stands for ‘‘decaNewtons per square millimeter’’):

E = 2000 daN/mm2, κ = 0.4, f 1 = (0, 0) daN/mm2

f 2(x1, x2) =

{
(0, 0) daN/mm on [0, 1] × {1},
(200(5 − x2), −200) daN/mm on {0} × [0, 1],

kτ = 450, kν = 10, mν = 1, ga = 0.1mm.

First, we solve the problem on square meshes for computing the numerical errors. We use a uniform partition of the
interval [0, 1] and denote by 1/h the number of sub-intervals of [0, 1]. In Table 1, we report the H1 error of the numerical
solutions and the corresponding convergence orders. Since the true solution u is not available, we use the numerical
solution on a fine mesh as the ‘‘reference’’ solution uref . Specifically, we use the numerical solution with h = 2−8 as the
‘‘reference’’ solution. Because the virtual element solution uh is not computable, instead, we compute the relative errorΠ1(uh − uref )


H1 /

Π1uref

H1 , where the restriction of the projection Π1 on K is defined by (3.8). We observe that the

numerical convergence orders are close to one, which matches well the theoretical prediction.
Furthermore, we solve the same contact problem on two other meshes. In Fig. 4, we show the numerical solution

u = (u1, u2)T on unstructured triangular mesh with 1024 triangles. The numerical solution on a polygonal mesh with
1024 polygons is shown in Fig. 5. Comparing with the numerical solution on square mesh in Fig. 3, the displacements
u1 and u2 on these meshes are almost the same, which shows that the virtual element method works well on general
meshes.
10
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Fig. 2. Physical configuration.

Fig. 3. Numerical solution on square mesh (1024 squares)

Fig. 6 shows the deformed mesh with a magnification of the displacement with h = 1/16. We observe that the
penetration occurs at the contact interface, the value of uν exceed g = 0.1 in certain interval. The gray color represents
the value of the elastic shear energy density |devσ|

2/(4µ) [35], where

|devσ|
2

=

(
µ2

6(µ + λ)2
+

1
2

)
(σ11 + σ22)2 + 2(σ 2

12 − σ11σ22).
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Fig. 4. Numerical solution on unstructured triangle mesh (1024 triangles)

Fig. 5. Numerical solution on polygonal mesh (1024 polygons)

Fig. 6. Deformed configuration with h = 1/16.
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